1
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
2
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
3
|
Jacobitz AW, Rodezno W, Agrawal NJ. Utilizing cross-product prior knowledge to rapidly de-risk chemical liabilities in therapeutic antibody candidates. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThere is considerable pressure in the pharmaceutical industry to advance better molecules faster. One pervasive concern for protein-based therapeutics is the presence of potential chemical liabilities. We have developed a simple methodology for rapidly de-risking specific chemical concerns in antibody-based molecules using prior knowledge of each individual liability at a specific position in the molecule’s sequence. Our methodology hinges on the development of sequence-aligned chemical liability databases of molecules from different stages of commercialization and on sequence-aligned experimental data from prior molecules that have been developed at Amgen. This approach goes beyond the standard practice of simply flagging all instances of each motif that fall in a CDR. Instead, we de-risk motifs that are common at a specific site in commercial mAb-based molecules (and therefore did not previously pose an insurmountable barrier to commercialization) and motifs at specific sites for which we have prior experimental data indicating acceptably low levels of modification. We have used this approach successfully to identify candidates in a discovery phase program with exclusively very low risk potential chemical liabilities. Identifying these candidates in the discovery phase allowed us to bypass protein engineering and accelerate the program’s timeline by 6 months.
Collapse
|
4
|
Rehman S, Song J, Faisal M, Alatar AA, Akhter F, Ahmad S, Hu B. The Neoepitopes on Methylglyoxal- (MG-) Glycated Fibrinogen Generate Autoimmune Response: Its Role in Diabetes, Atherosclerosis, and Diabetic Atherosclerosis Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621568. [PMID: 34970417 PMCID: PMC8714332 DOI: 10.1155/2021/6621568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES In diabetes mellitus, hyperglycemia-mediated nonenzymatic glycosylation of fibrinogen protein plays a crucial role in the pathogenesis of micro- and macrovascular complications especially atherosclerosis via the generation of advanced glycation end products (AGEs). Methylglyoxal (MG) induces glycation of fibrinogen, resulting in structural alterations that lead to autoimmune response via the generation of neoepitopes on protein molecules. The present study was designed to probe the prevalence of autoantibodies against MG-glycated fibrinogen (MG-Fib) in type 2 diabetes mellitus (T2DM), atherosclerosis (ATH), and diabetic atherosclerosis (T2DM-ATH) patients. Design and Methods. The binding affinity of autoantibodies in patients' sera (T2DM, n = 100; ATH, n = 100; and T2DM-ATH, n = 100) and isolated immunoglobulin G (IgG) against native fibrinogen (N-Fib) and MG-Fib to healthy subjects (HS, n = 50) was accessed by direct binding ELISA. The results of direct binding were further validated by competitive/inhibition ELISA. Moreover, AGE detection, ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), thiobarbituric acid reactive substances (TBARS), and carboxymethyllysine (CML) concentrations in patients' sera were also determined. Furthermore, free lysine and free arginine residues were also estimated. RESULTS The high binding affinity was observed in 54% of T2DM, 33% of ATH, and 65% of T2DM-ATH patients' samples with respect to healthy subjects against MG-Fib antigen in comparison to N-Fib (p < 0.05 to p < 0.0001). HS sera showed nonsignificant binding (p > 0.05) with N-Fib and MG-Fib. Other biochemical parameters were also found to be significant (p < 0.05) in the patient groups with respect to the HS group. CONCLUSIONS These findings in the future might pave a way to authenticate fibrinogen as a biomarker for the early detection of diabetes-associated micro- and macrovascular complications.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- Department of Biochemistry, Sir Syed Faculty of Science, Mohammad Ali Jauhar University, Rampur, U.P., India
| | - Jiantao Song
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, USA
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
5
|
Tas O, Ertugrul U, Oztop MH, Mazi BG. Glycation of soy protein isolate with two ketoses:
d
‐Allulose and fructose. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ozan Tas
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Ulku Ertugrul
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Bekir Gokcen Mazi
- Department of Food Engineering Ordu University Cumhuriyet Yerleşkesi, Altınordu Ordu 52200 Turkey
| |
Collapse
|
6
|
Jacobitz AW, Dykstra AB, Spahr C, Agrawal NJ. Effects of Buffer Composition on Site-Specific Glycation of Lysine Residues in Monoclonal Antibodies. J Pharm Sci 2019; 109:293-300. [PMID: 31150698 DOI: 10.1016/j.xphs.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Candidate antibodies under consideration for development as pharmaceuticals must be screened for potential liabilities. Glycation of lysine side chains is one liability which can significantly alter the efficacy of a therapeutic antibody. Antibody candidates are often subjected to stress-testing after purification to assess liabilities that may arise from variability in the manufacturing process and gauge the manufacturability of the molecule. Because previous publications have shown significant site-specific effects of certain buffer components on the glycation rate of individual lysines, we sought to understand the effects of common buffering agents to find suitable buffers for glycation stress-testing (forced glycation). Therapeutic antibodies are typically only exposed to reducing sugars in cell culture media during production, so we sought to identify buffers that could be used as surrogates for media in forced glycation reactions. Our results indicate that common buffering agents can drastically alter the rate of glycation for specific lysines in an antibody. Forced glycation reactions performed in HEPES and citrate buffers both produce site-specific lysine glycation rates that correlate well with cell culture media, whereas bicarbonate buffer has a highly stimulatory effect on most lysines leading to higher total glycation levels and a poor correlation to glycation rates in media.
Collapse
Affiliation(s)
- Alex W Jacobitz
- Amgen Inc., Process Development, Thousand Oaks, California 91320
| | - Andrew B Dykstra
- Amgen Inc., Process Development, Thousand Oaks, California 91320
| | - Chris Spahr
- Amgen Inc., Research and Development, Thousand Oaks, California 91320
| | - Neeraj J Agrawal
- Amgen Inc., Process Development, Cambridge, Massachusetts 02141.
| |
Collapse
|
7
|
Chaplin AK, Chernukhin I, Bechtold U. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:653-670. [PMID: 30395279 PMCID: PMC6322573 DOI: 10.1093/jxb/ery389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.
Collapse
Affiliation(s)
- Amanda K Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
8
|
Soboleva A, Schmidt R, Vikhnina M, Grishina T, Frolov A. Maillard Proteomics: Opening New Pages. Int J Mol Sci 2017; 18:E2677. [PMID: 29231845 PMCID: PMC5751279 DOI: 10.3390/ijms18122677] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer's disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06108 Halle, Germany.
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
9
|
"In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger. Enzyme Res 2017; 2017:9746191. [PMID: 29348934 PMCID: PMC5733987 DOI: 10.1155/2017/9746191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023] Open
Abstract
Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of -0,304 and -0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.
Collapse
|
10
|
Bilova T, Paudel G, Shilyaev N, Schmidt R, Brauch D, Tarakhovskaya E, Milrud S, Smolikova G, Tissier A, Vogt T, Sinz A, Brandt W, Birkemeyer C, Wessjohann LA, Frolov A. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem 2017; 292:15758-15776. [PMID: 28611063 DOI: 10.1074/jbc.m117.794537] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/27/2017] [Indexed: 01/05/2023] Open
Abstract
Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.
Collapse
Affiliation(s)
- Tatiana Bilova
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Departments of Plant Physiology and Biochemistry and
| | - Gagan Paudel
- From the Departments of Bioorganic Chemistry and.,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Nikita Shilyaev
- Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Rico Schmidt
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | - Dominic Brauch
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, Germany
| | | | - Svetlana Milrud
- the Departments of Plant Physiology and Biochemistry and.,Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | | | - Alain Tissier
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Thomas Vogt
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | | | - Claudia Birkemeyer
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | | | - Andrej Frolov
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
11
|
Morales-Álvarez ED, Rivera-Hoyos CM, Landázuri P, Poutou-Piñales RA, Pedroza-Rodríguez AM. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase. Open Microbiol J 2016; 10:124-32. [PMID: 27335624 PMCID: PMC4899537 DOI: 10.2174/1874285801610010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 12/05/2022] Open
Abstract
Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence.
Collapse
Affiliation(s)
- Edwin D Morales-Álvarez
- Research Group on Cardiovascular and Metabolic Diseases (GECAVYME), Faculty of Health Sciences, University of Quindio, Armenia-Quindío, Colombia, South America; Department of Chemistry, Research Group on Genetics, Biodiversity and Ecosystem Management (GEBIOME), Faculty of Exact and Natural Sciences, University of Caldas, Manizales-Caldas, Colombia, South America
| | - Claudia M Rivera-Hoyos
- Research Group on Cardiovascular and Metabolic Diseases (GECAVYME), Faculty of Health Sciences, University of Quindio, Armenia-Quindío, Colombia, South America; Laboratory of Molecular Biotechnology, Group of Environmental and Industrial Biotechnology (GBAI), Department of Microbiology, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia, South America
| | - Patricia Landázuri
- Research Group on Cardiovascular and Metabolic Diseases (GECAVYME), Faculty of Health Sciences, University of Quindio, Armenia-Quindío, Colombia, South America
| | - Raúl A Poutou-Piñales
- Laboratory of Molecular Biotechnology, Group of Environmental and Industrial Biotechnology (GBAI), Department of Microbiology, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia, South America
| | - Aura M Pedroza-Rodríguez
- Laboratory of Environmental and Soil Microbiology, Group of Environmental and Industrial Biotechnology (GBAI), Department of Microbiology, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia, South America
| |
Collapse
|