1
|
Yang K, Han F, Jin Y, Li X. C-GCS@ZIF-F/PL based electrochemical sensor for rapid and ultra-sensitive detection of rutin in foods. Food Chem 2024; 460:140382. [PMID: 39126741 DOI: 10.1016/j.foodchem.2024.140382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
Herein, a stable and ultra-sensitive rutin electrochemical sensor was successfully developed. This sensor based on glassy carbon electrode (GCE) modified with C-GCS@ZIF-F/PL nanocomposite, which was made of thermally carbonized glucose (GCS) doped with flower-like ZIF (ZIF-F) and pencil lead (PL). The electrochemical response of rutin was considerably significant at C-GCS@ZIF-F/PL/GCE, demonstrating favorable conductivity and electrocatalytic properties for detection of rutin. Under optimal conditions, the linear range is 0.1-100 μM, with a low detection limit (LOD) of 0.0054 μM. It also exhibits excellent stability, reproducibility, as well as selectivity over common interfering ions such as Na+, uric acid, quercetin and riboflavin, etc. Meanwhile, the practical utility of developed sensor was evaluated in food samples including honey, orange, and buckwheat tea, achieving satisfactory recovery rates ranging from 98.2% to 101.7%. This paper introduces a novel technique for the detection of rutin in foods.
Collapse
Affiliation(s)
- Kaifeng Yang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Fangming Han
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Yafeng Jin
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
2
|
Pulido Teuta J, Narváez-Cuenca CE, Ávila Murillo M. A high-performance liquid chromatography method validation and a Box-Behnken experimental design for the extraction optimization of quercitrin from Nectandra reticulata. RSC Adv 2024; 14:21874-21886. [PMID: 38984260 PMCID: PMC11232108 DOI: 10.1039/d4ra01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
The ethanolic extract of Nectandra reticulata contains a high amount of quercetin-3-O-rhamnoside (quercitrin) that has exhibited a significant activity toward Alzheimer's disease, specifically with LXR receptors. In this work, a methodology was validated following the specifications of the International Conference of Harmonization in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy (recovery), repeatability (intra-assay), intermediate precision (intra-laboratory), reproducibility (inter-laboratory), robustness, and specificity. The effect of location (Oiba, Granada, and Chiquinquira) and the extraction method (percolation, maceration, and ultrasound-assisted extraction) towards the chromatographic profile and quercitrin recovery was studied. Furthermore, a Box-Behnken design was conducted to optimize quercitrin extraction and extraction yield by ultrasonic-assisted extraction. The chromatographic method was validated, with a linear range from 5 to 180 mg quercitrin per L, LOD 0.26 mg L-1, and LOQ 0.86 mg L-1. Accuracy [recovery of 93.8% (w/w)], repeatability (relative standard deviation, RSD, 3.3%), intermediate precision (RSD 5.4%), and reproducibility (RSD 1.4%) were within the acceptable values. The method was robust and specific, except for the variation in the formic acid concentration. The location had a greater influence than the extraction method towards both the chromatographic profile and quercitrin recovery. Quercitrin extraction was maximized at 60% (v/v) ethanol and 50 °C, independent of the solvent : material ratio used. The highest yield values were achieved at 60% (v/v) ethanol and 50 °C, with a solvent : material ratio of 40 mL g-1.
Collapse
Affiliation(s)
- Juanita Pulido Teuta
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Quipronab Carrera 30 No. 45-03 Bogotá Colombia
| | - Carlos-Eduardo Narváez-Cuenca
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Food Chemistry Research Group Carrera 30 No. 45-03 Bogotá Colombia +57-3165000, ext. 14458
| | - Mónica Ávila Murillo
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Quipronab Carrera 30 No. 45-03 Bogotá Colombia
| |
Collapse
|
3
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
4
|
Loo YC, Hu HC, Yu SY, Tsai YH, Korinek M, Wu YC, Chang FR, Chen YJ. Development on potential skin anti-aging agents of Cosmos caudatus Kunth via inhibition of collagenase, MMP-1 and MMP-3 activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154643. [PMID: 36623444 DOI: 10.1016/j.phymed.2023.154643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Skin aging is associated with degradation of collagen by matrix metalloproteinases (MMPs), which leads to loss of skin elasticity and formation of wrinkles. Cosmos caudatus Kunth (CC) has been traditionally claimed as an anti-aging agent in Malaysia. Despite its well-known antioxidant activity, the anti-aging properties of CC was not validated. PURPOSE This study aimed to investigate the anti-aging potential of CC extracts and fractions, particularly their inhibition of collagenase, MMP-1 and MMP-3 activities in human dermal fibroblasts CCD-966SK, followed by isolation, identification and analysis of their bioactive constituents. STUDY DESIGN AND METHODS DPPH assay was firstly used to evaluate the antioxidant activity throughout the bioactivity-guided fractionation. Cell viability was determined using MTS assay. Collagenase activity was examined, while MMP-1 and MMP-3 expression were measured using qRT-PCR and western blotting. Then, chemical identification of pure compounds isolated from CC fractions was done by using ESIMS, 1H and 13C NMR spectroscopies. HPLC analyses were carried out for bioactive fractions to quantify the major components. RESULTS Throughout the antioxidant activity-guided fractionation, fractions CC-E2 and CC-E3 with antioxidant activity and no toxicity towards CCD-966SK cells were obtained from CC 75% ethanol partitioned layer (CC-E). Both fractions inhibited collagenase activity, MMP-1 and MMP-3 mRNA and protein expression, as well as NF-κB activation induced by TNF-α in CCD-966SK cells. 14 compounds, which mainly consists of flavonoids and their glycosides, were isolated. Quercitrin (14.79% w/w) and quercetin (11.20% w/w) were major compounds in CC-E2 and CC-E3, respectively, as quantified by HPLC. Interestingly, both fractions also inhibited the MMP-3 protein expression synergistically, compared with treatment alone. CONCLUSION The quantified CC fractions rich in flavonoid glycosides exhibited skin anti-aging effects via the inhibition of collagenase, MMP-1 and MMP-3 activities, probably through NF-κB pathway. This is the first study reported on MMP-1 and MMP-3 inhibitory activity of CC with its chemical profile, which revealed its potential to be developed as anti-aging products in the future.
Collapse
Affiliation(s)
- Yen Chi Loo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 404, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Ying-Jung Chen
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Fragrance and Cosmetic Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
5
|
Latiff NA, Ong PY, Abd Rashid SNA, Abdullah LC, Mohd Amin NA, Fauzi NAM. Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Sci Rep 2021; 11:17297. [PMID: 34453075 PMCID: PMC8397774 DOI: 10.1038/s41598-021-96623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cosmos caudatus (C. caudatus) is a medicinal plant that is high in bioactive compounds such as phenolics. In this study, an ultrasound extraction method was used to optimise the extraction of bioactive compounds from C. caudatus leaves. Response surface methodology (RSM) based on a Box-Behnken design (BBD) was applied to obtain the optimum extraction parameters which is solid–liquid ratio (10–30 g/mL), particle size (180–850 µm) and extraction time (20–30 min) for maximal quercitrin and total phenolic content (TPC) yields. Analysis of antimicrobial activity was performed against two human pathogenic microbes: Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by the agar well diffusion method. The optimal ultrasonic extraction condition was as follow: solvent-liquid ratio of 1:28 (g/mL), particle size of 485 µm, and duration of 30 min, respectively. Remarkably, extraction using ultrasonic method had recovered more bioactive content and antioxidant activity than the Soxhlet method. The extract also exhibited good antimicrobial activities. Due to the above findings, the ultrasonic extraction was found to be suitable to improve recovery extraction of quercitrin and TPC from C. caudatus leaves. It also opens the possibility that the plant extract can be used for functional food and antimicrobial agents in various applications.
Collapse
Affiliation(s)
- Norliza Abdul Latiff
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600, Muar, Johor, Malaysia.
| | - Pei Ying Ong
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600, Muar, Johor, Malaysia
| | | | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nor Amaiza Mohd Amin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, 84600, Muar, Johor, Malaysia
| |
Collapse
|
6
|
Zamram QAZM, Mohsin HF, Mohamad MM, Nor Hazalin NAM, Hamid KA. Physical characterisation and stability study of formulated Chromolaena odorata gel. Curr Drug Deliv 2021; 19:479-490. [PMID: 33874872 DOI: 10.2174/1567201818666210419114809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
AIM Formulating topical products for skin delivery has always been a challenge for pharmaceutical scientists to fulfil good formulation criteria. Despite the challenges, gel-based drug delivery offers some advantages such that it is non-invasive, painless, avoidance of the first-pass metabolism and has satisfactory patient compliance. OBJECTIVES In this study, Chromolaena odorata gel and quercetin gel (bioactive flavonoid compound) were successfully formulated and compared with placebo and conventional wound aid gel. The chromatographic profilling was conducted to screen the presence of phytoconstituents. Subsequently, all formulated gels were subjected to physical characteristic and stability study. METHODS Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) of C.odorata methanolic leaves extract shows a distinct compound separation at retention time 8.4min to 34.8 min at 254nm. All gels were characterised by evaluating their rheological properties including storage modulus, loss modulus and plastic viscosity. Besides, texture analysis was performed to measure the gels' firmness, consistency, cohesiveness, and viscosity index. RESULTS From the observation, C. odorata gel demonstrated better spreadability as compared to the other gels, which acquired less work and favourable to be applied onto the skin. Moreover, C. odorata gel showed no changes in organoleptic properties and proven to be stable after 30 days of accelerated stability study at 40°C ± 2°C with relative humidity (RH) of 75%± 5%. CONCLUSION C. odorata gel has shown to be stable, reflecting the combination of materials used in the formulation, which did not degrade throughout the study. This work suggests the potential of this gel as a vehicle to deliver the active ingredients of C. odorata to the skin, which can be further explored as a topical application in antimicrobial wound management or other skin diseases study.
Collapse
Affiliation(s)
- Qurratul Ain Zakirah Mohd Zamram
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Hannis Fadzillah Mohsin
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Mashani Mohamad Mohamad
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| |
Collapse
|
7
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|