1
|
Saad M, Ibrahim W, Hasanin AH, Elyamany AM, Matboli M. Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway. RSC Med Chem 2024:d4md00477a. [PMID: 39290381 PMCID: PMC11403872 DOI: 10.1039/d4md00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic. Herein, we aimed to evaluate the potential therapeutic effects of Zbiotics administration on NASH management by modulating the cGAS-STING-signaling pathway-related RNA network. In silico data analysis was performed and three DEGs (MAPK3/EDN1/TNF) were selected with their epigenetic modulators (miR-6888-5p miRNA, and lncRNA RABGAP1L-DT-206). The experimental design included NASH induction with an HSHF diet in Wistar rats and Zbiotics administration in NASH rats in comparison to statin treatment. Liver functions and lipid profile were assessed. Additionally, the expression levels of the constructed molecular network were assessed using RT-PCR. Moreover, the Zbiotics effects in NASH were further validated with histopathological examination of liver and colon samples. Also, immunohistochemistry staining of hepatic TNF-α and colonic occludin was assessed. Oral administration of Zbiotics for four weeks downregulated the expression of the cGAS-STING-related network (MAPK3/EDN1/TNF/miR-6888-5p miRNA/lncRNA RABGAP1L-DT-206) in NASH models. Zbiotics also ameliorated hepatic inflammation and steatosis, as evidenced by a notable improvement in NAS score and decreased hepatic TNF-α levels. Furthermore, Zbiotics exhibited favorable effects on colon health, including increased crypt length, reduced inflammatory cell infiltration, and restoration of colonic mucosa occludin expression. In conclusion, our findings suggest that Zbiotics has potential therapeutic effects on NASH via modulating the gut-liver axis and the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information Cairo Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for technology and information Cairo Egypt
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Aya Magdy Elyamany
- Anatomic Pathology Department, Faculty of Medicine, Cairo University Cairo Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
2
|
Matboli M, Al-Amodi HS, Hamady S, Ali M, Roushdy MM, Hasanin AH, Aboul-Ela YM, Albadawy R, Gomaa E, Kamel HFM, ELsawi HA, Farid LM, Abouelkhair MB, Elmakromy GM, Fawzy NM. Experimental investigation for nonalcoholic fatty pancreas management using probiotics. Diabetol Metab Syndr 2024; 16:147. [PMID: 38961451 PMCID: PMC11223304 DOI: 10.1186/s13098-024-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty pancreatitis (NAFP) presents a pressing challenge within the domain of metabolic disorders, necessitating further exploration to unveil its molecular intricacies and discover effective treatments. Our focus was to delve into the potential therapeutic impact of ZBiotic, a specially engineered strain of probiotic B. subtilis, in managing NAFP by targeting specific genes linked with necroptosis and the TNF signaling pathway, including TNF, ZBP1, HSPA1B, and MAPK3, along with their upstream epigenetic regulator, miR-5192, identified through bioinformatics. METHODS Rats were subjected to either a standard or high-fat, high-sucrose diet (HFHS) for eight weeks. Subsequently, they were divided into groups: NAFP model, and two additional groups receiving daily doses of ZBiotic (0.5 ml and 1 ml/kg), and the original B. subtilis strain group (1 ml/kg) for four weeks, alongside the HFHS diet. RESULTS ZBiotic exhibited remarkable efficacy in modulating gene expression, leading to the downregulation of miR-5192 and its target mRNAs (p < 0.001). Treatment resulted in the reversal of fibrosis, inflammation, and insulin resistance, evidenced by reductions in body weight, serum amylase, and lipase levels (p < 0.001), and decreased percentages of Caspase and Nuclear Factor Kappa-positive cells in pancreatic sections (p < 0.01). Notably, high-dose ZBiotic displayed superior efficacy compared to the original B. subtilis strain, highlighting its potential in mitigating NAFP progression by regulating pivotal pancreatic genes. CONCLUSION ZBiotic holds promise in curbing NAFP advancement, curbing fibrosis and inflammation while alleviating metabolic and pathological irregularities observed in the NAFP animal model. This impact was intricately linked to the modulation of necroptosis/TNF-mediated pathway-related signatures.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt.
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Marwa Ali
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Marian Ms Roushdy
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Amany Helmy Hasanin
- Clinical pharmacology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M Aboul-Ela
- Clinical pharmacology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Eman Gomaa
- Histology and Cell biology department, Faculty of Medicine, Ain Shams University, Giza, Egypt
| | - Hala F M Kamel
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | - Laila M Farid
- Pathology department Faculty of Medicine, Ain Shams University, Giza, Egypt
| | | | - Gena M Elmakromy
- Endocrinology & Diabetes mellitus unit, Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | - Nesma Mohamed Fawzy
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Kokila V, Namasivayam SKR, Amutha K, Kumar RR, Bharani RSA, Surya P. Hypocholesterolemic potential of Bacillus amyloliquefaciens KAVK1 modulates lipid accumulation on 3T3-L1 adipose cells and high fat diet-induced obese rat model. World J Microbiol Biotechnol 2024; 40:206. [PMID: 38755297 DOI: 10.1007/s11274-024-04016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- V Kokila
- Department of Plant Biology and Plant Biotechnology, Shree Chandraprabhu Jain College, Chennai, 601 203, India
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - K Amutha
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - R Ramesh Kumar
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - R S Arvind Bharani
- Institute of Obstetrics and Gynaecology, Madras Medical College, Egmore, Chennai, Tamil Nadu, 600 008, India
| | - P Surya
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
4
|
Negi A, Pasam T, Farqadain SM, Mahalaxmi Y, Dandekar MP. In-vitro and preclinical testing of bacillus subtilis UBBS-14 probiotic in rats shows no toxicity. Toxicol Res (Camb) 2024; 13:tfae021. [PMID: 38406637 PMCID: PMC10891425 DOI: 10.1093/toxres/tfae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Probiotics made from Bacillus subtilis provide a wide spread of health benefits, particularly in the treatment of diarrhea and gastrointestinal problems. Herein, we employed in vitro and in vivo paradigms to assess the potential adverse effects and toxicity of B. subtilis UBBS-14. Materials and methods According to Organization for Economic Co-operation and Development (OECD) 423 and 407 requirements, a preclinical investigation was conducted in male and female Sprague-Dawley rats. Acute toxicity was examined following a single peroral (PO) administration of 5,000 mg/kg body weight (bw) i.e. equivalent to 500 billion colony-forming units (CFU) per kg bw. Single administration of B. subtilis UBBS-14 showed no mortality or adverse effects until the 14-day observation period, indicating LD50 is >5,000 mg/kg bw. Results Incubation of B. subtilis UBBS-14 with Caco2, HT29, and Raw 264.7 cell lines, showed no cytotoxic effects. This probiotic strain was also found responsive to the majority of antibiotics. For a 28-day repeated dose toxicity study, rats were administered 100, 500, and 1,000 mg/kg bw daily once (10, 50, and 100 billion CFU/kg bw/day, respectively) doses of B. subtilis UBBS-14. No notable changes were seen in the morphology, weight, and histopathology of the critical internal organs. The haematological, biochemical, electrolyte (sodium, potassium, chloride, and calcium), and urine analytical results were within the normal range and equivalent to the vehicle-treated group. Conclusion B. subtilis UBBS-14's no-observed-effect level (NOEL) was thus determined to be >1,000 mg/kg bw/day following a 28-day oral dosing.
Collapse
Affiliation(s)
- Ankit Negi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| | - Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| | - Syed Muhammad Farqadain
- Unique Biotech Limited, Centre for Research and Development, Hyderabad, Telangana, 500 101, India
| | - Y Mahalaxmi
- Unique Biotech Limited, Centre for Research and Development, Hyderabad, Telangana, 500 101, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| |
Collapse
|
5
|
Bauter MR, Brutscher LM, Dolan LC, Spears JL. Subchronic oral toxicity assessment of Bacillus velezensis strain BV379 in sprague-dawley rats. Hum Exp Toxicol 2024; 43:9603271241278977. [PMID: 39326930 DOI: 10.1177/09603271241278977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
INTRODUCTION The spore-forming bacterial species Bacillus velezensis is commonly utilized in feed for livestock and aquaculture. In recent years, there has been increased interest in introducing B. velezensis into human supplements and food. Before it can be safely administered in humans, the safety of each B. velezensis strain needs to be established. The objective of this study was to evaluate the in vivo safety of Bacillus velezensis strain BV379 by high-dose oral administration to rats in a 28-day subchronic toxicity study. METHODS In this study, 80 animals were assigned to four groups: vehicle control, 1 × 1010, 4 × 1010, or 10 × 1010 CFU/kg bw/day by gavage. The following toxicological assessments were performed: ophthalmological examinations; observations for viability, signs of gross toxicity, and behavioral changes; in-life parameters, including body weight and food consumption; urinalysis, hematology, clinical chemistry, and coagulation assessments; macroscopic and microscopic tissue assessments; and bacterial enumeration in selected tissues. RESULTS Under the conditions of this study, no adverse clinical endpoints were attributed to the administration of Bacillus velezensis strain BV379, which was well-tolerated up to the highest dose of 10 × 1010 CFU/kg bw/day. CONCLUSION These results support the in vivo pre-clinical safety of Bacillus velezensis strain BV379 for use in food and supplements.
Collapse
|
6
|
Tanihiro R, Yuki M, Sasai M, Haseda A, Kagami-Katsuyama H, Hirota T, Honma N, Nishihira J. Effects of Prebiotic Yeast Mannan on Gut Health and Sleep Quality in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 16:141. [PMID: 38201970 PMCID: PMC10780920 DOI: 10.3390/nu16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human gut health is closely related to sleep. We aimed to evaluate the efficacy of yeast mannan (YM) in improving bowel habits and sleep quality, along with metabolomics in fecal samples. A total of 40 healthy adults (age range, 22-64 years) with discomfort in defecation were enrolled and randomly allocated to receive either YM (n = 20; 1.1 g/day) or placebo (n = 20) for four weeks. Participants recorded their defecation habits throughout the test periods. Sleep electroencephalogram (EEG) recording using an EEG device and fecal sampling were performed pre- and post-treatment. The YM group significantly increased defecation frequency and stool volumes compared to the placebo group. After 4 weeks of treatment, the non-REM sleep stage 3 (N3) duration in the YM group was significantly higher than that in the placebo group. YM ingestion significantly lengthened total time in bed (TIB) and significantly shortened N3 latency compared to placebo intake during the trial. The metabolomics analysis found a total of 20 metabolite differences between the YM and placebo groups. As a result of stepwise linear regression, changes in fecal propionate and gamma-aminobutyric acid (GABA) levels were identified as the primary factors explaining changes in TIB and N3 latency, respectively. Our findings suggest that the prebiotic YM could be beneficial to gut health and sleep quality.
Collapse
Affiliation(s)
- Reiko Tanihiro
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masahiro Yuki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masaki Sasai
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Akane Haseda
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Hiroyo Kagami-Katsuyama
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Naoyuki Honma
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| |
Collapse
|
7
|
Garvey SM, Emami NK, Guice JL, Sriranganathan N, Penet C, Rhoads RP, Spears JL, Dalloul RA, El-Kadi SW. The Probiotic Bacillus subtilis MB40 Improves Immunity in a Porcine Model of Listeriosis. Microorganisms 2023; 11:2110. [PMID: 37630670 PMCID: PMC10458092 DOI: 10.3390/microorganisms11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.
Collapse
Affiliation(s)
- Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Nima K. Emami
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | | | - Christopher Penet
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Robert P. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jessica L. Spears
- Department of Research and Development, BIO-CAT Microbials, LLC, Shakopee, MN 55379, USA
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Colom J, Freitas D, Simon A, Khokhlova E, Mazhar S, Buckley M, Phipps C, Deaton J, Brodkorb A, Rea K. Acute physiological effects following Bacillus subtilis DE111 oral ingestion - a randomised, double blinded, placebo-controlled study. Benef Microbes 2023; 14:31-44. [PMID: 36790091 DOI: 10.3920/bm2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Previous studies using ileostomy samples from study participants demonstrated that the spore-forming probiotic Bacillus subtilis DE111® can germinate in the small intestine as early as 4 hours after ingestion. Metabolomics, proteomics and sequencing technologies, enabled further analysis of these samples for the presence of hypoglycaemic, hypolipidemic, antioxidant, anti-inflammatory and antihypertensive molecules. In the DE111 treatment group, the polyphenols trigonelline and 2,5-dihydroxybenzoic acid, orotic acid, the non-essential amino acid cystine and the lipokine 12,13-diHome were increased. DE111 also reduced acetylcholine levels in the ileostomy samples, and increased the expression of leucocyte recruiting proteins, antimicrobial peptides and intestinal alkaline phosphatases of the brush border in the small intestine. The combination of B. subtilis DE111 and the diet administered during the study increased the expression of the proteins phosphodiesterase ENPP7, ceramidase ASAH2 and the adipokine Zn-alpha-2-glycoprotein that are involved in fatty acid and lipid metabolism. Acute B. subtilis DE111 ingestion had limited detectable effect on the microbiome, with the main change being its increased presence. These findings support previous data suggesting a beneficial role of DE111 in digestion, metabolism, and immune health that appears to begin within hours of consumption.
Collapse
Affiliation(s)
- J Colom
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - D Freitas
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - A Simon
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - E Khokhlova
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - S Mazhar
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - M Buckley
- Mercy University Hospital, Grenville PI, Cork, Ireland
| | - C Phipps
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - J Deaton
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - A Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - K Rea
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Garvey SM, Mah E, Blonquist TM, Kaden VN, Spears JL. The probiotic Bacillus subtilis BS50 decreases gastrointestinal symptoms in healthy adults: a randomized, double-blind, placebo-controlled trial. Gut Microbes 2022; 14:2122668. [PMID: 36269141 PMCID: PMC9590435 DOI: 10.1080/19490976.2022.2122668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Durable spore-forming probiotics are increasingly formulated into foods, beverages, and dietary supplements. To help meet this demand, the safety and efficacy of daily supplementation of Bacillus subtilis BS50 for 6 weeks was investigated in a randomized, double-blind, placebo-controlled, parallel clinical trial of 76 healthy adults. Before and during supplementation, gastrointestinal symptoms were recorded daily using a multi-symptom questionnaire. Clinical chemistry, hematology, plasma lipids, and intestinal permeability and inflammation markers were measured at baseline and end of study. Compared to placebo, 2 × 109 colony-forming units (CFU) BS50 per day increased the proportion of participants showing improvement from baseline to week 6 in the composite score for bloating, burping, and flatulence (47.4% vs. 22.2%), whereby the odds of detecting an improvement were higher with BS50 (OR [95% CI]: 3.2 [1.1, 8.7], p = .024). Analyses of individual gastrointestinal symptoms indicate that BS50 increased the proportion of participants showing an improvement at week 6 compared to placebo for burping (44.7% vs. 22.2%, p = .041) and bloating (31.6% vs. 13.9%, p = .071), without affecting other symptoms. There were no clinically meaningful changes in clinical chemistry, hematology, plasma lipids and intestinal permeability and other inflammation markers. In conclusion, the results suggest that dietary supplementation of 2 × 109 CFU Bacillus subtilis BS50 per day is a well-tolerated and safe strategy to alleviate gas-related gastrointestinal symptoms in healthy adults. ABBREVIATIONS AE adverse event; BHD bowel habits diary; BMI body mass index; BSS Bristol Stool Scale; CFU colony-forming unit; CRP C-reactive protein; FGID functional gastrointestinal disorder; GI gastrointestinal; GITQ Gastrointestinal Tolerance Questionnaire; GLP-1 glucagon-like peptide 1; GSRS Gastrointestinal Symptom Rating Scale; HDL-C high-density lipoprotein-cholesterol; IBS irritable bowel syndrome; IL-10 interleukin-10; ITT intent-to-treat; LBP lipopolysaccharide binding protein; LDL-C low-density lipoprotein-cholesterol; PP per protocol; PYY peptide YY; TG triglyceride; total-C total cholesterol.
Collapse
Affiliation(s)
- Sean M. Garvey
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,BIO-CAT, Inc., Troy, VA, USA,Sean M. Garvey Department of Research and Development, BIO-CAT Microbials, LLC, 689 Canterbury Rd S, Shakopee, MN55379, USA
| | - Eunice Mah
- Biofortis Research, Inc., Addison, IL, USA
| | | | | | - Jessica L. Spears
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,CONTACT Jessica L. Spears
| |
Collapse
|
10
|
Abstract
BACKGROUND To collect the published trials of probiotics in the treatment of diarrhea and to strictly evaluate and systematically analyze the efficacy of probiotics use for the prevention and treatment of patients with diarrhea. METHODS We searched domestic and foreign literature published between January 2016 and July 2022 to find randomized control trials that used probiotics to treat diarrhea. Only studies published in English were considered. The quality of the included literatures was assessed by using the methods provided in the Cochrane Handbook. Valid data were extracted and analyzed by meta- analysis using the Software RevMan5.2. RESULTS Total 16 trials and 1585 patients were included. The results of the meta- analysis showed that in comparison with the simple Western medicine treatment group or placebo, the added use of probiotics could improve stool frequency, stool morphology, and related irritable bowel syndrome symptoms. CONCLUSION The added use of probiotics can further improve clinical outcomes in the patients with diarrhea; however, the implementation of larger and higher quality clinical trials is necessary to verify this conclusion.
Collapse
Affiliation(s)
- Fujie Wang
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhao
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Dai
- Nutritional Department, Xuzhou Cancer Hospital, Xuzhou China
| | - Xianghua Ma
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xianghua Ma, Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu, China (e-mail: )
| |
Collapse
|
11
|
History of fecal transplantation; camel feces contains limited amounts of Bacillus subtilis spores and likely has no traditional role in the treatment of dysentery. PLoS One 2022; 17:e0272607. [PMID: 35947590 PMCID: PMC9365175 DOI: 10.1371/journal.pone.0272607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
A widely cited story on the origins of fecal transplantation suggests that German soldiers in North Africa used camel feces containing Bacillus subtilis to treat dysentery in World War 2. We investigated if this story is accurate and if there is sufficient Bacillus subtilis in camel feces to be potentially therapeutic.
Methods and results
A literature analysis shows that all references to the story are based on a single review paper that mentions the use of camel feces in passing and only provides indirect evidence for this claim. An extensive literature search failed to find independent evidence that camel feces has traditionally been used in the treatment of dysentery in North Africa. With 16S sequence analysis we did not detect Bacillus subtilis in feces from two different Egyptian camels. Using a more sensitive culture-based assay we could detect low amounts of Bacillus subtilis spores in these fecal samples, with comparable concentrations to those present in human feces and soil.
Conclusions
Because we could not find evidence for the use of camel feces in the treatment of diarrhea and because we show that only low amounts of Bacillus subtilis spores are present in camel feces, we conclude that the use of camel feces should no longer be mentioned in the context of origins of fecal transplantation.
Collapse
|
12
|
Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022; 10:microorganisms10051038. [PMID: 35630480 PMCID: PMC9144164 DOI: 10.3390/microorganisms10051038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.
Collapse
|
13
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
14
|
Nishiyama T, Ashida N, Nakagawa K, Iwatani S, Yamamoto N. Dietary Bacillus subtilis C-3102 Supplementation Enhances the Exclusion of Salmonella enterica from Chickens. J Poult Sci 2021; 58:138-145. [PMID: 33927568 PMCID: PMC8076624 DOI: 10.2141/jpsa.0200036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Among the reported probiotic Bacillus strains, B. subtilis C-3102 has the unique potential to improve feed uptake under stress conditions in the broilers, piglets, and cows. In this study, we sought to evaluate the protective effect of feed additive probiotic Bacillus subtilis C-3102 against Salmonella enterica infection of specific pathogen-free (SPF) chicks in floor pens in two experiments. In the experiment-1, the chicks in the control group (n=32) were fed a basal diet and those in the C-3102 group (n=32) were fed a basal diet supplemented with 1×106 CFU/g of feed for 28 days. On day 7 post-challenge with S. enterica, there was no significant change in the body weight between both the groups throughout the test period, whereas detection rates of S. enterica in the C-3102 group were significantly lower in the cecum and liver on days 21 and 14 post-challenge, respectively. In the experiment-2, minimum dosage of C-3102 cells required to protect Salmonella infection was evaluated using 3 dosages. Chicks were divided into four groups, fed with different dosages of C-3102 (1×106, 5×105, 3×105, and 0 CFU/g of feed), and challenged with S. enterica (2.8×108 CFU/chicken). S. enterica infection was completed within 7 days post- challenge and was almost excluded from the liver and spleen on day 21 post- challenge in the control group. Average values showed a trend for higher infection rates in the control group >3×105>5×105>1×106 CFU/g on days 14 and 21 post-challenge. These results suggest that B. subtilis C-3102 supplementation has the potential to reduce S. enterica infection rates and/or to accelerate the exclusion of S. enterica from the chicks.
Collapse
Affiliation(s)
- Toki Nishiyama
- Asahi Biocycle Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, Japan
| | - Nobuhisa Ashida
- Asahi Biocycle Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, Japan
| | - Koichi Nakagawa
- Asahi Biocycle Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Luo D, Zhao W, Lin Z, Wu J, Lin H, Li Y, Song J, Zhang J, Peng H. The Effects of Hemodialysis and Peritoneal Dialysis on the Gut Microbiota of End-Stage Renal Disease Patients, and the Relationship Between Gut Microbiota and Patient Prognoses. Front Cell Infect Microbiol 2021; 11:579386. [PMID: 33834002 PMCID: PMC8021868 DOI: 10.3389/fcimb.2021.579386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
Gut microbiota alterations occur in end-stage renal disease (ESRD) patients with or without dialysis. However, it remains unclear whether changes in gut microbiota of dialysis ESRD patients result from dialysis or ESRD, or both. Similarly, there is a dearth of information on the relationship between gut microbiota and ESRD prognoses. We collected fecal samples and tracked clinical outcomes from 73 ESRD patients, including 33 pre-dialysis ESRD patients, 19 peritoneal dialysis (PD) patients, and 21 hemodialysis (HD) patients. 16S rRNA sequencing and bioinformatics tools were used to analyze the gut microbiota of ESRD patients and healthy controls. Gut microbiota diversity was different before and after dialysis. Bacteroidetes were significantly deceased in HD patients. Twelve bacterial genera exhibited statistically significant differences, due to dialysis (all P < 0.05, FDR corrected). HD reversed abnormal changes in Oscillospira and SMB53 in pre-dialysis patients. Functional predictions of microbial communities showed that PD and HD altered signal transduction and metabolic pathways in ESRD patients. Furthermore, Bacteroides and Phascolarctobacterium were associated with cardiovascular mortality. Dorea, Clostridium, and SMB53 were related to peritonitis in PD patients. This study not only demonstrated differences in gut microbiota between pre-dialysis and dialysis ESRD patients, but also firstly proposed gut bacteria may exert an impact on patient prognosis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhao
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhao Wu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongchun Lin
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongjie Li
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Song
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Integrative Review of Gut Microbiota and Expression of Symptoms Associated With Neonatal Abstinence Syndrome. Nurs Res 2021; 69:S66-S78. [PMID: 32555010 DOI: 10.1097/nnr.0000000000000452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Neonatal exposure and subsequent withdrawal from maternal substance use disorder are a growing problem and consequence of the current opioid epidemic. Neonatal abstinence syndrome (NAS) is defined by a specified cluster of symptoms with treatment guided by the expression and severity of these symptoms. The mechanisms or pathophysiology contributing to the development of NAS symptoms are not well known, but one factor that may influence NAS symptoms is the gut microbiota. OBJECTIVES The purpose of this integrative review was to examine evidence that might show if and how the gut microbiota influence expression and severity of symptoms similar to those seen in NAS. METHODS Using published guidelines, a review of research studies that focused on the gut microbiome and symptoms similar to those seen in NAS was conducted, using the Cochrane, EMBASE, and Scopus databases, from 2009 through 2019. RESULTS The review results included findings of aberrant microbial diversity, differences in microbial communities between study groups, and associations between specific taxa and symptoms. In studies involving interventions, there were reports of improved microbial diversity, community structure, and symptoms. DISCUSSION The review findings provide evidence that the gut microbiota may play a role in modifying variability in the expression and severity of symptoms associated with NAS. Future research should focus on examining the gut microbiota in infants with and without the syndrome as well as exploring the relationship between symptom expression and aberrant gut microbiota colonization in infants with NAS.
Collapse
|
17
|
Tanihiro R, Sakano K, Oba S, Nakamura C, Ohki K, Hirota T, Sugiyama H, Ebihara S, Nakamura Y. Effects of Yeast Mannan Which Promotes Beneficial Bacteroides on the Intestinal Environment and Skin Condition: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2020; 12:nu12123673. [PMID: 33260560 PMCID: PMC7761098 DOI: 10.3390/nu12123673] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast mannan (YM) is an indigestible water-soluble polysaccharide of the yeast cell wall. In vitro fecal fermentation studies showed that YM could exhibit a notable prebiotic effect. The aim of this randomized, double-blind, placebo-controlled study was to assess the efficacy of YM intake on the intestinal environment and skin condition. One hundred and ten healthy female subjects aged 30–49 years were supplemented with YM or placebo for eight weeks. Skin dryness was set as the primary endpoint. No side effects were observed during the study. Microbiota analyses revealed that YM intake selectively increased the relative abundance of Bacteroides thetaiotaomicron and Bacteroides ovatus compared to that by placebo. Feces and urine analyses showed that YM intake lowered the concentration of fecal p-cresol, indole, and skatole, and elevated urinal equol levels compared to those in placebo. Furthermore, YM supplementation ameliorated subjective skin dryness. This study suggests that YM intake could promote beneficial Bacteroides and improve the intestinal environment and skin condition.
Collapse
Affiliation(s)
- Reiko Tanihiro
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
- Correspondence: ; Tel.: +81-297-46-9347
| | - Katsuhisa Sakano
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Shunsuke Oba
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Chikako Nakamura
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Kohji Ohki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Hiroshi Sugiyama
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| | - Shukuko Ebihara
- Chiyoda Paramedical Care Clinic, 3-3-5 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan;
| | - Yasunori Nakamura
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan; (K.S.); (S.O.); (C.N.); (K.O.); (T.H.); (H.S.); (Y.N.)
| |
Collapse
|
18
|
Hatanaka M, Morita H, Aoyagi Y, Sasaki K, Sasaki D, Kondo A, Nakamura T. Effective bifidogenic growth factors cyclo-Val-Leu and cyclo-Val-Ile produced by Bacillus subtilis C-3102 in the human colonic microbiota model. Sci Rep 2020; 10:7591. [PMID: 32372037 PMCID: PMC7200657 DOI: 10.1038/s41598-020-64374-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Bifidobacterium species are known to fulfill important functions within the human colon. Thus, stimulating the activity of bifidobacteria is important to maintain host health. We revealed that culture supernatants of Bacillus subtilis C-3102 (referred to as C-3102) stimulated the growth of Bifidobacterium species. In this study, we isolated and identified six bifidogenic growth factors, which were cyclo (D-Val-D-Ile), cyclo (L-Val-D-Ile), cyclo (D-Val-L-Ile), cyclo (L-Val-L-Ile), cyclo (D-Val-L-Leu) and cyclo (L-Val-L-Leu). These six cyclic dipeptides increased the growth of Bifidobacterium species and had no effect on potentially harmful gut organisms. Moreover, supplementation with a mixture of these six cyclic dipeptides significantly increased the abundance of microorganisms related to the genus Bifidobacterium in a human colonic microbiota model culture system, although supplementation with a single type of dipeptide had no effect. These results show that cyclic dipeptides containing Val-Leu and Val-Ile produced by C-3102 could serve as bifidogenic growth factors in the gut microbial community.
Collapse
Affiliation(s)
- Misaki Hatanaka
- Research & Development Dept, Asahi Calpis Wellness Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, 150-0022, Japan.
| | - Hiroto Morita
- Department of Microbiological Flora Technology, Core Technology Laboratories, Asahi Quality and Innovations Co., Ltd. 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, 252-0206, Japan
| | - Yumi Aoyagi
- Research & Development Dept, Asahi Calpis Wellness Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, 150-0022, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Teppei Nakamura
- Department of Microbiological Flora Technology, Core Technology Laboratories, Asahi Quality and Innovations Co., Ltd. 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, 252-0206, Japan
| |
Collapse
|
19
|
Sugawara T, Sawada D, Yanagihara S, Aoki Y, Takehara I, Sugahara H, Hirota T, Nakamura Y, Ishikawa S. Daily Intake of Paraprobiotic Lactobacillus amylovorus CP1563 Improves Pre-Obese Conditions and Affects the Gut Microbial Community in Healthy Pre-Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Study. Microorganisms 2020; 8:microorganisms8020304. [PMID: 32098338 PMCID: PMC7074956 DOI: 10.3390/microorganisms8020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the fact that gut microbiota is closely associated with obesity, few studies have focused on the influences of paraprobiotics as food ingredients on both obesity prevention and the gut microbial community. In this study, we evaluated the effects of fragmented Lactobacillus amylovorus CP1563 (CP1563) as a paraprobiotic for obesity prevention and investigated its effects on the gut microbial community in pre-obese subjects. One hundred sixty-nine healthy subjects with a body mass index from 25.0 to 29.9 kg/m2 ingested beverages with or without the fragmented CP1563 containing 10-hydroxyoctadecanoic acid (10-HOA) for 12 weeks. The changes in abdominal, total, visceral, and subcutaneous fatty areas were significantly lower in the CP1563-10-HOA group than in the placebo group at 12 weeks. Furthermore, 16S rRNA gene sequencing of fecal DNA revealed that the changes in the abundances of the genera Roseburia and Lachnospiraceae;g were significantly greater in the CP1563-10-HOA group than in the placebo group, and the changes in the abundances of the genus Collinsella was significantly smaller in the CP1563-10HOA group than in the placebo group. Our results showed that continuous ingestion of the fragmented CP1563 containing 10-HOA reduced abdominal body fat and affected the gut microbial community in pre-obese healthy subjects. Our findings may contribute to the understanding of the relationship between the anti-obesity effect of paraprobiotics and gut microbiota.
Collapse
Affiliation(s)
- Tomonori Sugawara
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
- Correspondence: ; Tel.: +81-42-769-7828
| | - Daisuke Sawada
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Sae Yanagihara
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yumeko Aoki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Isao Takehara
- PI-Food Service Division, Clinical Support Corporation, 4-1, Nishi 8 Chome, Minami 1 jo, Chuo-ku, Sapporo-shi, Hokkaido 060-0061, Japan
| | - Hirosuke Sugahara
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yasunori Nakamura
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Susumu Ishikawa
- Medical Corporation Shoureikan Sinsapporo Seiryo Hospital, 1-30, 2 Chome, Higashi 4 jo, Atsubetsu, Atsubetsu-ku, Sapporo-shi, Hokkaido 004-0004, Japan
| |
Collapse
|
20
|
Hatanaka M, Kanzato H, Tsuda R, Nadaoka I, Yasue M, Hoshino T, Iio SI, Takara T. Safety evaluation of the excessive intake of Bacillus subtilis C-3102 in healthy Japanese adults: A randomized, placebo-controlled, double-blind, parallel-group, comparison trial. Toxicol Rep 2019; 7:46-58. [PMID: 31879597 PMCID: PMC6920086 DOI: 10.1016/j.toxrep.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
Excessive intake of B. subtilis C-3102 leads to unchanged in the medical condition. Excessive intake of B. subtilis C-3102 does not worsen bone mineral density. Excessive intake of B. subtilis C-3102 was safe under the study condition.
Objective Continuous intake of Bacillus subtilis C-3102 (B. subtilis C-3102) has been reported to modulate the gut microbiota and increase the bone mineral density of the femur in healthy adults. This study aimed to evaluate the safety of excessive B. subtilis C-3102 intake through a randomized, placebo-controlled, double-blind, parallel-group study. Method A total of 69 individuals provided an informed consent, and 44 subjects who met the inclusion criteria were allocated to either the B. subtilis C-3102 (C-3102 group, n = 22) or the placebo group (P group, n = 22). All subjects took 18 tablets containing either containing B. subtilis C-3102 or placebo per day for 4 weeks with water and without chewing. Subjects in the C-3102 group consumed 4.8 × 1010 colony forming units (cfu) per day. Physical examination, urinalysis, blood analysis, records of subjective symptoms, and a medical questionnaire administered by a clinical trial physician were performed to determine the safety of test tablets. Furthermore, bone mineral density was measured. Results The final analysis included data from 22 subjects (9 men, 13 women; age, 46.1 ± 13.8 years) in the C-3102 group and 22 subjects (9 men, 13 women; age, 46.1 ± 13.5 years) in the P group. The results revealed no medical-related problems in both C-3102 and P groups. Conclusion This study proved the safety of 4-week continuous consumption of an excessive amount of B. subtilis C-3102 tablets.
Collapse
Affiliation(s)
- Misaki Hatanaka
- ASAHI CALPIS WELLNESS Co., Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Hiroki Kanzato
- ASAHI CALPIS WELLNESS Co., Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Ryoko Tsuda
- ASAHI CALPIS WELLNESS Co., Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Isao Nadaoka
- ASAHI CALPIS WELLNESS Co., Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Masaaki Yasue
- ASAHI CALPIS WELLNESS Co., Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Tomohiro Hoshino
- ORTHOMEDICO Inc., 2 F Sumitomo Fudosan Korakuen Bldg., 1-4-1, Koishikawa, Bunkyo-ku, Tokyo, 112-0002, Japan
| | - Shin-Ichiro Iio
- ORTHOMEDICO Inc., 2 F Sumitomo Fudosan Korakuen Bldg., 1-4-1, Koishikawa, Bunkyo-ku, Tokyo, 112-0002, Japan
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai, Takara Clinic, 9F Taisei Building, 2-3-2, Higashi-gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| |
Collapse
|
21
|
Lyophilized B. subtilis ZB183 Spores: 90-Day Repeat Dose Oral (Gavage) Toxicity Study in Wistar Rats. J Toxicol 2019; 2019:3042108. [PMID: 31781202 PMCID: PMC6875028 DOI: 10.1155/2019/3042108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
A 90-day repeated-dose oral toxicological evaluation was conducted according to GLP and OECD guidelines on lyophilized spores of the novel genetically modified strain B. subtilis ZB183. Lyophilized spores at doses of 109, 1010, and 1011 CFU/kg body weight/day were administered by oral gavage to Wistar rats for a period of 90 consecutive days. B. subtilis ZB183 had no effects on clinical signs, mortality, ophthalmological examinations, functional observational battery, body weights, body weight gains and food consumption in both sexes. There were no test item-related changes observed in haematology, coagulation, urinalysis, thyroid hormonal analysis, terminal fasting body weights, organ weights, gross pathology and histopathology. A minimal increase in the plasma albumin level was observed at 1010 and 1011 CFU/kg/day doses without an increase in total protein in males or females and was considered a nonadverse effect. The “No Observed Adverse Effect Level (NOAEL)” is defined at the highest dose of 1011 CFU/kg body weight/day for lyophilized B. subtilis ZB183 Spores under the test conditions employed.
Collapse
|
22
|
Effects of peanut meal extracts fermented by Bacillus natto on the growth performance, learning and memory skills and gut microbiota modulation in mice. Br J Nutr 2019; 123:383-393. [PMID: 31769373 DOI: 10.1017/s0007114519002988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated that the nutritional properties of peanut meal (PM) can be improved after being fermented. The assessment of fermented PM has been reported to be limited to various physical and chemical evaluations in vitro. In the present study, PM was fermented by Bacillus natto to explore the effects of fermented PM extract (FE) on growth performance, learning and memory ability and intestinal microflora in mice. Ninety newly weaned male Kunming (KM) mice were randomly divided into seven groups: normal group (n 20), low-dose FE group (n 10), middle-dose FE group (MFE) (n 10), high-dose FE group (HFE) (n 20), unfermented extraction group (n 10), model group (10) and natural recovery group (10). Learning and memory skills were performed by the Morris water maze (MWM) test, and the variation in gut microbiota (GM) composition was assessed by 16S rDNA amplicon sequencing. The results show that HFE remarkably improved the growth performance in mice. In the MWM test, escape latency was shortened in both MFE and HFE groups, while the percentage of time, distance in target quadrant and the number crossing over the platform were significantly increased in the HFE group. Moreover, the FE played a preventive role in the dysbacteriosis of mice induced by antibiotic and increased the richness and species evenness of GM in mice.
Collapse
|
23
|
Nishida K, Sawada D, Kuwano Y, Tanaka H, Rokutan K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019; 11:nu11081859. [PMID: 31405122 PMCID: PMC6723420 DOI: 10.3390/nu11081859] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Short-term administration of Lactobacillus gasseri CP2305 improves stress-associated symptoms and clinical symptoms in healthy young adults and in patients with irritable bowel syndrome, respectively. We evaluated the efficacy and health benefits of the long-term use of a tablet containing heat-inactivated, washed Lactobacillus gasseri CP2305 (CP2305) in healthy young adults. Sixty Japanese medical students (41 men and 19 women) preparing for the national examination for medical practitioners ingested CP2305-containing or placebo tablets once daily for 24 weeks. Intake of the CP2305 tablet significantly reduced anxiety and sleep disturbance relative to placebo, as quantitated by the Spielberger State-Trait Anxiety Inventory and the Pittsburgh Sleep Quality Index. Single-channel sleep electroencephalograms show that CP2305 significantly shortened sleep latency and wake time after sleep onset and increased the delta power ratio in the first sleep cycle. CP2305 also significantly lowered salivary chromogranin A levels compared with placebo. Furthermore, 16S rRNA gene sequencing of participant feces demonstrated that CP2305 administration attenuated the stress-induced decline of Bifidobacterium spp. and the stress-induced elevation of Streptococcus spp. We conclude that the long-term use of CP2305-containing tablets may improve the mental state, sleep quality, and gut microbiota of healthy adults under stressful conditions.
Collapse
Affiliation(s)
- Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan.
| | - Daisuke Sawada
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
24
|
Zhang Y, Sun Q, Li Z, Wang H, Li J, Wan X. Fermented soybean powder containing Bacillus subtilis SJLH001 protects against obesity in mice by improving transport function and inhibiting angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Sawada D, Kuwano Y, Tanaka H, Hara S, Uchiyama Y, Sugawara T, Fujiwara S, Rokutan K, Nishida K. Daily intake of Lactobacillus gasseri CP2305 relieves fatigue and stress-related symptoms in male university Ekiden runners: A double-blind, randomized, and placebo-controlled clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Fayfman M, Flint K, Srinivasan S. Obesity, Motility, Diet, and Intestinal Microbiota-Connecting the Dots. Curr Gastroenterol Rep 2019; 21:15. [PMID: 30887257 DOI: 10.1007/s11894-019-0680-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The goal of the present review is to explore the relationship between dietary changes and alterations in gut microbiota that contribute to disorders of gut motility and obesity. RECENT FINDINGS We review the microbiota changes that are seen in obesity, diarrhea, and constipation and look at potential mechanisms of how dysbiosis can predispose to these. We find that microbial metabolites, particularly short chain fatty acids, can lead to signaling changes in the host enterocytes. Microbial alteration leading to both motility disorders and obesity may be mediated by the release of hormones including glucagon-like peptides 1 and 2 (GLP-1, GLP-2) and polypeptide YY (PYY). These pathways provide avenues for microbiota-targeted interventions that can treat both disorders of motility and obesity. In summary, multiple mechanisms contribute to the interplay between the microbial dysbiosis, obesity, and dysmotility.
Collapse
Affiliation(s)
- Maya Fayfman
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kristen Flint
- Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Emory University School of Medicine, Atlanta, GA, USA. .,Atlanta Veterans Affairs Medical Center, Decatur, GA, USA. .,Emory University, Rm 201, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Sudha MR, Jayanthi N, Pandey DC, Verma AK. Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: a double blind placebo controlled study. Benef Microbes 2019; 10:149-154. [PMID: 30638396 DOI: 10.3920/bm2018.0094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acute diarrhoea is one of the leading causes of mortality in infants and young children. Evidence suggests that probiotics can reduce diarrhoea duration. As the effects of probiotics are strain specific, the effect of Bacillus clausii UBBC-07, a safe probiotic strain in the treatment of acute diarrhoea in children was studied. The double blind, randomised, placebo-controlled, parallel group multicentric study was conducted at two outpatient facility sites in Lucknow, India. Children aged six months to five years suffering from acute diarrhoea, were randomly assigned to receive either probiotic (B. clausii UBBC-07) spore suspension or placebo suspension twice daily apart from oral rehydration solution (ORS). The duration of treatment was for five days with a follow -up until the 10th day. Outcomes evaluated were duration and frequency of diarrhoea, consistency of stool, fever and vomiting. The duration of diarrhoea was significantly shorter (P<0.05) in patients who received B. clausii suspension (75.66±13.23 h) than in placebo treated group (81.6±15.43 h). The average daily number of stools (frequency) was 8.67±3.42 at baseline in treatment group receiving B. clausii and 8.53±3.19 in placebo group. By day 4, there was a significant reduction (P<0.01) in frequency of stools in probiotic treated group (3.46±0.66) as compared to placebo group (4.57±1.59). Improvement in stool consistency was also observed in the probiotic treated group as compared to the placebo group. There was no effect on vomiting and duration of fever. B. clausii UBBC-07 significantly decreased the duration and frequency of diarrhoea as compared to placebo indicating effectiveness of strain in the treatment of acute diarrhoea in children and could be a safe alternative to antibiotics.
Collapse
Affiliation(s)
- M Ratna Sudha
- 1 Centre for Research & Development, Unique Biotech Ltd., Plot No. 2, Phase-II, Alexandria Knowledge Park, Hyderabad, Telangana 500078, India
| | - N Jayanthi
- 1 Centre for Research & Development, Unique Biotech Ltd., Plot No. 2, Phase-II, Alexandria Knowledge Park, Hyderabad, Telangana 500078, India
| | - D C Pandey
- 2 MV Hospital and Research Centre, Department of Pediatrics, Room No 01 314/30, Mirza Mandi Chowk, Lucknow, Uttar Pradesh, India
| | - A K Verma
- 3 K.R.M. hospital and Research Centre, Department of Pediatrics, Room No 01 3/92-93,Vijayant Khand Lucknow, Uttar Pradesh, India
| |
Collapse
|