1
|
Tejeda-Garibay S, Zhao L, Hum NR, Pimentel M, Diep AL, Amiri B, Sindi SS, Weilhammer DR, Loots GG, Hoyer KK. Host tracheal and intestinal microbiomes inhibit Coccidioides growth in vitro. Microbiol Spectr 2024; 12:e0297823. [PMID: 38832766 PMCID: PMC11218535 DOI: 10.1128/spectrum.02978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024] Open
Abstract
Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia, leading to inappropriate antibiotic treatment. The soil Bacillus subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides, while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2×GYE (GYE) and Columbia colistin and nalidixic acid with 5% sheep's blood agar inhibited the growth of Coccidioides, but microbiota grown on chocolate agar did not. Partial depletion of the microbiota through antibiotic disk diffusion revealed diminished inhibition and comparable growth of Coccidioides to controls. To characterize the bacteria grown and identify potential candidates contributing to the inhibition of Coccidioides, 16S rRNA sequencing was performed on tracheal and intestinal agar cultures and murine lung extracts. We found that the host bacteria likely responsible for this inhibition primarily included Lactobacillus and Staphylococcus. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo. IMPORTANCE Coccidioidomycosis is caused by a fungal pathogen that invades the host lungs, causing respiratory distress. In 2019, 20,003 cases of Valley fever were reported to the CDC. However, this number likely vastly underrepresents the true number of Valley fever cases, as many go undetected due to poor testing strategies and a lack of diagnostic models. Valley fever is also often misdiagnosed as bacterial pneumonia, resulting in 60%-80% of patients being treated with antibiotics prior to an accurate diagnosis. Misdiagnosis contributes to a growing problem of antibiotic resistance and antibiotic-induced microbiome dysbiosis; the implications for disease outcomes are currently unknown. About 5%-10% of symptomatic Valley fever patients develop chronic pulmonary disease. Valley fever causes a significant financial burden and a reduced quality of life. Little is known regarding what factors contribute to the development of chronic infections and treatments for the disease are limited.
Collapse
Affiliation(s)
- Susana Tejeda-Garibay
- Quantitative and Systems Biology, Graduate Program, University of California, Merced, Merced, California, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
| | - Lihong Zhao
- Department of Applied Mathematics, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
| | - Maria Pimentel
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California, USA
| | - Anh L. Diep
- Quantitative and Systems Biology, Graduate Program, University of California, Merced, Merced, California, USA
| | - Beheshta Amiri
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
- />Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California Davis Health, Sacramento, California, USA
| | - Katrina K. Hoyer
- Quantitative and Systems Biology, Graduate Program, University of California, Merced, Merced, California, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
2
|
Tejeda-Garibay S, Zhao L, Hum NR, Pimentel M, Diep AL, Amiri B, Sindi SS, Weilhammer DR, Loots GG, Hoyer KK. Host tracheal and intestinal microbiomes inhibit Coccidioides growth in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563655. [PMID: 37961490 PMCID: PMC10634762 DOI: 10.1101/2023.10.23.563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia leading to inappropriate antibiotic treatment. Soil bacteria B. subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2xGYE (GYE) and CNA w/ 5% sheep's blood agar (5%SB-CNA) inhibited the growth of Coccidioides, but that grown on chocolate agar does not. Partial depletion of the microbiota through antibiotic disk diffusion revealed that microbiota depletion leads to diminished inhibition and comparable growth of Coccidioides growth to controls. To characterize the bacteria grown and narrow down potential candidates contributing to the inhibition of Coccidioides, 16s rRNA sequencing of tracheal and intestinal agar cultures and murine lung extracts was performed. The identity of host bacteria that may be responsible for this inhibition was revealed. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo.
Collapse
Affiliation(s)
- Susana Tejeda-Garibay
- Quantitative and Systems Biology, Graduate Program, University of California Merced, CA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
| | - Lihong Zhao
- Department of Applied Mathematics, University of California, Merced, CA
- Health Sciences Research Institute, University of California Merced, Merced, CA
| | - Nicholas R Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
| | - Maria Pimentel
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, CA
| | - Anh L Diep
- Quantitative and Systems Biology, Graduate Program, University of California Merced, CA
| | - Beheshta Amiri
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, CA
- Health Sciences Research Institute, University of California Merced, Merced, CA
| | - Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculo-skeletal Research Center, 2700 Stockton Blvd, Sacramento, CA 95817, CA
| | - Katrina K Hoyer
- Quantitative and Systems Biology, Graduate Program, University of California Merced, CA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, CA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore CA
- Health Sciences Research Institute, University of California Merced, Merced, CA
| |
Collapse
|
3
|
Chen X, Zhang H, Ren S, Ding Y, Remex NS, Bhuiyan MS, Qu J, Tang X. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chin Med J (Engl) 2023; 136:2269-2284. [PMID: 37442759 PMCID: PMC10538883 DOI: 10.1097/cm9.0000000000002206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Cardiovascular diseases, including heart failure, coronary artery disease, atherosclerosis, aneurysm, thrombosis, and hypertension, are a great economic burden and threat to human health and are the major cause of death worldwide. Recently, researchers have begun to appreciate the role of microbial ecosystems within the human body in contributing to metabolic and cardiovascular disorders. Accumulating evidence has demonstrated that the gut microbiota is closely associated with the occurrence and development of cardiovascular diseases. The gut microbiota functions as an endocrine organ that secretes bioactive metabolites that participate in the maintenance of cardiovascular homeostasis, and their dysfunction can directly influence the progression of cardiovascular disease. This review summarizes the current literature demonstrating the role of the gut microbiota in the development of cardiovascular diseases. We also highlight the mechanism by which well-documented gut microbiota-derived metabolites, especially trimethylamine N-oxide, short-chain fatty acids, and phenylacetylglutamine, promote or inhibit the pathogenesis of cardiovascular diseases. We also discuss the therapeutic potential of altering the gut microbiota and microbiota-derived metabolites to improve or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sichong Ren
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yangnan Ding
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Jiahua Qu
- Department of Pathology, University of California, San Francisco, CA 94117, USA
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
5
|
Ghanbari MA, Lashkar Bolouki T, Norouzi P, Bitaraf FS, Bakhshi H, Atashi A. Down-Regulation of CXCR4 in Mesenchymal Stem Cells by Septic Serum. Indian J Hematol Blood Transfus 2022; 38:718-725. [PMID: 36258736 PMCID: PMC9569406 DOI: 10.1007/s12288-022-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Sepsis is one of the main concerns of health and one of the leading causes of death in hospitals. It is essential to manage sepsis in hospitalized patients. In recent years, cell therapy has been considered as a new approach to treat sepsis. This study evaluated the effect of CXCR4 as one of the main proteins involved in the homing of mesenchymal stem cells in the sepsis serum in mice model. Methods Mouse sepsis model was induced by injection of E.coli and biochemical analyses was done to confirm the organ failure. Mesenchymal stem cells (MSCs) derived from bone marrow were separated into sepsis and control groups. In the sepsis serum group, MSCs were treated with sepsis serum at two time points: 24 and 48 h. Quantitative RT-PCR and flow cytometry were performed to determine the mRNA expression of CXCR4 in sepsis serum group compared to control group. Also, a migration assay was done to assess the migration capacity of bone marrow MSCs during inflammation and treatment in sepsis. Results Our result showed that treatment with sepsis serum can control migration by decrease in CXCR4 level (P ≤ 0.05) compared to control group. Moreover it was also reported that sepsis serum decreased mRNA expression of CXCR4 in MScs. Conclusions In our study, MSCs treated with septic serum were no longer able to migrate . Probably many variables such as source, dose, injection time, and injection route of MSCs after sepsis induction in the animal models are key factors for successful cell therapy.
Collapse
Affiliation(s)
| | | | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Haniye Bakhshi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
6
|
Lu H, Zhao W, Liu WH, Sun T, Lou H, Wei T, Hung WL, Chen Q. Safety Evaluation of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 in vitro and in vivo. Front Microbiol 2021; 12:686541. [PMID: 34394030 PMCID: PMC8358461 DOI: 10.3389/fmicb.2021.686541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been reported to play a major role in maintaining the balance of microbiota in host. Consumption of food with probiotics has increased with consumer concerns regarding healthy diets and wellness. Correspondingly, safety evaluation of probiotics for human consumption has become increasingly important in food industry. Herein, we aimed to test the safety of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 strains in vitro and in vivo. In results, these strains were found to be negative for mucin degradation and platelet aggregation test. Additionally, the three strains were susceptible to eight antibiotics. In accordance with bacterial reversion mutation (Ames) assay, the tested strains had no genetic mutagenicity. Finally, it was confirmed that there were no dose-dependent mortality and toxicity throughout multidose oral toxicity tests in rats. Our findings demonstrated that B. lactis BL-99 and L. paracasei K56 and ET-22 can achieve the generally recognized as safe (GRAS) status as probiotics in the future.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ting Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021; 26:molecules26041172. [PMID: 33671813 PMCID: PMC7926819 DOI: 10.3390/molecules26041172] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| |
Collapse
|
8
|
Olas B. Probiotics, Prebiotics and Synbiotics-A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases? Int J Mol Sci 2020; 21:E9737. [PMID: 33419368 PMCID: PMC7767061 DOI: 10.3390/ijms21249737] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that probiotics, prebiotics and synbiotics may serve as important dietary components in the prevention (especially) and treatment of cardiovascular diseases (CVD), but the recommendations for their use are often based on brief reports and small clinical studies. This review evaluates the current literature on the correlation between CVD and probiotics, prebiotics and synbiotics. Although research on probiotics, prebiotics and synbiotics has grown exponentially in recent years, particularly regarding the effect of probiotics on CVD, their mechanisms have not been clearly defined. It has been proposed that probiotics lower cholesterol levels, and may protect against CVD, by increasing bile salt synthesis and bile acid deconjugation. Similar effects have also been observed for prebiotics and synbiotics; however, probiotics also appear to have anti-oxidative, anti-platelet and anti-inflammatory properties. Importantly, probiotics not only have demonstrated effects in vitro and in animal models, but also in humans, where supplementation with probiotics decreases the risk factors of CVD. In addition, the properties of commercial probiotics, prebiotics and synbiotics remain undetermined, and further experimental research is needed before these substances can be used in the prevention and treatment of CVD. In particular, well-designed clinical trials are required to determine the influence of probiotics on trimethylamine-N-oxide (TMAO), which is believed to be a marker of CVDs, and to clarify the long-term effects, and action, of probiotic, prebiotic and synbiotic supplementation in combination with drug therapy (for example, aspirin). However, while it cannot be unequivocally stated whether such supplementation yields benefits in the prevention and treatment of CVDs, it is important to note that clinical studies performed to date have not identified any side-effects to use.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|