1
|
Yamasaki-Yashiki S, Shiraishi T, Gyobu M, Sasaki H, Kunisawa J, Yokota SI, Katakura Y. Immunostimulatory activity of lipoteichoic acid with three fatty acid residues derived from Limosilactobacillus antri JCM 15950 T. Appl Environ Microbiol 2024; 90:e0119724. [PMID: 39240119 PMCID: PMC11497808 DOI: 10.1128/aem.01197-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Some strains of lactic acid bacteria can regulate the host's intestinal immune system. Bacterial cells and membrane vesicles (MVs) of Limosilactobacillus antri JCM 15950T promote immunoglobulin A (IgA) production in murine Peyer's patch cells via toll-like receptor (TLR) 2. This study aimed to investigate the role of lipoteichoic acid (LTA), a ligand of TLR2, in the immunostimulatory activity of these bacterial cells and their MVs. LTA extracted from bacterial cells was purified through hydrophobic interaction chromatography and then divided into fractions LTA1 and LTA2 through anion-exchange chromatography. LTA1 induced greater interleukin (IL)-6 production from macrophage-like RAW264 cells than LTA2, and the induced IL-6 production was suppressed by TLR2 neutralization using an anti-TLR2 antibody. The LTAs in both fractions contained two hexose residues in the glycolipid anchor; however, LTA1 was particularly rich in triacyl LTA. The free hydroxy groups in the glycerol phosphate (GroP) repeating units were substituted by d-alanine (d-Ala) and α-glucose in LTA1, but only by α-glucose in LTA2. The dealanylation of LTA1 slightly suppressed IL-6 production in RAW264 cells, whereas deacylation almost completely suppressed IL-6 production. Furthermore, IL-6 production induced by dealanylated LTA1 was markedly higher than that induced by dealanylated LTA2. These results indicated that the critical moieties for the immunostimulatory activity of L. antri-derived LTA were the three fatty acid residues rather than the substitution with d-Ala in GroP. LTA was also detected in MVs, suggesting that the triacyl LTA, but not the diacyl LTA, translocated to the MVs and conferred immunostimulatory activity. IMPORTANCE Some lactic acid bacteria activate the host intestinal immune system via toll-like receptor (TLR) 2. Lipoteichoic acid (LTA) is a TLR2 ligand; however, the moieties of LTA that determine its immunostimulatory activity remain unclear because of the wide diversity of LTA partial structures. We found that Limosilactobacillus antri JCM 15950T has three types of LTAs (triacyl, diacyl, and monoacyl LTAs). Specifically, structural analysis of the LTAs revealed that triacyl LTA plays a crucial role in immunostimulation and that the fatty acid residues are essential for the activity. The three acyl residues are characteristic of LTAs from many lactic acid bacteria, and our findings can explain the immunostimulatory mechanisms widely exhibited by lactic acid bacteria. Furthermore, the immunostimulatory activity of membrane vesicles released by L. antri JCM 15950T is due to the transferred LTA, demonstrating a novel mechanism of membrane vesicle-mediated immunostimulation.
Collapse
Affiliation(s)
- Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki, Osaka, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mai Gyobu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Haruna Sasaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki, Osaka, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Sandanusova M, Turkova K, Pechackova E, Kotoucek J, Roudnicky P, Sindelar M, Kubala L, Ambrozova G. Growth phase matters: Boosting immunity via Lacticasebacillus-derived membrane vesicles and their interactions with TLR2 pathways. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e169. [PMID: 39185335 PMCID: PMC11341917 DOI: 10.1002/jex2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
Collapse
Affiliation(s)
- Miriam Sandanusova
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Kristyna Turkova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Eva Pechackova
- Faculty of Science, Department of BiochemistryMasaryk UniversityBrnoCzech Republic
| | - Jan Kotoucek
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Pavel Roudnicky
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Martin Sindelar
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Lukas Kubala
- Faculty of Science, Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Gabriela Ambrozova
- Department of Biophysics of Immune SystemInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
3
|
Wood PL, Le A, Palazzolo DL. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites 2024; 14:240. [PMID: 38668368 PMCID: PMC11052126 DOI: 10.3390/metabo14040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs).
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Annie Le
- Clinical Training Program, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Dominic L. Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
4
|
Shiraishi T, Yokota SI. Preparation and Structural Analysis of Lipoteichoic Acid on Cell Membranes Derived from Lactic Acid Bacteria. Methods Mol Biol 2024; 2851:39-60. [PMID: 39210170 DOI: 10.1007/978-1-0716-4096-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gram-positive bacteria, including lactic acid bacteria (LAB), possess lipoteichoic acid (LTA) on the cell surface. LTA is an amphiphilic molecule typically composed of hydrophilic glycerolphosphate polymer and hydrophobic anchor glycolipid moieties. It is involved in physiological properties of the cell surface and also plays roles in interactions with the host. Appropriate preparation procedures, such as extraction and purification, are required to clarify the structure-activity relationship. Structural diversity of LTA has been reported at the bacterial species and strain levels, and structural differences might affect interactions with the host. This chapter introduces techniques for preparation and structural analysis of LTA derived from LAB. It consists of four sections, covering butanol extraction, hydrophobic interaction chromatography, immunoblotting, and structural analysis. Technical notes containing supplemental information about the individual steps are also provided.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Li M, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Lactic acid bacteria derived extracellular vesicles: emerging bioactive nanoparticles in modulating host health. Gut Microbes 2024; 16:2427311. [PMID: 39538968 PMCID: PMC11572086 DOI: 10.1080/19490976.2024.2427311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lactic acid bacteria derived extracellular vesicles (LAB-EVs) are nano-sized and carry a variety of biological cargoes. LAB-EVs have proven to be potential mediators of intercellular communication, serving not only the parental bacteria but also the host cell in both physiology and pathology. LAB-EVs are therapeutically beneficial in various diseases through a cell-free strategy. Particularly, EVs secreted from probiotics can exert health-promoting effects on humans. Additionally, the excitement around LAB-EVs has extended to their use as nano-sized drug carriers, since they can traverse biological barriers. Nevertheless, significant challenges in terms of isolation, characterization, and safety must be addressed to ensure the clinical application of LAB-EVs. Therefore, this review emphasizes the isolation and purification methods of LAB-EVs. We also introduce the biogenesis, cargo sorting, and functions of LAB-EVs. The biological regulatory factors of LAB-EVs are summarized and discussed. Special attention is given to the interaction between LAB-EVs and the host, their ability to maintain intestinal homeostasis, and the immunity and inflammation they induce in diverse diseases. Furthermore, we summarize the characterization of LAB-EV cargoes by advanced analytical methods such as proteomics. Finally, we discuss the challenges and opportunities of LAB-EVs as a means of diagnosis and treatment in clinical translation. In conclusion, this review scrutinizes current knowledge and provides guidelines for proposing new perspectives for future research in the field of LAB-EVs.
Collapse
Affiliation(s)
- Mohan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
7
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 PMCID: PMC11623402 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
YAMASAKI-YASHIKI S, SAKAMOTO Y, NISHIMURA K, SAIKA A, ITO T, KUNISAWA J, KATAKURA Y. High productivity of immunostimulatory membrane vesicles of Limosilactobacillus antri using glycine. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:55-63. [PMID: 38188665 PMCID: PMC10767322 DOI: 10.12938/bmfh.2023-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/27/2023] [Indexed: 01/09/2024]
Abstract
Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria-bacteria and bacteria-host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer's patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.
Collapse
Affiliation(s)
- Shino YAMASAKI-YASHIKI
- Department of Life Science and Biotechnology, Faculty of
Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi,
Osaka 564-8680, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut
Environmental System, Microbial Research Center for Health and Medicine, National
Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi,
Ibaraki-shi, Osaka 567-0085, Japan
| | - Yu SAKAMOTO
- Department of Life Science and Biotechnology, Faculty of
Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi,
Osaka 564-8680, Japan
| | - Keiko NISHIMURA
- Department of Life Science and Biotechnology, Faculty of
Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi,
Osaka 564-8680, Japan
| | - Azusa SAIKA
- Laboratory of Vaccine Materials and Laboratory of Gut
Environmental System, Microbial Research Center for Health and Medicine, National
Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi,
Ibaraki-shi, Osaka 567-0085, Japan
| | - Takeshi ITO
- Department of Mechanical Engineering, Faculty of Engineering
Science, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Jun KUNISAWA
- Laboratory of Vaccine Materials and Laboratory of Gut
Environmental System, Microbial Research Center for Health and Medicine, National
Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi,
Ibaraki-shi, Osaka 567-0085, Japan
| | - Yoshio KATAKURA
- Department of Life Science and Biotechnology, Faculty of
Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi,
Osaka 564-8680, Japan
| |
Collapse
|
9
|
Rogers NMK, McCumber AW, McMillan HM, McNamara RP, Dittmer DP, Kuehn MJ, Hendren CO, Wiesner MR. Comparative electrokinetic properties of extracellular vesicles produced by yeast and bacteria. Colloids Surf B Biointerfaces 2023; 225:113249. [PMID: 36905832 PMCID: PMC10085849 DOI: 10.1016/j.colsurfb.2023.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized, biocolloidal proteoliposomes that have been shown to be produced by all cell types studied to date and are ubiquitous in the environment. Extensive literature on colloidal particles has demonstrated the implications of surface chemistry on transport behavior. Hence, one may anticipate that physicochemical properties of EVs, particularly surface charge-associated properties, may influence EV transport and specificity of interactions with surfaces. Here we compare the surface chemistry of EVs as expressed by zeta potential (calculated from electrophoretic mobility measurements). The zeta potentials of EVs produced by Pseudomonas fluorescens, Staphylococcus aureus, and Saccharomyces cerevisiae were largely unaffected by changes in ionic strength and electrolyte type, but were affected by changes in pH. The addition of humic acid altered the calculated zeta potential of the EVs, especially for those from S. cerevisiae. Differences in zeta potential were compared between EVs and their respective parent cell with no consistent trend emerging; however, significant differences were discovered between the different cell types and their EVs. These findings imply that, while EV surface charge (as estimated from zeta potential) is relatively insensitive to the evaluated environmental conditions, EVs from different organisms can differ regarding which conditions will cause colloidal instability.
Collapse
Affiliation(s)
- Nicholas M K Rogers
- Department of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Alexander W McCumber
- Department of Environmental Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ryan P McNamara
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Meta J Kuehn
- Department of Biochemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA; Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA; Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, NC, USA
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, USA; Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
11
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Katsuki R, Shiraishi T, Sakata S, Hirota T, Nakamura Y, Yokota SI. Inhibitory Effect of the Glycerophosphate Moiety of Lipoteichoic Acid from Lactic Acid Bacteria on Dexamethasone-Induced Atrogin-1 Expression in C2C12 Myotubes. J Nutr Sci Vitaminol (Tokyo) 2021; 67:351-357. [PMID: 34719621 DOI: 10.3177/jnsv.67.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Atrogin-1, which is an important regulator of ubiquitin-mediated protein degradation in skeletal muscle, is a major marker of muscle loss and disuse muscle atrophy. To investigate which components of lactic acid bacteria (LAB) suppress dexamethasone (DEX)-induced atrogin-1 expression, mouse skeletal muscle C2C12 myotubes were treated with DEX in the presence or absence of components of LAB. Heat-killed cells and lipoteichoic acid (LTA) derived from five LAB strains significantly suppressed DEX-induced atrogin-1 expression. The glycerophosphate (GroP) fraction prepared from chemically-degraded LTA and sn-glycerol-1-phosphate suppressed DEX-induced atrogin-1 expression, whereas the glycolipid anchor fraction of LTA did not. Heat-killed cells obtained by culturing under low-Mn2+ conditions, which generated fewer poly-GroP polymers in LTA, displayed significantly lower inhibitory activity compared to heat-killed cells grown under normal conditions. These results suggested that LTA of LAB contributed to suppressing atrogin-1 expression and that the GroP moiety of LTA was responsible for its inhibitory activity.
Collapse
Affiliation(s)
- Ryo Katsuki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine
| | - Shinji Sakata
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd
| | | | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine
| |
Collapse
|
13
|
Miyoshi Y, Saika A, Nagatake T, Matsunaga A, Kunisawa J, Katakura Y, Yamasaki-Yashiki S. Mechanisms underlying enhanced IgA production in Peyer's patch cells by membrane vesicles derived from Lactobacillus sakei. Biosci Biotechnol Biochem 2021; 85:1536-1545. [PMID: 33885732 DOI: 10.1093/bbb/zbab065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
We analyzed the mechanisms underlying enhanced IgA production in the cells of Peyer's patch cells via membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC 15893. Depletion of CD11c+ cells from Peyer's patch cells suppressed the enhanced IgA production mediated by membrane vesicles. Meanwhile, the stimulation of bone-marrow-derived dendritic cells with membrane vesicles increased gene expression of inducible nitric oxide synthase, retinaldehyde dehydrogenase 2, and several inflammatory cytokines. The production of nitric oxide and interleukin (IL)-6 by membrane vesicle stimulation was induced via Toll-like receptor 2 on bone marrow-derived dendritic cells. Inhibition of inducible nitric oxide synthase and retinaldehyde dehydrogenase 2, as well as the neutralization of IL-6 in Peyer's patch cells, suppressed the enhanced IgA production by membrane vesicle stimulation. Hence, nitric oxide, retinoic acid, and IL-6 induced by membrane vesicles play crucial roles in the enhanced IgA production elicited by membrane vesicles in Peyer's patch cells.
Collapse
Affiliation(s)
- Yuki Miyoshi
- Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, Suita, Osaka, Japan.,Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Shino Yamasaki-Yashiki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
14
|
Oligosaccharide Metabolism and Lipoteichoic Acid Production in Lactobacillus gasseri and Lactobacillus paragasseri. Microorganisms 2021; 9:microorganisms9081590. [PMID: 34442669 PMCID: PMC8401598 DOI: 10.3390/microorganisms9081590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus gasseri and Lactobacillus paragasseri are human commensal lactobacilli that are candidates for probiotic application. Knowledge of their oligosaccharide metabolic properties is valuable for synbiotic application. The present study characterized oligosaccharide metabolic systems and their impact on lipoteichoic acid (LTA) production in the two organisms, i.e., L. gasseri JCM 1131T and L. paragasseri JCM 11657. The two strains grew well in medium with glucose but poorly in medium with raffinose, and growth rates in medium with kestose differed between the strains. Oligosaccharide metabolism markedly influenced their LTA production, and apparent molecular size of LTA in electrophoresis recovered from cells cultured with glucose and kestose differed from that from cells cultured with raffinose in the strains. On the other hand, more than 15-fold more LTA was observed in the L. gasseri cells cultured with raffinose when compared with glucose or kestose after incubation for 15 h. Transcriptome analysis identified glycoside hydrolase family 32 enzyme as a potential kestose hydrolysis enzyme in the two strains. Transcriptomic levels of multiple genes in the dlt operon, involved in D-alanine substitution of LTA, were lower in cells cultured with raffinose than in those cultured with kestose or glucose. This suggested that the different sizes of LTA observed among the carbohydrates tested were partly due to different levels of alanylation of LTA. The present study indicates that available oligosaccharide has the impact on the LTA production of the industrially important lactobacilli, which might influence their probiotic properties.
Collapse
|
15
|
Champagne-Jorgensen K, Mian MF, McVey Neufeld KA, Stanisz AM, Bienenstock J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci Rep 2021; 11:13756. [PMID: 34215822 PMCID: PMC8253831 DOI: 10.1038/s41598-021-93311-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria have diverse and complex influence on their host. Evidence is accumulating that this may be mediated in part by bacterial extracellular membrane vesicles (MV), nanometer-sized particles important for intercellular communication. Little is known about the composition of MV from gram-positive beneficial bacteria nor how they interact with intestinal epithelial cells (IEC). Here we demonstrate that MV from Lacticaseibacillus rhamnosus JB-1 are endocytosed in a likely clathrin-dependent manner by both mouse and human IEC in vitro and by mouse IEC in vivo. We further show that JB-1 MV contain lipoteichoic acid (LTA) that activates Toll-like receptor 2 (TLR2) and induces immunoregulatory interleukin-10 expression by dendritic cells in an internalization-dependent manner. By contrast, neither LTA nor TLR2 appear to be required for JB-1 MV endocytosis by IEC. These results demonstrate a novel mechanism by which bacterial MV can influence host physiology and suggest one potential route for beneficial influence of certain bacteria and probiotics.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada. .,Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare Hamilton, Juravinski Tower Room T3330, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada.
| | - M Firoz Mian
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Karen-Anne McVey Neufeld
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. Spatial regulation of protein A in Staphylococcus aureus. Mol Microbiol 2021; 116:589-605. [PMID: 33949015 DOI: 10.1111/mmi.14734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| |
Collapse
|
17
|
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It? Front Microbiol 2021; 12:638047. [PMID: 33935997 PMCID: PMC8081860 DOI: 10.3389/fmicb.2021.638047] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a severe public health problem; the current diagnostic tests have limitations that delay treatment onset. Lipoarabinomannan (LAM) is a glycolipid that is a component of the cell wall of the bacillus Mycobacterium tuberculosis, the etiologic agent of TB. This glycolipid is excreted as a soluble form in urine. The World Health Organization has established that the design of new TB diagnostic methods is one of the priorities within the EndTB Strategy. LAM has been suggested as a biomarker to develop diagnostic tests based on its identification in urine, and it is one of the most prominent candidates to develop point-of-care diagnostic test because urine samples can be easily collected. Moreover, LAM can regulate the immune response in the host and can be found in the serum of TB patients, where it probably affects a wide variety of host cell populations, consequently influencing the quality of both innate and adaptive immune responses during TB infection. Here, we revised the evidence that supports that LAM could be used as a tool for the development of new point-of-care tests for TB diagnosis, and we discussed the mechanisms that could contribute to the low sensitivity of diagnostic testing.
Collapse
Affiliation(s)
- Julio Flores
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Cancino
- Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
18
|
Taniguchi M, Nambu M, Katakura Y, Yamasaki-Yashiki S. Adhesion mechanisms of Bifidobacterium animalis subsp. lactis JCM 10602 to dietary fiber. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:59-64. [PMID: 33520570 PMCID: PMC7817516 DOI: 10.12938/bmfh.2020-003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Adherence of probiotics to dietary fibers present in the intestinal tract may affect
adhesion to intestinal epithelial cells. The properties of the adhesion of bifidobacteria
to mucin or epithelial cells have been well studied; however, adhesion of bifidobacteria
to dietary fiber has not been investigated. The adhesion ratio of six
Bifidobacterium strains to cellulose and chitin was examined; among the
strains, Bifidobacterium animalis subsp. lactis JCM
10602 showed high adherence to both cellulose and chitin, and two strains showed high
adherence to only chitin. The ratios of adhesion of B. animalis to
cellulose and chitin were positively and negatively correlated with ionic strength,
respectively. These data suggest that hydrophobic and electrostatic interactions are
involved in the adhesion to cellulose and chitin, respectively. The adhesion ratios of the
cells in the late logarithmic phase to cellulose and chitin decreased by approximately 40%
and 70% of the cells in the early logarithmic phase, respectively. Furthermore, the
adhesion ratio to cellulose decreased with increasing bile concentration regardless of the
culture phase of the cells. On the other hand, the adhesion ratio to chitin of cells in
the early logarithmic phase decreased with increasing bile concentration; however, that of
cells in the late logarithmic phase increased slightly, suggesting that adhesins differ
depending on the culture phase. Our results indicated the importance of considering
adhesion to both dietary fibers and the intestinal mucosa when using bifidobacteria as
probiotics.
Collapse
Affiliation(s)
- Maria Taniguchi
- Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Minori Nambu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
19
|
Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Sci Rep 2020; 10:21829. [PMID: 33311536 PMCID: PMC7732981 DOI: 10.1038/s41598-020-78920-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
In recent years the role of extracellular vesicles (EVs) of Gram-positive bacteria in host-microbe cross-talk has become increasingly appreciated, although the knowledge of their biogenesis, release and host-uptake is still limited. The aim of this study was to characterize the EVs released by the dairy isolate Lactiplantibacillus plantarum BGAN8 and to gain an insight into the putative mechanism of EVs uptake by intestinal epithelial cells. The cryo-TEM observation undoubtedly demonstrated the release of EVs (20 to 140 nm) from the surface of BGAN8, with exopolysaccharides seems to be part of EVs surface. The proteomic analysis revealed that the EVs are enriched in enzymes involved in central metabolic pathways, such as glycolysis, and in membrane components with the most abundant proteins belonging to amino acid/peptide ABC transporters. Putative internalization pathways were evaluated in time-course internalization experiments with non-polarized HT29 cells in the presence of inhibitors of endocytic pathways: chlorpromazine and dynasore (inhibitors of clathrin-mediated endocytosis—CME) and filipin III and nystatin (disrupting lipid rafts). For the first time, our results revealed that the internalization was specifically inhibited by dynasore and chlorpromazine but not by filipin III and nystatin implying that one of the entries of L. plantarum vesicles was through CME pathway.
Collapse
|
20
|
Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Sci Rep 2020; 10:19237. [PMID: 33159116 PMCID: PMC7648624 DOI: 10.1038/s41598-020-75930-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
In the complex interplay of beneficial bacteria with the host, there are few examples of bacterial metabolites and effector molecules that have been consistently identified. Protective effects on the intestinal epithelium have been ascribed to P40 and P75, two well characterized cell wall muramidases, present in the culture supernatant of strains belonging to the taxon Lactobacillus casei/paracasei/rhamnosus. This work reports that Lactobacillus casei BL23 extracellular vesicles (BL23 EVs) have a small size (17–20 nm or 24–32 nm, depending on the method used) and contain lipoteichoic acid (LTA). Interestingly, all detected P40 and most of P75 were associated to EVs and possibly located at their external surface, as shown by proteinase K digestion. Biosensor assays showed that both proteins bind LTA and vesicles, suggesting that they could bind to ligands like LTA present on BL23 EVs. Native BL23 EVs have a moderate proinflammatory effect and they were able to induce phosphorylation of the epidermal growth factor receptor (EGFR), showing an effect similar to purified P40 and P75 and leading to the conclusion that the activity described in the supernatant (postbiotic) of these bacteria would be mainly due to P40 and P75 bound to EVs.
Collapse
|