1
|
Hu M, Xiang Q, Mei Z, Gong C, Pan D, Liu Y, Li Z. Bacterial and clinical metabolic signatures and their interactions in obese patients post-bariatric surgery. BMC Gastroenterol 2024; 24:363. [PMID: 39394090 PMCID: PMC11470734 DOI: 10.1186/s12876-024-03450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Obesity is a growing health concern in China, closely linked to metabolic disorders such as type 2 diabetes. Laparoscopic Sleeve Gastrectomy (LSG) is effective in promoting weight loss and improving metabolic outcomes. Emerging evidence highlights the role of gut microbiota in metabolic regulation, yet the specific alterations in gut microbiota and their association with metabolic changes post-surgery in Chinese patients remain unclear. Understanding these shifts could provide key insights into optimizing treatment strategies for metabolic improvement following bariatric surgery. METHODS Stool samples and clinical data were collected from 30 obese patients before and 6 months after surgery. The composition of the gut microbiota was analyzed through 16S rRNA sequencing, and Spearman correlation analysis was used to determine the association between gut microbiota and clinical indicators. RESULTS The analysis of 30 patients showed a significant decrease in Body Mass Index (BMI) (36.75 ± 4.09 kg/m2 vs 26.37 ± 3.47 kg/m2, p < 0.0001). Glucose metabolism, including Hemoglobin A1C levels, improved significantly (6.05 ± 0.96 vs 5.05 ± 0.25, p < 0.0001), and liver function as well as serum lipid levels were also notably improved. LSG increased the richness and composition of gut microbiota in obese patients post-surgery. These changes in gut microbiota were closely associated with improved clinical metabolic parameters. CONCLUSION LSG not only significantly reduces body weight while also alleviating metabolic syndrome and comorbidities by altering gut microbiota.
Collapse
Affiliation(s)
- Mengjie Hu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
- Bariatric and Metabolic Diseases Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Qiaoyuan Xiang
- Neurology Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Zixuan Mei
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
- Bariatric and Metabolic Diseases Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Cheng Gong
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
- Bariatric and Metabolic Diseases Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Dingyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
- Bariatric and Metabolic Diseases Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yumin Liu
- Neurology Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Zhen Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
- Bariatric and Metabolic Diseases Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
2
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
3
|
Masoumi M, Jafarzadeh A, Hadavi H, Nikoyan P, Falahati-Pour SK, Askari N, Mirzaei V. Human Gut Microbiome Before and After Bariatric Surgery in Obese Patients with and Without Type 2 Diabetes. Obes Surg 2024; 34:2835-2843. [PMID: 38913272 DOI: 10.1007/s11695-024-07364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Bariatric surgery, a significant intervention for obesity, may influence weight loss through changes in gut microbiota, particularly the Firmicutes and Bacteroidetes. This study explores these potential shifts and their metabolic implications. MATERIALS We conducted a cross-sectional study involving patients who had undergone bariatric surgery. Stool samples were collected at baseline, 3 months, and 6 months post-operation. We performed DNA extraction and quantified the bacterial phyla Firmicutes and Bacteroidetes to assess changes in the gut microbiota over time. RESULTS Our research revealed a significant alteration in the gut microbiota following bariatric surgery. In diabetic individuals, there was a marked increase in the average number of Firmicutes bacteria at both 3 and 6 months post-operation, compared to pre-surgery levels. In contrast, non-diabetic subjects experienced a notable decrease in Firmicutes during the same timeframe. Regarding Bacteroidetes bacteria, the trend was reversed; diabetic patients showed a significant reduction, while non-diabetics exhibited an increase after the surgery. These findings highlight the dynamic changes in gut microbiota composition associated with bariatric surgery and its potential link to metabolic changes post-operation. CONCLUSION These findings suggest that obesity alters the gut's microbial composition. The observed bacterial fluctuations, particularly in the dominant Firmicutes and Bacteroidetes groups, are likely contributors to the weight loss experienced post-surgery. This alteration in gut bacteria underscores the complex interplay between microbiota and metabolic health, highlighting potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Maryam Masoumi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hadi Hadavi
- Department of Surgery, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Nikoyan
- Kerman Mehregan Bariatric Surgery Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Vahid Mirzaei
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Wang L, Li S, Jiang T. Effects of single-anastomosis duodenal-ileal bypass with sleeve gastrectomy on gut microbiota and glucose metabolism in rats with type 2 diabetes. Front Microbiol 2024; 15:1357749. [PMID: 38863754 PMCID: PMC11165999 DOI: 10.3389/fmicb.2024.1357749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Background Bariatric and metabolic surgery often leads to significant changes in gut microbiota composition, indicating that changes in gut microbiota after bariatric and metabolic surgery might play a role in ameliorating type 2 diabetes (T2D). However, the effects of single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) on gut microbiota in T2D remain unclear. Objectives To investigate the effects of SADI-S on gut microbiota and glucose metabolism in T2D rats. Methods Nineteen T2D rats were randomly divided into the SADI-S group (n = 10) and the sham operation with pair-feeding group (sham-PF, n = 9). Fecal samples were collected to analyze the gut microbiota composition with 16S ribosomal DNA gene sequencing. The fasting blood glucose and glycated hemoglobin were measured to evaluate the effects of SADI-S on glucose metabolism. Results The Chao and ACE index results indicated the richness of the gut microbial community. The ACE and Chao index values were significantly lower in the SADI-S group than in the sham-PF group, indicating that indicating that species richness was significantly lower in the SADI-S group than in the sham-PF group (p < 0.05). Shannon and Simpson indices were used to estimate the species diversity of the gut microbiota. Compared with the sham-PF group, the SADI-S group showed significantly lower Shannon index and higher Simpson index values, indicating that the species diversity was significantly lower in the SADI-S group than in the sham-PF group (p < 0.05). At the genus level, SADI-S significantly changed the abundances of 33 bacteria, including the increased anti-inflammatory bacteria (Akkermansia and Bifidobacterium) and decreased pro-inflammatory bacteria (Bacteroides). SADI-S significantly decreased the fasting blood glucose and glycated hemoglobin levels. The blood glucose level of rats was positively correlated with the relative abundances of 12 bacteria, including Bacteroides, and negatively correlated with the relative abundances of seven bacteria, including Bifidobacterium. Conclusion SADI-S significantly altered the gut microbiota composition of T2D rats, including the increased anti-inflammatory bacteria (Akkermansia and Bifidobacterium) and decreased pro-inflammatory bacteria (Bacteroides). The blood glucose level of rats was positively correlated with the abundances of 12 bacteria, including Bacteroides, but negatively correlated with the relative abundance of 7 bacteria, including Bifidobacterium. These alternations in gut microbiota may be the mechanism through which SADI-S improved T2D. More studies should be performed in the future to validate these effects.
Collapse
Affiliation(s)
- Lun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shixing Li
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tao Jiang
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhang L, Cheng X, Xia L, Liu N, Liu L, Liu S, Wang S, Yin J. Analysis of 16s rRNA Gene Sequencing in Feces: The Impact of Bariatric Surgery on the Gut Microbiota in Patients with Obesity. Obes Surg 2024; 34:1185-1195. [PMID: 38388967 DOI: 10.1007/s11695-024-07087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Obesity is a risk factor for many chronic diseases. This study aimed to investigate the effect of bariatric surgery on the gut microbiota from patients with obesity. MATERIALS AND METHODS The microbiota composition from stool samples before and after bariatric surgery were identified using bacterial 16S rRNA gene sequencing. Based on the speed of weight loss, patients were classified as the slow-loss group and fast-loss group. The ɑ- and β-diversity analysis was done to compare the species richness, evenness, and overall structure of the microbiota between different groups. Next, linear discriminant analysis effect size (LEfSe) and receiver operating characteristic (ROC) analysis were implemented to identify high-dimensional biomarkers and significantly different species of microbial taxa between different groups. Finally, the pathway analysis was inferred using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to predict the functional profiling of microbial communities. RESULTS β-diversity analysis suggested that species diversity of preoperative samples of slow-loss group was significantly higher than the fast-loss group. High levels of Oscillospira and Abiotrophia in the preoperative gut microbiota may lead to poor postoperative weight loss. For patients with poor postoperative weight loss due to changes in gut microbiota, the gut microbiota is mainly composed of Lactobacillus. For patients with good postoperative results, the gut microbiota is mainly composed of Escherichia, Robinsonella, and Dialister. In addition, multiple metabolic-related pathways were significantly different between the four groups. CONCLUSION This comparative study revealed biomarker species based on microfloral composition in patients with obesity before and after bariatric surgery.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of General Surgery, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Xiaolei Cheng
- Department of Endocrinology, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Lianli Xia
- Department of Endocrinology, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Na Liu
- Department of Endocrinology, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Liyin Liu
- Department of General Surgery, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Shujuan Liu
- Department of General Surgery, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China
| | - Shaojia Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| | - Jianhui Yin
- Department of General Surgery, The First Hospital of Kunming, 504 Qingnian Road, Kunming, 650118, China.
| |
Collapse
|
6
|
Park YS, Ahn K, Yun K, Jeong J, Baek KW, Lee J, Kim HH, Han K, Ahn YJ. Alterations in gastric and gut microbiota following sleeve gastrectomy in high-fat diet-induced obese rats. Sci Rep 2023; 13:21294. [PMID: 38042896 PMCID: PMC10693561 DOI: 10.1038/s41598-023-48718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Obesity is considered a high-risk disease and a global epidemic, and the number of obese patients is rising at an alarming rate worldwide. High-fat diet-induced dysbiosis of the intestinal microbiota is considered an essential factor related to obesity. Bariatric surgery induces a sharp decrease in fat content and effectively improves the metabolism of obese individuals. Herein, we aimed to investigate the effects of a high-fat diet-induced obesity and the alterations in gastric and intestinal microbiota resulting from sleeve gastrectomy on clinical outcomes. We performed 16S sequencing of gastric and fecal samples obtained from rats in three treatment groups: normal chow diet, high-fat diet (HFD), and sleeve gastrectomy after HDF for 14 weeks. The area under the curve of fasting glucose and the levels of leptin and low-density lipoproteins were significantly different between groups. Microbial taxa that were highly correlated with several clinical parameters were identified for each group. Glyoxylate and dicarboxylate, taurine and hypotaurine, butanoate, nitrogen, and pyrimidine metabolism and aminoacyl-transfer ribonucleic acid biosynthesis were affected by bariatric surgery and were significantly associated with changes in the composition of gastric and fecal microbiomes. Connectivity and co-occurrence were higher in fecal samples than in gastric tissues. Our results elucidated the positive effects of sleeve gastrectomy in obesity and shed light on changes in the microbiomes of gastric and fecal samples.
Collapse
Affiliation(s)
- Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kung Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, South Korea
| | - Kyeongeui Yun
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, South Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin, 1491, South Korea
| | - Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin, 1491, South Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, South Korea.
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, South Korea.
| | - Yong Ju Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, South Korea.
| |
Collapse
|
7
|
Alabduljabbar K, Bonanos E, Miras AD, le Roux CW. Mechanisms of Action of Bariatric Surgery on Body Weight Regulation. Gastroenterol Clin North Am 2023; 52:691-705. [PMID: 37919021 DOI: 10.1016/j.gtc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Bariatric surgery is an effective treatment modality for obesity and obesity-associated complications. Weight loss after bariatric surgery was initially attributed to anatomic restriction or reduced energy absorption, but now it is understood that surgery treats obesity by influencing the subcortical areas of the brain to lower adipose tissue mass. There are three major phases of this process: initially the weight loss phase, followed by a phase where weight loss is maintained, and in a subset of patients a phase where weight is regained. These phases are characterized by altered appetitive behavior together with changes in energy expenditure. The mechanisms associated with the rearrangement of the gastrointestinal tract include central appetite control, release of gut peptides, change in microbiota and bile acids. However, the exact combination and timing of signals remain largely unknown.
Collapse
Affiliation(s)
- Khaled Alabduljabbar
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland; Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Chen W, Song J, Cheng Y, Jia B, He Y, Yu L, Yu G, Wang Y. Changes in gut microbiota and cytokines following laparoscopic sleeve gastrectomy are associated with cognitive function improvement. Heliyon 2023; 9:e19245. [PMID: 37810155 PMCID: PMC10558312 DOI: 10.1016/j.heliyon.2023.e19245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Variations of cytokines and gut microbiota diversity with improved cognitive function in patients with obesity following bariatric surgery were poorly understood. The aim of this study was to testify the relationship among gut microbiota, cytokines and cognitive function in patients with obesity before and after laparoscopic sleeve gastrectomy (LSG). Methods Forty patients were enrolled in this study. Demographics, and serum and stool specimens were collected from all patients before and 3 months after LSG. The Montreal Cognitive Assessment (MoCA) scale, as well as assessment of immediate and delayed memory were used to evaluate self-perceived cognitive improvement after LSG. Results LSG resulted in significant weight loss and improvement in cognitive functions, as measured by questionnaires. Bariatric surgery tended to increase gut microbiota relative abundance and diversity. The intestinal flora increased in the proportion of Bacteroidetes and Fusobacteria phyla, and decreased in the proportion of Firmicutes, Proteobacteria, and Actinobacteria phyla after LSG. Plasma IL-1β and TNF-α levels were significantly decreased following LSG, while IL-4 was significantly increased. MoCA test scores were significant correlated with IL-4, TNF-α and IL-1β. In addition, Firmicutes had a positive correlation with TNF-α, while Fuscobacteria had a negative correlation with IL-1β. Bacteroidetes was negatively correlated with IL-4. Conclusion Changes in gut microbiota were positive relationship with cognitive function improvement following LSG. Inflammation cytokines maybe played as a mediator between gut microbiota and cognitive function through gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Wanjing Chen
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Jiahong Song
- Graduate School of Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei City, Anhui Province, 230032, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Benli Jia
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Yawei He
- Graduate School of Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei City, Anhui Province, 230032, China
| | - Liang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Gang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| |
Collapse
|
9
|
Gut Microbiota Profile in Adults Undergoing Bariatric Surgery: A Systematic Review. Nutrients 2022; 14:nu14234979. [PMID: 36501007 PMCID: PMC9738914 DOI: 10.3390/nu14234979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota (GM) after bariatric surgery (BS) has been considered as a factor associated with metabolic improvements and weight loss. In this systematic review, we evaluate changes in the GM, characterized by 16S rRNA and metagenomics techniques, in obese adults who received BS. The PubMed, Scopus, Web of Science, and LILACS databases were searched. Two independent reviewers analyzed articles published in the last ten years, using Rayyan QCRI. The initial search resulted in 1275 documents, and 18 clinical trials were included after the exclusion criteria were applied. The predominance of intestinal bacteria phyla varied among studies; however, most of them reported a greater amount of Bacteroidetes (B), Proteobacteria (P), and diversity (D) after BS. Firmicutes (F), B, and the (F/B) ratio was inconsistent, increasing or decreasing after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) were conducted, compared to before surgery. There was a reduction in the relative proportion of F. Moreover, a higher proportion of Actinobacteria (A) was observed after RYGB was conducted. However, the same was not identified when SG procedures were applied. Genera abundance and bacteria predominance varied according to the surgical procedure, with limited data regarding the impact on phyla. The present study was approved by PROSPERO, under registration number CRD42020209509.
Collapse
|
10
|
Koutoukidis DA, Jebb SA, Zimmerman M, Otunla A, Henry JA, Ferrey A, Schofield E, Kinton J, Aveyard P, Marchesi JR. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut Microbes 2022; 14:2020068. [PMID: 35040746 PMCID: PMC8796717 DOI: 10.1080/19490976.2021.2020068] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome may be a mediator between obesity and health outcomes. However, it is unclear how intentional weight loss changes the gut microbiota and intestinal permeability. We aimed to systematically review and quantify this association. We searched Medline, Embase, CINAHL, Cochrane databases, and trial registries until June 2020 (PROSPERO: CRD42020205292). We included trials of weight loss interventions (energy-restricted diets, pharmacotherapy, bariatric surgery) reporting on the microbiome. Two reviewers independently completed screening, extraction, and risk assessment with the ROBINS-I tool. Pooled standardized mean differences (SMDs) were obtained from random-effects meta-analyses. Forty-seven trials with 1,916 participants (81% female) and a median follow-up of 6 months (range: 2-24) were included. Based on imprecise evidence but with fairly consistent direction of effect, weight loss was associated with a statistically significant increase in α-diversity [SMD: 0.4 (95% CI: 0.2, 0.6], p < .0001, I2 = 70%, n = 30 studies) and a statistically significant reduction in intestinal permeability [SMD: -0.7 (95% CI: -0.9, -0.4), p < .0001, I2 = 83%, n = 17 studies]. Each kg of weight loss was associated with a 0.012 (95% CI: 0.0003, 0.024, p = .045) increase in α-diversity and a -0.017 (95% CI: -0.034, -0.001, p = .038) reduction in intestinal permeability. There was clear evidence of increases in the relative abundance of Akkermansia, but no clear evidence of changes in individual phyla, species, or fecal short-chain fatty acids. Restricting the analyses to the studies with lower risk of bias did not materially alter the estimates. Increasing weight loss is positively associated with increases in gut microbiota α-diversity and reductions in intestinal permeability.
Collapse
Affiliation(s)
- Dimitrios A Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,CONTACT Dimitrios A Koutoukidis University of OxfordOxfordUnited Kingdom
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew Zimmerman
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Afolarin Otunla
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - J. Aaron Henry
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Anne Ferrey
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ella Schofield
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jade Kinton
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
11
|
Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev 2022; 43:19-34. [PMID: 34363458 PMCID: PMC8755990 DOI: 10.1210/endrev/bnab022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore.,University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland.,Diabetes Research Group, School of Biomedical Science, Ulster University, Belfast, UK
| |
Collapse
|
12
|
Nugent JL, Singh A, Wirth KM, Oppler SH, Hocum Stone L, Janecek JL, Sheka AC, Kizy S, Moore MEG, Staley C, Hering BJ, Ramachandran S, Ikramuddin S, Graham ML. A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. iScience 2021; 24:103421. [PMID: 34877488 PMCID: PMC8633018 DOI: 10.1016/j.isci.2021.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Julia L Nugent
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Amar Singh
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Keith M Wirth
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Hunter Oppler
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Jody L Janecek
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Adam C Sheka
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Kizy
- Department of Surgery, University of Minnesota, MN, USA
| | - Meghan E G Moore
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, MN, USA.,BioTechnology Institute, University of Minnesota, MN, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Sabarinathan Ramachandran
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | | | - Melanie L Graham
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Kural A, Khan I, Seyit H, Caglar TR, Toklu P, Vural M. Changes in the gut microbiota of morbidly obese patients after laparoscopic sleeve gastrectomy. Future Microbiol 2021; 17:5-15. [PMID: 34877878 DOI: 10.2217/fmb-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Permanent treatment of morbid obesity with medication or diet is nearly impossible. Laparoscopic sleeve gastrectomy (LSG) is becoming a widely accepted treatment option. This study profiled and compared gut microbiota composition before and after LSG. Methods & results: A total of 54 stool samples were collected from 27 morbidly obese individuals before and after LSG. The gut microbiota was profiled with 16S amplicon sequencing. After LSG, patients demonstrated a significant decrease (p < 0.001) in BMI and an increase in bacterial diversity. An increased Firmicutes/Bacteroidetes ratio was also noticed after LSG. The families Prevotellaceae and Veillonellaceae predominated in preoperative samples but were markedly lowered after LSG. A marked increase in Akkermansia, Alistipes, Streptococcus, Ruminococcus and Parabacteroides was observed after LSG. Conclusion: In addition to lowering BMI, LSG remodeled gut microbiota composition.
Collapse
Affiliation(s)
- Alev Kural
- Dr Sadi Konuk Research & Training Hospital, University of Health Sciences Bakırköy, Istanbul, Turkey
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Hakan Seyit
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Tuba R Caglar
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Pınar Toklu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Meltem Vural
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| |
Collapse
|
14
|
Tarazi M, Jamel S, Mullish BH, Markar SR, Hanna GB. Impact of gastrointestinal surgery upon the gut microbiome: A systematic review. Surgery 2021; 171:1331-1340. [PMID: 34809971 DOI: 10.1016/j.surg.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is evidence from preclinical models that the gut microbiome may impact outcomes from gastrointestinal surgery, and that surgery may alter the gut microbiome. However, the extent to which gastrointestinal surgery modulates the gut microbiome in clinical practice is currently poorly defined. This systematic review aims to evaluate the changes observed in the gut microbiome after gastrointestinal surgery. METHODS A systematic review and meta-analysis were conducted according to the PRISMA guidelines by screening EMBASE, MEDLINE/PubMed, Web of Science, and CENTRAL for comparative studies meeting the predetermined inclusion criteria. The primary outcome was the difference between pre and postoperative bacterial taxonomic composition and diversity metrics among patients receiving gastrointestinal surgery. RESULTS In total, 33 studies were identified including 6 randomized controlled trials and 27 prospective cohort studies reporting a total of 968 patients. Gastrointestinal surgery was associated with an increase in α diversity and a shift in β diversity postoperatively. Multiple bacterial taxa were identified to consistently trend toward an increase or decrease postoperatively. A difference in microbiota across geographic provenance was also observed. There was a distinct lack of studies showing correlation with clinical outcomes or performing microbiome functional analysis. Furthermore, there was a lack of standardization in sampling, analytical methodology, and reporting. CONCLUSION This review highlights changes in bacterial taxa associated with gastrointestinal surgery. There is a need for standardization of microbial analysis methods and reporting of results to allow interstudy comparison. Further adequately powered multicenter studies are required to better assess variation in microbial changes and its potential associations with clinical outcomes.
Collapse
Affiliation(s)
- Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, UK. https://www.twitter.com/TaraziMunir
| | - Sara Jamel
- Department of Surgery and Cancer, Imperial College London, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, UK. https://www.twitter.com/bhmullish
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, UK; Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. https://www.twitter.com/MarkarSheraz
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, UK.
| |
Collapse
|
15
|
DE-Oliveira GJM, Schieferdecker MEM, Campos ACL. ARE ENTEROTYPES IN OBESE MODIFIED BY BARIATRIC SURGERY, THE USE OF PROBIOTIC SUPPLEMENTS AND FOOD HABITS? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2021; 34:e1601. [PMID: 34669890 PMCID: PMC8521827 DOI: 10.1590/0102-672020210002e1601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/11/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Studies suggest that bariatric surgery, use of probiotic supplements and the dietary pattern can change enterotypes, as well as the entire microbial population. OBJECTIVE To verify the influence of bariatric surgery, the use of probiotic supplements and eating habits on enterotypes in obese patients. METHODS Articles published between the 2015 and 2020 were searched in Lilacs and PubMed with the headings: probiotics, eating behavior, food consumption, food, diet, microbiota, gastrointestinal microbiome, bariatric surgery, gastric bypass and the keyword enterotype in Portuguese, English and Spanish. RESULTS Of the 260 articles found, only studies carried out in obese adults relating changes in the enterotype after bariatric surgery or use of probiotics or dietary patterns and original articles were selected. In the end, eight papers on enterotype change and bariatric surgery were selected and categorized, four on the relationship between food consumption and microbiota and one on the effects of probiotics on enterotypes. CONCLUSION The microbial structure is widely modified after bariatric surgery, since the use of probiotic supplement does not bring lasting changes. Enterotypes appear to be shaped by long-term dietary patterns, can modulate how nutrients are metabolized and can be a useful biomarker to improve clinical management.
Collapse
|
16
|
Puca P, Petito V, Laterza L, Lopetuso LR, Neri M, Del Chierico F, Boskoski I, Gasbarrini A, Scaldaferri F. Bariatric procedures and microbiota: patient selection and outcome prediction. Ther Adv Gastrointest Endosc 2021; 14:26317745211014746. [PMID: 34368762 PMCID: PMC8299956 DOI: 10.1177/26317745211014746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/11/2021] [Indexed: 11/15/2022] Open
Abstract
Obesity is a major health issue throughout the world and bariatric surgery plays a key role in its management and treatment. The role of microbiota in determining the pathogenesis of obesity has been widely studied, while its role in determining the outcome of bariatric surgery is an emerging issue that will be an outcome in near future studies. Studies on mice first showed the key role of microbiota in determining obesity, highlighting the fat mass increase in mice transplanted with microbiota from fat individuals, as well as the different microbiota composition between mice undergone to low-fat or high-fat diets. This led to characterize the asset of microbiota composition in obesity: increased abundance of Firmicutes, reduced abundance of Bacteroidetes and other taxonomical features. Variations on the composition of gut microbiome have been detected in patients undergone to diet and/or bariatric surgery procedures. Patients undergone to restricting diets showed lower level of trimethylamine N-oxide and other metabolites strictly associated to microbiome, as well as patients treated with bariatric surgery showed, after the procedure, changes in the relative abundance of Bacteroidetes, Firmicutes and other phyla with a role in the pathogenesis of obesity. Eventually, studies have been led about the effects that the modification of microbiota could have on obesity itself, mainly focusing on elements like fecal microbiota transplantation and probiotics such as inulin. This series of studies and considerations represent the first step in order to select patients eligible to bariatric surgery and to predict their outcome.
Collapse
Affiliation(s)
- Pierluigi Puca
- Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy
| | - Valentina Petito
- Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy
| | - Lucrezia Laterza
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Loris Riccardo Lopetuso
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italia
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ivo Boskoski
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Franco Scaldaferri
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| |
Collapse
|
17
|
Zhang C, Yang M. Current Options and Future Directions for NAFLD and NASH Treatment. Int J Mol Sci 2021; 22:ijms22147571. [PMID: 34299189 PMCID: PMC8306701 DOI: 10.3390/ijms22147571] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
18
|
Charpentier J, Briand F, Lelouvier B, Servant F, Azalbert V, Puel A, Christensen JE, Waget A, Branchereau M, Garret C, Lluch J, Heymes C, Brousseau E, Burcelin R, Guzylack L, Sulpice T, Grasset E. Liraglutide targets the gut microbiota and the intestinal immune system to regulate insulin secretion. Acta Diabetol 2021; 58:881-897. [PMID: 33723651 DOI: 10.1007/s00592-020-01657-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023]
Abstract
AIMS Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Francois Briand
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Benjamin Lelouvier
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Florence Servant
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Vincent Azalbert
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Anthony Puel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Aurélie Waget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Maxime Branchereau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Céline Garret
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Jérome Lluch
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Christophe Heymes
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Emmanuel Brousseau
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France.
| | - Laurence Guzylack
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Thierry Sulpice
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| |
Collapse
|
19
|
Lau E, Belda E, Picq P, Carvalho D, Ferreira-Magalhães M, Silva MM, Barroso I, Correia F, Vaz CP, Miranda I, Barbosa A, Clément K, Doré J, Freitas P, Prifti E. Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetol Metab Syndr 2021; 13:56. [PMID: 34020709 PMCID: PMC8139007 DOI: 10.1186/s13098-021-00672-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is one of the most efficient procedures for the treatment of obesity, also improving metabolic and inflammatory status, in patients with mild obesity. The underlying mechanisms have not been fully understood, but gut microbiota is hypothesized to play a key role. Our aim was to evaluate the association between gut microbiota changes and anthropometric, metabolic and inflammatory profiles after metabolic surgery compared with medical therapy, in type 2 diabetic (T2DM) adults with mild obesity (BMI 30-35 kg/m2). METHODS DM2 was an open-label, randomised controlled clinical trial (RCT: ISRCTN53984585) with 2 arms: (i) surgical, and (ii) medical. The main outcome was gut microbiota changes after: metabolic surgery (Roux-en-Y gastric bypass-RYGB) versus standard medical therapy. Secondary outcomes included anthropometric, metabolic and inflammatory profiles. Clinical visits, blood workup, and stool samples were collected at baseline and months (M)1, 3, 6, 12. Gut microbiota was profiled using 16S rRNA targeted sequencing. RESULTS Twenty patients were included: 10 in surgical and 10 in medical arm. Anthropometric and metabolic comparative analysis favoured RYGB over medical arm. At M12, the percentage of weight loss was 25.5 vs. 4.9% (p < 0.001) and HbA1c was 6.2 vs. 7.7% (p < 0.001) respectively. We observed a continuous increase of genus richness after RYGB up until M12. In the medical arm, genus richness ended-up being significantly lower at M12. Composition analysis indicated significant changes of the overall microbial ecosystem (permanova p = 0.004, [R2 = 0.17]) during the follow-up period after RYGB. There was a strong association between improvement of anthropometric/metabolic/inflammatory biomarkers and increase in microbial richness and Proteobacterial lineages. CONCLUSIONS This was the first RCT studying composite clinical, analytic, and microbiome changes in T2DM patients with class 1 obesity after RYGB versus standard medical therapy. The remarkable phenotypic improvement after surgery occurred concomitantly with changes in the gut microbiome, but at a lower level. TRIAL REGISTRATION ISRCTN53984585.
Collapse
Affiliation(s)
- Eva Lau
- Department of Endocrinology and Nutrition, Centro Hospitalar de S. João, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
- CINTESIS - Center for Health Technologies and Information Systems Research - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Eugeni Belda
- Integromics, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
| | - Paul Picq
- Integromics, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
| | - Davide Carvalho
- Department of Endocrinology and Nutrition, Centro Hospitalar de S. João, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Ferreira-Magalhães
- CINTESIS - Center for Health Technologies and Information Systems Research - Faculty of Medicine, University of Porto, Porto, Portugal
- Health Information and Decision Sciences Department - Faculty of Medicine, Porto University, Porto, Portugal
| | - Maria Manuel Silva
- Department of Endocrinology and Nutrition, Centro Hospitalar de S. João, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isaac Barroso
- Department of Biochemistry, Centro Hospitalar de S. João, Porto, Portugal
- EpiUnit – Instituto de Saúde Pública, University of Porto, Porto, Portugal
| | - Flora Correia
- Department of Nutrition, Centro Hospitalar de S. João, Porto, Portugal
- Faculty of Nutrition and Food Science, Porto, Portugal
| | - Cidália Pina Vaz
- CINTESIS - Center for Health Technologies and Information Systems Research - Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Division of Microbiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isabel Miranda
- Surgery and Physiology, Cardiovascular Research Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Barbosa
- Department of Surgery, Centro Hospitalar de S. João, Porto, Portugal
| | - Karine Clément
- Sorbonne Université, INSERM, NutriOmics Research Unit, Pitié-Salpêtrière Hopital, Paris, France
| | - Joel Doré
- Université Paris-Saclay, INRA, MetaGenoPolis, AgroParisTech, MICALIS, 78350 Jouy-en-Josas, France
| | - Paula Freitas
- Department of Endocrinology and Nutrition, Centro Hospitalar de S. João, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Edi Prifti
- Integromics, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, IRD, Sorbonne Université, UMMISCO, Paris, France
| |
Collapse
|
20
|
Felsenreich DM, Prager G. Bariatrische Chirurgie – welche Therapieoptionen? JOURNAL FÜR GYNÄKOLOGISCHE ENDOKRINOLOGIE/ÖSTERREICH 2021; 31:52-61. [DOI: 10.1007/s41974-020-00172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 01/03/2025]
Abstract
ZusammenfassungAdipositas und damit einhergehende Komorbiditäten wie Diabetes mellitus Typ 2 (DMII), arterielle Hypertonie, Schlafapnoe, Erkrankungen des Bewegungsapparates usw. nehmen weltweit stetig zu. Bariatrische/metabolische Operationen stellen die bei Weitem effizienteste Methode dar, um langfristig Gewicht zu reduzieren und Komorbiditäten zu verbessern bzw. komplett in Remission zu bringen. Die Wirkungsmechanismen dieser Eingriffe umfassen neben Malabsorption und/oder Restriktion eine veränderte Ausschüttung verschiedener Hormone und Botenstoffe im Körper („gut hormones“, Adipozytokine usw.) sowie Veränderungen von Gallensäuren und des Mikrobioms. Die Indikation zu einer bariatrischen/metabolischen Operation (OP) kann ab einem BMI von ≥ 40 kg/m2 oder von ≥ 35 kg/m2 bei Bestehen mindestens einer der oben genannten Komorbiditäten gestellt werden. Gemäß den aktuellen Richtlinien der Amerikanischen Diabetesgesellschaft (ADA) kann auch schon bei einem BMI ≥ 30 kg/m2 eine OP in Erwägung gezogen werden, wenn bei bestehendem DMII kein suffizienter Gewichtsverlust oder keine glykämische Kontrolle auf konservative Art und Weise erreicht werden kann. Die derzeit am häufigsten durchgeführten bariatrischen/metabolischen Operationsmethoden sind die Sleeve-Gastrektomie (Schlauchmagen), der Y‑Roux-Magenbypass und der One-anastomosis-Magenbypass, wobei die Wahl der Operationsmethode von mehreren Faktoren abhängt und für jeden Patienten individuell entschieden werden sollte. Zur Evaluierung der passenden OP-Methode, zur Abschätzung des Risikos und zur individuellen Vorbereitung des Patienten müssen im Vorfeld der OP verschiedene Untersuchungen durchgeführt werden. Es konnte mittlerweile in vielen Studien gezeigt werden, dass die metabolische Chirurgie sehr sicher ist und die Lebenserwartung sowie die Lebensqualität des Patienten dadurch erheblich verlängert bzw. verbessert werden. Durch metabolische Chirurgie ist es im Langzeitverlauf möglich, neben Gewichtsverlust eine erhebliche Verbesserung/Remission von DMII, kardiovaskulären Erkrankungen, Erkrankungen des Bewegungs- und Stützapparats und Lebererkrankungen zu erreichen sowie das Risiko, an Karzinomen zu erkranken (bzw. daran zu versterben), erheblich zu reduzieren.
Collapse
|
21
|
Tan C, Zheng Z, Wan X, Cao J, Wei R, Duan J. The role of gut microbiota and amino metabolism in the effects of improvement of islet β-cell function after modified jejunoileal bypass. Sci Rep 2021; 11:4809. [PMID: 33637880 PMCID: PMC7910448 DOI: 10.1038/s41598-021-84355-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
The change in gut microbiota is an important mechanism of the amelioration of type 2 diabetes mellitus (T2DM) after bariatric surgery. Here, we observe that the modified jejunoileal bypass effectively decreases body weight gain, fasting blood glucose, and lipids level in serum; additionally, islet β-cell function, glucose tolerance, and insulin resistance were markedly ameliorated. The hypoglycemic effect and the improvement in islet β-cell function depend on the changes in gut microbiota structure. modified jejunoileal bypass increases the abundance of gut Escherichia coli and Ruminococcus gnavus and the levels of serum glycine, histidine, and glutamine in T2DM rats; and decreases the abundance of Prevotella copri and the levels of serum branched chain amino acids, which are significantly related to the improvement of islet β-cell function in T2DM rats. Our results suggest that amino acid metabolism may contribute to the islet β-cell function in T2DM rats after modified jejunoileal bypass and that improving gut microbiota composition is a potential therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Cai Tan
- Department of Women's Health, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Zhihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaogang Wan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Jinyuan Duan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Gastrointestinal Surgical Institute of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
22
|
Fouladi F, Carroll IM, Sharpton TJ, Bulik-Sullivan E, Heinberg L, Steffen KJ, Fodor AA. A microbial signature following bariatric surgery is robustly consistent across multiple cohorts. Gut Microbes 2021; 13:1930872. [PMID: 34159880 PMCID: PMC8224199 DOI: 10.1080/19490976.2021.1930872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery induces significant shifts in the gut microbiota which could potentially contribute to weight loss and metabolic benefits. The aim of this study was to characterize a microbial signature following Roux-en-Y Gastric bypass (RYGB) surgery using novel and existing gut microbiota sequence data. We generated 16S rRNA gene and metagenomic sequences from fecal samples from patients undergoing RYGB surgery (n = 61 for 16S rRNA gene and n = 135 for metagenomics) at pre-surgical baseline and one, six, and twelve-month post-surgery. We compared these data with three smaller publicly available 16S rRNA gene and one metagenomic datasets from patients who also underwent RYGB surgery. Linear mixed models and machine learning approaches were used to examine the presence of a common microbial signature across studies. Comparison of our new sequences with previous longitudinal studies revealed strikingly similar profiles in both fecal microbiota composition (r = 0.41 ± 0.10; p < .05) and metabolic pathways (r = 0.70 ± 0.05; p < .001) early after surgery across multiple datasets. Notably, Veillonella, Streptococcus, Gemella, Fusobacterium, Escherichia/Shigella, and Akkermansia increased after surgery, while Blautia decreased. Machine learning approaches revealed that the replicable gut microbiota signature associated with RYGB surgery could be used to discriminate pre- and post-surgical samples. Opportunistic pathogen abundance also increased post-surgery in a consistent manner across cohorts. Our study reveals a robust microbial signature involving many commensal and pathogenic taxa and metabolic pathways early after RYGB surgery across different studies and sites. Characterization of the effects of this robust microbial signature on outcomes of bariatric surgery could provide insights into the development of microbiome-based interventions for predicting or improving outcomes following surgery.
Collapse
Affiliation(s)
- Farnaz Fouladi
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Ian M. Carroll
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thomas J. Sharpton
- Department of Microbiology, Department of Statistics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, USA
| | - Emily Bulik-Sullivan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Leslie Heinberg
- Department of Psychiatry and Psychology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, USA
| | - Kristine J. Steffen
- School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, USA
- Director of Biomedical Research, Center for Biobehavioral Research/Sanford Research, Fargo, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| |
Collapse
|
23
|
Changes in gut microbial flora after Roux-en-Y gastric bypass and sleeve gastrectomy and their effects on post-operative weight loss. Updates Surg 2020; 73:1493-1499. [PMID: 33067675 DOI: 10.1007/s13304-020-00900-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Bariatric surgery affects gut microbial flora due to the anatomical and physiological changes it causes in the gastrointestinal tract. Understanding the interaction between the gut flora, the type of bariatric surgery and weight loss may help improve bariatric surgery outcomes. This study was designed to compare the effects of Roux-en-Y Gastric Bypass (RYGB) and Sleeve Gastrectomy (SG) on two main phyla of the gut microbiota in humans and evaluate their potential effect on weight changes. Thirty morbidly obese patients were divided into two groups and underwent laparoscopic SG or laparoscopic RYGB. The patients' weight changes and fecal samples were evaluated at baseline and 6 months after the surgery. A microbial flora count was carried out of the phyla Bacteroidetes and Firmicutes and Bacteroides Fragilis. Changes in the abundance of the flora and their correlation with weight loss were analyzed. After 6 months, the patients with a history of RYGB showed a significant decrease in stool Bacteroidetes while the reduction in the SG group was insignificant. Firmicutes abundance was almost unchanged following SG and RYGB. There was no significant change in Bacteroides Fragilis abundance in either of the two groups, but a positive correlation was observed between Bacteroides Fragilis and weight loss after SG and RYGB. Bariatric surgery can affect gut microbiota. It can be concluded that these changes are dependent on many factors and may play a role in weight loss.
Collapse
|
24
|
Cook J, Lehne C, Weiland A, Archid R, Ritze Y, Bauer K, Zipfel S, Penders J, Enck P, Mack I. Gut Microbiota, Probiotics and Psychological States and Behaviors after Bariatric Surgery-A Systematic Review of Their Interrelation. Nutrients 2020; 12:nu12082396. [PMID: 32785153 PMCID: PMC7468806 DOI: 10.3390/nu12082396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota plays an important role in health and disease, including brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota composition in humans and other vertebrates, whether probiotics influence postoperative health, and whether microbiota and psychological and behavioral factors interact. A search was conducted using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and probiotics after BS, and later screened for psychological and behavioral parameters. Studies were classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes were further assessed for whether they were specific to BS in humans through the comparison to sham operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific, whereas dissimilarity in overall microbial community structure, and increases in the abundance of the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery were observed in both human and other vertebrates studies and may be specific to BS in humans. Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS. The relationship between GI microbiota and psychological diseases in this context is unclear due to insufficient available data.
Collapse
Affiliation(s)
- Jessica Cook
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Christine Lehne
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Alisa Weiland
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Rami Archid
- Department of General, Visceral and Transplant Surgery, University Hospital, 72072 Tübingen, Germany;
| | - Yvonne Ritze
- Institute for Medical Psychology and Behavioral Neurobiology, University Hospital, 72072 Tübingen, Germany;
| | - Kerstin Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute(Caphri), Maastricht University Medical Centre, 6211 Maastricht, The Netherlands;
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
- Correspondence: ; Tel.: +49-7071-2985614; Fax: +49-7071-294382
| |
Collapse
|
25
|
Morales-Marroquin E, Hanson B, Greathouse L, de la Cruz-Munoz N, Messiah SE. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes Rev 2020; 21:e13025. [PMID: 32249534 DOI: 10.1111/obr.13025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Substantial differences in the response of gut microbial composition to metabolic and bariatric surgery have been reported. Therefore, the goal of the present review is to evaluate if methodological differences could be driving this lack of consistency. A search was conducted using PUBMED, Web of Science, Science Direct and COCHRANE using the following inclusion criteria: human studies written in English with a baseline sampling point, using gut microbiota as an outcome and either Roux-n-Y gastric bypass or sleeve gastrectomy. Sixteen articles were selected (total 221 participants). Roux-n-Y gastric bypass caused more alterations in gut microbial composition in comparison with sleeve gastrectomy. Substantial variability was found in study designs, data collection and analyses across studies. Increases in several families and genera from the phylum Proteobacteria and Bacteroidetes, the family Streptococcaceae, the species Akkermansia muciniphila and Streptococcus salivarius and a decrease in the phylum Firmicutes and the family Bifidobacteriaceae were reported. There is a need for standardization not only of microbial analysis but also of study designs when analysing the effect of bariatric surgery on the human gut microbiome. In addition, outcomes from different surgical procedures should not be combined as they produce distinctive effects on gut microbial composition.
Collapse
Affiliation(s)
- Elisa Morales-Marroquin
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Blake Hanson
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Leigh Greathouse
- Robbins College of Health and Human Services, Baylor University Waco, Texas, USA
| | | | - Sarah E Messiah
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| |
Collapse
|
26
|
Changes in Gut Microbiota Composition after Bariatric Surgery: a New Balance to Decode. J Gastrointest Surg 2020; 24:1736-1746. [PMID: 31388884 DOI: 10.1007/s11605-019-04321-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the link between obesity and gut microbiota has become a focus for research. This study shed some light on the modification of postoperative gut microbial composition after bariatric surgery. METHODS A prospective longitudinal study on healthy lean subjects and patients who underwent bariatric surgery (Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy) was carried out. Anthropometric and metabolic data, smoking, food preferences data, and stool samples were collected from lean subjects and from obese patients before and 3 and 6 months after surgery (T0, T3, and T6, respectively). RESULTS We collected stool samples from 25 obese patients before surgery and 3 and 6 months thereafter and from 25 normal weight patients. After Roux-en-Y gastric bypass, Yokenella regensburgei (p < 0.05), Fusobacterium varium (p < 0.05), Veillonella dispar/atypica (p < 0.05), and Streptococcus australis/gordonii (p < 0.05) were transiently identified in the gut at T3. Roux-en-Y gastric bypass patients had a permanent increase in Akkermansia muciniphila (p < 0.05), which is associated with healthy metabolism, both at T3 and T6. There were no significant changes in gut microbiota in laparoscopic sleeve gastrectomy patients. CONCLUSIONS In our study, Roux-en-Y gastric bypass induced major microbial differences and greater weight loss compared with laparoscopic sleeve gastrectomy. Analyzing the microbiota composition, a proliferation of potential pathogens and the onset of beneficial bacteria was observed. The effects of these bacteria on human health are still far from clear. Understanding the mechanisms of action of these bacteria could be the keystone in developing new therapeutic strategies for obesity.
Collapse
|
27
|
Effects of Microecological Preparations on Obese Patients after Bariatric Surgery: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8724546. [PMID: 32595746 PMCID: PMC7281838 DOI: 10.1155/2020/8724546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Vitamin deficiency, bacterial overgrowth, and gastrointestinal symptoms can be detected in obese patients after bariatric surgery that influences their quality of life (QoL) and weight. It is unclear if microecological preparations benefit obese patients following bariatric surgery. The aim of this study is to investigate the effects of microecological preparations on QoL, excess weight loss (EWL), and levels of vitamin B12 and inflammatory markers. We searched seven databases to identify reports published till December 1, 2019, and included randomized controlled trials investigating the effects of microecological preparations in obese adults undergoing bariatric surgery. The primary outcomes included QoL and EWL, while secondary outcomes comprised serum levels of vitamin B12, interleukin 6, TNF-α, and C-reactive protein (CRP). Study bias was analyzed using the Cochrane risk-of-bias tool. Statistical analyses were performed using Review Manager. The mean difference in outcomes was calculated using standardized mean difference (SMD) with a confidence interval (CI) of 95%. A majority of the studies showed a low or moderate risk of bias. Meta-analysis showed significantly higher levels of vitamin B12 in postoperative patients administered with microecological preparations (SMD = 0.52; 95% CI = 0.08–0.95; P = 0.02). There were no significant differences in QoL (SMD = −0.14; 95% CI = −0.45–0.17; P = 0.38), EWL (SMD = 0.45; 95% CI = −0.16–1.05; P = 0.15), and levels of TNF-α (SMD = −0.29; 95% CI = −0.64–0.05; P = 0.09), interleukin 6 (SMD = −0.1; 95% CI = −0.81–0.61; P = 0.78]), and CRP (SMD = 0.02; 95% CI = −0.32–0.36; P = 0.93). The trials examined indicated that microecological preparations had limited efficacy in improving QoL, EWL, and inflammatory response, but they stimulated the synthesis of vitamin B12. This may help in designing efficient microecological preparations to supplement bariatric surgery in obese individuals.
Collapse
|
28
|
Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 318:G889-G906. [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Michele Campigotto
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Giuseppina Campisciano
- Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Manola Comar
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Lory Saveria Crocè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Clinica Patologie del Fegato, Azienda Sanitaria Universitaria Integrata di Trieste, Italy.,Fondazione Italiana Fegato, Trieste, Italy
| |
Collapse
|
29
|
Abstract
Bariatric surgery results in sustained weight loss, improvement of metabolic and hormonal changes, and reduction of comorbidities in obese patients. However, beneficial effects of bariatric surgery are not solely explained by restriction and malabsorption induced by surgery itself. Changes in the microbiome might play a role in this mechanism. A systematic review was performed in which 21 studies were included. The microbiome was affected by surgery and profound changes occurred in the first year of follow-up. An increase in Bacteroides and Proteobacteria and a decrease in Firmicutes were observed postoperatively in most studies. These changes were associated with weight loss. Bariatric surgery induces profound changes in the microbiome. This may be related to the beneficial effect of bariatric surgery on comorbidities associated with obesity.
Collapse
|
30
|
The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development. Microorganisms 2020; 8:microorganisms8030431. [PMID: 32204328 PMCID: PMC7143985 DOI: 10.3390/microorganisms8030431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
An incorrect food regimen from childhood is suggested to negatively impact the gut microbiome composition leading to obesity and perhaps to colon rectal cancer (CRC) in adults. In this study, we show that the obesity and cancer gut microbiota share a characteristic microbial profile with a high colonization by mucin degraders species, such as Hafnia alvei and Akkermansia muciniphila. In addition, the species Clostridiumbolteae, a bacterium associated with insulin resistance, dyslipidemia, and inflammation, has been associated with the presence of oncogenic Human Polyomaviruses (HPyVs). Merkel cell Polyomavirus (MCPyV) and BK Polyomavirus (BKPyV) were the most frequently oncogenic viruses recovered in the gut of both obese and tumor patients. Considering the high seroprevalence of HPyVs in childhood, their association with specific bacterial species deserve to be further investigated. Data from the present study highlight the presence of a similar microbiome pattern in CRC and obese subjects, suggesting that obese microbiome may represent an opportunity for tumorigenic/driver bacteria and viruses to trigger cell transformation.
Collapse
|
31
|
Federici M. Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. J Endocrinol Invest 2019; 42:1011-1018. [PMID: 30788772 DOI: 10.1007/s40618-019-01022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gut microbiome is emerging as an important player in the field of metabolic disorders. MATERIALS AND METHODS Currently, several studies are ongoing to determine whether the effect of gut microbiome on obesity, type 2 diabetes, non-alcoholic fatty liver disease, and other metabolic diseases is determined by singular species or rather by a functional role of bacterial metabolism at higher taxonomical level. Deciphering if a single or more species are responsible for metabolic traits or rather microbial metabolic pathways are responsible for effects on host metabolism may help to identify appropriate dietary interventions to support microbial functions according to the prevalent host disease. Furthermore, the combination of metagenomics and metabolomics-based signature might be applied in the future to improve the risk prediction in healthy subjects. CONCLUSION In this review, I will summarize the current findings regarding the role of gut microbiome and metabolites in metabolic disorders to argue whether the current achievements may be translated into clinical practice.
Collapse
Affiliation(s)
- M Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
32
|
Surgical therapy of weight regain after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2019; 15:1719-1728. [PMID: 31474525 DOI: 10.1016/j.soard.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is a well-established surgical method for morbid obesity; however, weight regain (WR) after initially good results may be considered an issue, the treatment of which has found no consensus yet. OBJECTIVES The aim of this study was to compare the different surgical methods treating WR after RYGB that are used at the Vienna Medical University in a larger number of patients, concerning further weight loss, complications, and reoperations. SETTING University hospital, Austria. METHODS This study includes all patients with RYGB who were reoperated due to WR at the Vienna Medical University by December 2016 (n = 84). The follow-up rate was 93%. The following 4 approaches to treating WR after RYGB were taken: (1) pouch resizing, (2) pouch banding, (3) pouch resizing plus pouch banding, and (4) common limb shortening (i.e., distalization). RESULTS The mean maximum excess weight loss referring to the WR procedure in the 4 groups was as follows: group 1: 69.0% ± 35.2%, group 2: 62.8% ± 39.5%, group 3: 83.1% ± 30.9%, and group 4: 81.5% ± 41.6%. Reoperations occurred in the following different groups: group 1 had 2 balloon dilations (20%), groups 2 (n = 13) and 3 (n = 29) had 5 (38% and 17%) band removals each, and group 4 had 9 reversal procedures due to malnutrition (30%). CONCLUSIONS There are nonsignificant differences in terms of additional weight loss between the different methods. However, differences lay in the areas of adverse symptoms and further reoperations. While there was no risk of malnutrition with pouch resizing, there was with distalization. Pouch banding (with or without resizing) poses a higher risk of dysphagia.
Collapse
|
33
|
Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne) 2019; 10:82. [PMID: 30837951 PMCID: PMC6390476 DOI: 10.3389/fendo.2019.00082] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 2 billion overweight and obese individuals worldwide, surpassing for the first time, the number of people affected by undernutrition. Obesity and its comorbidities inflict a heavy burden on the global economies and have become a serious threat to individuals' wellbeing with no immediate cure available. The causes of obesity are manifold, involving several factors including physiological, metabolic, neural, psychosocial, economic, genetics and the environment, among others. Recent advances in genome sequencing and metagenomic profiling have added another dimension to this complexity by implicating the gut microbiota as an important player in energy regulation and the development of obesity. As such, accumulating evidence demonstrate the impact of the gut microbiota on body weight, adiposity, glucose, lipid metabolism, and metabolic syndrome. This also includes the role of microbiota as a modulatory signal either directly or through its bioactive metabolites on intestinal lumen by releasing chemosensing factors known to have a major role in controlling food intake and regulating body weight. The importance of gut signaling by microbiota signaling is further highlighted by the presence of taste and nutrient receptors on the intestinal epithelium activated by the microbial degradation products as well as their role in release of peptides hormones controlling appetite and energy homeostasis. This review present evidence on how gut microbiota interacts with intestinal chemosensing and modulates the release and activity of gut peptides, particularly GLP-1 and PYY.
Collapse
Affiliation(s)
- Mihai Covasa
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Mihai Covasa
| | - Richard W. Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Toderean
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| | - Claudiu Cobuz
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| |
Collapse
|
34
|
Wang FG, Campisciano G. Comment on 'Gut microbiota characterisation in obese patients before and after bariatric surgery'. Benef Microbes 2018; 9:997-998. [PMID: 30406693 DOI: 10.3920/bm2018.x004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F-G Wang
- 1 Department of general surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China P.R
| | - G Campisciano
- 2 Department of Advanced Translational Microbiology, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Via dell'Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
35
|
Botella Martínez S, Petrina Jauregui E, Escalada San Martín J. Impact of bariatric surgery on bone tissue. ACTA ACUST UNITED AC 2018; 66:62-68. [PMID: 30266592 DOI: 10.1016/j.endinu.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
Abstract
The important prevalence and morbidity of obesity has generated an increase in bariatric surgery. It has a positive effect in obesity-related comorbidities. However, it's detrimental to bone health. The underline pathophysiological mechanisms are complex and heterogeneous. The knowledge of these factors may lead us to develop an adequate therapeutic intervention.
Collapse
Affiliation(s)
- Sonsoles Botella Martínez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario de Navarra, Pamplona, Navarra, España.
| | | | | |
Collapse
|
36
|
Raveendran AV, Chacko EC, Pappachan JM. Non-pharmacological Treatment Options in the Management of Diabetes Mellitus. EUROPEAN ENDOCRINOLOGY 2018; 14:31-39. [PMID: 30349592 PMCID: PMC6182920 DOI: 10.17925/ee.2018.14.2.31] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023]
Abstract
The global prevalence of diabetes, especially type 2 diabetes mellitus, has reached epidemic proportions in the last few decades of the 20th century because of the obesity pandemic resulting from adverse lifestyles. Diabetes as a consequence of obesity (diabesity), continues to increase exponentially in the 21st century. Although there are a multitude of drugs for the effective management of diabesity with modest benefits, most patients will require insulin for control of diabetes at some stage that would worsen obesity, and thereby diabesity. Therefore, effective non-pharmacological therapy needs to be expedited in all patients with diabesity. These measures include medical nutrition interventions, change of lifestyles and bariatric surgery. Non-pharmacological interventions are also useful for the effective management of even type 1 diabetes mellitus when used along with insulin therapy especially in those with obesity. This review summarises the current evidence base for the non-pharmacological interventions in the management of diabetes.
Collapse
Affiliation(s)
| | - Elias C Chacko
- Department of Endocrinology, Jersey General Hospital, Jersey
| | - Joseph M Pappachan
- Department of Endocrinology, Diabetes & Metabolism, University Hospitals of Morecambe Bay NHS Foundation Trust, UK
| |
Collapse
|