1
|
Hou B, Wang D, Yan F, Cheng X, Xu Y, Xi X, Ge W, Sun S, Su P, Zhao L, Lyu Z, Hao Y, Wang H, Kong L. Fhb7-GST catalyzed glutathionylation effectively detoxifies the trichothecene family. Food Chem 2024; 439:138057. [PMID: 38100874 DOI: 10.1016/j.foodchem.2023.138057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Trichothecene (TCN) contamination in food and feed is a serious challenge due to the negative health and economic impacts. Here, we confirmed that the glutathione S-transferase (GST) Fhb7-GST could broadly catalyze type A, type B and type D TCNs into glutathione epoxide adducts (TCN-13-GSHs). To evaluate the toxicity of TCN-13-GSH adducts, we performed cell proliferation assays in vitro, which demonstrated decreased cytotoxicity of the adducts. Moreover, in vivo assays (repeated-dose treatment in mice) confirmed that TCN-13-GSH adducts were dramatically less toxic than the corresponding TCNs. To establish whether TCN-13-GSH was metabolized back to free toxin during digestion, single-dose metabolic tests were performed in rats; DON-13-GSH was not hydrolyzed in vivo, but rather was quickly metabolized to another low-toxicity compound, DON-13-N-acetylcysteine. These results demonstrate the promise of Fhb7-GST as a candidate of detoxification enzyme potentially applied in TCN-contaminated agricultural samples, minimizing the detrimental effects of the mycotoxin.
Collapse
Affiliation(s)
- Bingqian Hou
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Dawei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fangfang Yan
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xinxin Cheng
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongchang Xu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xuepeng Xi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenyang Ge
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, PR China
| | - Silong Sun
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Lanfei Zhao
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Zhongfan Lyu
- Shool of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yongchao Hao
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|
2
|
Urinary and Serum Concentration of Deoxynivalenol (DON) and DON Metabolites as an Indicator of DON Contamination in Swine Diets. Toxins (Basel) 2023; 15:toxins15020120. [PMID: 36828434 PMCID: PMC9967145 DOI: 10.3390/toxins15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pig health is impaired and growth performance is reduced when exposed to deoxynivalenol (DON). The measurement of DON in individual feedstuffs and complete swine diets is variable because of the inconsistent distribution of mycotoxins in feed and the difficulties in obtaining representative samples. We investigated whether measuring DON and its metabolites in biological samples could be used as a predictor of DON ingestion by pigs. Blood samples were collected between 3 and 4 h after the morning meal and urine samples were quantitatively collected over a 24 h period on d 40 and 82 of the study to evaluate serum and urinary content of DON and DON metabolites (iso-deoxynivalenol, DON-3-glucuronide, DON-15-glcurunide, deepoxy-deoxynivalenol, iso-deepoxy-deoxynivalenol, deepoxy-deoxynivalenol-3-glucuronide, and deepoxy-deoxynivalenol-15-glucuronide). The intake of DON was positively correlated with urinary DON output. Similarly, there was an increase in serum DON level with increasing DON intake. Overall, it was found that DON intake correlated with DON concentration in urine and blood serum when samples were collected under controlled conditions. Analyzing DON levels in urine and blood serum could be used to predict a pig's DON intake.
Collapse
|
3
|
Abstract
This perspective examines four of the primary challenges that the mycotoxin deoxynivalenol (DON) presents to farmers, producers, and consumers. DON is one of the big five agriculturally important mycotoxins, resulting from Fusarium infection on grains, such as maize, barley, and wheat. In many countries, such as Canada, DON is the mycotoxin of principal concern because it can lead to major economic losses and stresses on food and feed security. The challenges discussed here include (1) understanding the different toxin profiles of Fusarium graminearum chemotypes/genotypes and the fate of these toxins upon interaction with the host crop, (2) the need for rapid analytical tests to measure DON and any masked or modified toxins in food and feed products, (3) DON exposure assessments in human populations to ensure health and safety, and (4) how contaminated food and feed products can be managed throughout the supply chain system. Despite decades of research, we are continuously learning new knowledge about DON and how best to manage it; however, there is still much work to be done. DON poses a very complex challenge that is being further exacerbated by climate change, evolving fungal populations, and the increased need for global food security.
Collapse
Affiliation(s)
- Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
4
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells. Toxins (Basel) 2021; 13:toxins13030189. [PMID: 33806705 PMCID: PMC7998855 DOI: 10.3390/toxins13030189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
The human intestine is regularly exposed to ingested food contaminants, such as fungal and bacterial toxins, which have been described to co-occur in a mixed diet. Thus, it is of utmost importance to understand possible interactions between contaminants of different origin. Hence, we investigated the single and combined effects of one of the most abundant mycotoxins, deoxynivalenol (DON; 0.1 to 10 µg/mL), and the bacterial toxin cereulide (CER; 1 to 100 ng/mL) on differentiated human Caco-2 (C2BBe1) cells cultured in a transwell system. We tested the capacity of the two toxins to alter the intestinal integrity and further investigated the uptake of both compounds and the formation of selected DON metabolites. CER alone (10 and 100 ng/mL) and in combination with DON (10 ng/mL CER with 1 µg/mL DON) was found to alter the barrier function by increasing the transepithelial electrical resistance and the expression of the tight junction protein claudin-4. For the first time, DON-3-sulfate was identified as a metabolite of human intestinal cells in vitro. Moreover, co-incubation of CER and DON led to an altered ratio between DON and DON-3-sulfate. Hence, we conclude that co-exposure to CER and DON may alter the intestinal barrier function and biotransformation of intestinal cells.
Collapse
|
6
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
7
|
Collins SL, Walsh JP, Renaud JB, McMillan A, Rulisa S, Miller JD, Reid G, Sumarah MW. Improved methods for biomarker analysis of the big five mycotoxins enables reliable exposure characterization in a population of childbearing age women in Rwanda. Food Chem Toxicol 2020; 147:111854. [PMID: 33197547 DOI: 10.1016/j.fct.2020.111854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023]
Abstract
Of the five agriculturally important mycotoxins, AFB1, FB1, DON, ZEA and OTA, a well-characterized biomarker of exposure in blood is only available for aflatoxin. Working with a population of 139 women of childbearing age in Rwanda, we undertook a comprehensive assessment of their dietary mycotoxin exposure. Using high-resolution LC-MS/MS with stable isotope dilution analysis, the albumin-aflatoxin adduct was quantitated in plasma. Similarly, AFM1, AFB1, AFG1, FB1 and B2, OTA, zearalenone, α-zearalenol, deoxynivalenol, deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were quantitated in urine. AFB1-Lys was detected in plasma from 81% of the women, indicative of exposures 1-2 orders of magnitude above current guidance. Zearalenone and/or α-zearalenol were detected in the urine of 61% of the women, the majority of whom had estimated exposures 2-5 times the PMTDI, with one third more than an order of magnitude above. Urinary deoxynivalenol or the two glucuronide conjugates were found in 77% of the participants. Of these, 60% were below the PMTDI, 28% were twice and 12% were >10x the PMTDI. Fumonisin B1 (30%) and ochratoxin A (71%) were also detected in urine. Exposures observed in these Rwandan women raise serious food safety concerns and highlight the need for authorities to help manage multiple mycotoxins in their diet.
Collapse
Affiliation(s)
- Stephanie L Collins
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada; Departments of Microbiology and Immunology and Surgery, University of Western Ontario, London, ON, Canada
| | - Jacob P Walsh
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada; Department of Chemistry, University of Western Ontario, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Amy McMillan
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada; Departments of Microbiology and Immunology and Surgery, University of Western Ontario, London, ON, Canada
| | - Stephen Rulisa
- University of Rwanda, and University Teaching Hospital of Kigali, Kigali, Rwanda
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada; Departments of Microbiology and Immunology and Surgery, University of Western Ontario, London, ON, Canada
| | - Mark W Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada; Department of Chemistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Flasch M, Bueschl C, Woelflingseder L, Schwartz-Zimmermann HE, Adam G, Schuhmacher R, Marko D, Warth B. Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chem Biol 2020; 15:970-981. [PMID: 32167285 PMCID: PMC7171601 DOI: 10.1021/acschembio.9b01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Xenobiotics are ubiquitous in the environment and modified
in the human body by phase I and II metabolism. Liquid chromatography
coupled to high resolution mass spectrometry is a powerful tool to
investigate these biotransformation products. We present a workflow
based on stable isotope-assisted metabolomics and the bioinformatics
tool MetExtract II for deciphering xenobiotic metabolites produced
by human cells. Its potential was demonstrated by the investigation
of the metabolism of deoxynivalenol (DON), an abundant food contaminant,
in a liver carcinoma cell line (HepG2) and a model for colon carcinoma
(HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate
2, and DON-10-glutathione as well as DON-cysteine. Conjugation with
amino acids and an antibiotic was confirmed for the first time. The
approach allows the untargeted elucidation of human xenobiotic products
in tissue culture. It may be applied to other fields of research including
drug metabolism, personalized medicine, exposome research, and systems
biology to better understand the relevance of in vitro experiments.
Collapse
Affiliation(s)
- Mira Flasch
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
9
|
Jurisic N, Schwartz-Zimmermann H, Kunz-Vekiru E, Reisinger N, Klein S, Caldwell D, Fruhmann P, Schatzmayr D, Berthiller F. Deoxynivalenol-3-sulphate is the major metabolite of dietary deoxynivalenol in eggs of laying hens. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies reported very low carry-over of dietary deoxynivalenol (DON) into eggs of laying hens. However, recent studies showed that DON is extensively metabolised to DON-3-sulphate (DON-3S) in chickens. We therefore hypothesised that DON-3S might also be a major DON metabolite in eggs of laying hens fed with DON contaminated diet. The aim of the work was to develop, validate and apply an LC-MS/MS based method for determination of DON, deepoxy-DON (DOM), DON-3S, and DOM-3-sulphate (DOM-3S) in freeze-dried eggs of laying hens. Laying hens were allocated to three treatment groups (negative control (NC); DON low (3.8 mg/kg DON in feed); DON high (7.5 mg/kg DON in feed)) and eggs were collected in the 5th, 7th and 10th week of the trial. DON-3S was identified as the major DON metabolite in eggs for the first time with average concentrations in fresh eggs <0.74 ng/g in the NC, 4.4-6.4 ng/g in the DON low group and 7.9-9.7 ng/g in the DON high group. DON-3S was also the major DON metabolite in chicken plasma, with average concentrations of 6.8±4.1 and 10±7 ng/ml in the DON low and DON high group, respectively. Experiments with intestinal explants indicated that DON-3S is in part already formed in intestinal mucosa cells. Considering the carry-over factor of 0.001, the European guidance value of DON in poultry feed (5 mg/kg), the tolerable daily intake of DON (1 μg/kg body weight and day) and the average egg consumption in Europe (0.5 egg/day/person), there is no significant health risk due to carry-over of DON or DON-3S into eggs, even if the per se non-toxic metabolite DON-3S might be hydrolysed back to free DON in the gut of the egg consumer.
Collapse
Affiliation(s)
- N. Jurisic
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - H.E. Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - E. Kunz-Vekiru
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - N. Reisinger
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - S. Klein
- Poultry Science Department, Texas AgriLife Research, Texas A&M System, College Station, 77843-2472 TX, USA
| | - D. Caldwell
- Poultry Science Department, Texas AgriLife Research, Texas A&M System, College Station, 77843-2472 TX, USA
| | - P. Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
- Center for Electrochemical Surface Technology, Viktor Kaplan-Straβe 2, 2700 Wr. Neustadt, Austria
| | - D. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - F. Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| |
Collapse
|
10
|
Weber J, Svatunek D, Krauter S, Tegl G, Hametner C, Kosma P, Mikula H. 2-O-Benzyloxycarbonyl protected glycosyl donors: a revival of carbonate-mediated anchimeric assistance for diastereoselective glycosylation. Chem Commun (Camb) 2019; 55:12543-12546. [DOI: 10.1039/c9cc07194f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Benzyloxycarbonyl can be used as participating group for the diastereoselective glycosylation of base-labile products and the synthesis of glycosyl esters.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Simon Krauter
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
- Division of Organic Chemistry
| | - Gregor Tegl
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
- Division of Organic Chemistry
| | | | - Paul Kosma
- Division of Organic Chemistry
- University of Natural Resources and Life Sciences
- Vienna (BOKU)
- Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| |
Collapse
|
11
|
Valgaeren B, Théron L, Croubels S, Devreese M, De Baere S, Van Pamel E, Daeseleire E, De Boevre M, De Saeger S, Vidal A, Di Mavungu JD, Fruhmann P, Adam G, Callebaut A, Bayrou C, Frisée V, Rao AS, Knapp E, Sartelet A, Pardon B, Deprez P, Antonissen G. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Arch Toxicol 2018; 93:293-310. [PMID: 30535711 DOI: 10.1007/s00204-018-2368-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
A clinical case in Belgium demonstrated that feeding a feed concentrate containing considerable levels of deoxynivalenol (DON, 1.13 mg/kg feed) induced severe liver failure in 2- to 3-month-old beef calves. Symptoms disappeared by replacing the highly contaminated corn and by stimulating ruminal development via roughage administration. A multi-mycotoxin contamination was demonstrated in feed samples collected at 15 different veal farms in Belgium. DON was most prevalent, contaminating 80% of the roughage samples (mixed straw and maize silage; average concentration in positives: 637 ± 621 µg/kg, max. 1818 µg/kg), and all feed concentrate samples (411 ± 156 µg/kg, max. 693 µg/kg). In order to evaluate the impact of roughage provision and its associated ruminal development on the gastro-intestinal absorption and biodegradation of DON and its acetylated derivatives (3- and 15-ADON) in calves, a toxicokinetic study was performed with two ruminating and two non-ruminating male calves. Animals received in succession a bolus of DON (120 µg/kg bodyweight (BW)), 15-ADON (50 µg/kg BW), and 3-ADON (25 µg/kg) by intravenous (IV) injection or per os (PO) in a cross-over design. The absolute oral bioavailability of DON was much higher in non-ruminating calves (50.7 ± 33.0%) compared to ruminating calves (4.1 ± 4.5%). Immediately following exposure, 3- and 15-ADON were hydrolysed to DON in ruminating calves. DON and its acetylated metabolites were mainly metabolized to DON-3-glucuronide, however, also small amounts of DON-15-glucuronide were detected in urine. DON degradation to deepoxy-DON (DOM-1) was only observed to a relevant extent in ruminating calves. Consequently, toxicity of DON in calves is closely related to roughage provision and the associated stage of ruminal development.
Collapse
Affiliation(s)
- Bonnie Valgaeren
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Faculty of Science and Technology, University College Ghent, Melle, Belgium
| | - Léonard Théron
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit-Food Safety, Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit-Food Safety, Melle, Belgium
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Alfons Callebaut
- Veterinary and Agrochemical Research Centre, CODA-CERVA, Tervuren, Belgium
| | - Calixte Bayrou
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Vincent Frisée
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anne-Sophie Rao
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Emilie Knapp
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Piet Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. .,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
12
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
13
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
14
|
Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Arch Toxicol 2017. [PMID: 28638985 PMCID: PMC5719127 DOI: 10.1007/s00204-017-2012-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC–MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of the currently used methods for DON-biomarker analysis.
Collapse
|
15
|
Wang X, Wang Y, Wang Y, Sun L, Gooneratne R. Preparation of T-2-glucoronide with Rat Hepatic Microsomes and Its Use along with T-2 for Activation of the JAK/STAT Signaling Pathway in RAW264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4811-4818. [PMID: 28556663 DOI: 10.1021/acs.jafc.7b01250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-2 toxin (T-2), one of the most toxic trichothecene A-type mycotoxins, is biotransformed in animal tissues to modified T-2s (mT-2s) including T-2-glucuronide (T-2-GlcA). In this study, the optimal conditions for T-2-GlcA synthesis were established, and the JAK/STAT pathway in RAW264.7 cells was used to study the toxicity of T-2-GlcA. Because many mT-2 standards are not readily available, optimal conditions for T-2-GlcA synthesis in vitro were established by incubating T-2 with rat liver microsomes, UDPGA, and 0.2% Triton X-100 for 90 min. qRT-PCR and Western blot results showed 21- and 760-fold increases in IL-6 mRNA expression induced by T-2-GlcA and T-2, respectively. Similar differences were observed in JAK3, SOCS2/3, and CIS mRNA expression. T-2-GlcA induced a dose-responsive decrease in STAT1 mRNA expression, whereas the result with T-2 was the opposite. Moreover, the phosphorylation of STAT3 induced by T-2-GlcA was higher than that by T-2, whereas the phosphorylation of STAT1 was to the contrary. Overall, the results show that T-2-GlcA was somewhat toxic, but activation of the JAK/STAT pathway in RAW264.7 was higher by T-2.
Collapse
Affiliation(s)
- Xing Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yapei Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University , P.O. Box 85084, Lincoln 7647, New Zealand
| |
Collapse
|
16
|
Vidal A, Cano-Sancho G, Marín S, Ramos A, Sanchis V. Multidetection of urinary ochratoxin A, deoxynivalenol and its metabolites: pilot time-course study and risk assessment in Catalonia, Spain. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of two main mycotoxins, ochratoxin A (OTA) and deoxynivalenol (DON), is widespread in cereal-based foodstuffs marketed in Europe. The objectives of this study were to develop and validate a multi-detection analytical methodology to simultaneously assess the urinary concentrations of OTA, DON and their metabolites, and to apply this methodology in a preliminary follow-up trial in Catalonia (Spain). Hence, an ultra-performance liquid chromatography with tandem mass spectrometry method was developed to simultaneously assess the urinary levels of OTA, DON, deoxynivalenol-3-glucoside (DON-3-glucoside), deoxynivalenol-3-glucuronide (DON-3-glucuronide), 3-acetyldeoxynivalenol (3-ADON) and de-epoxy-deoxynivalenol (DOM-1). Urine mycotoxins levels and food dietary intake were prospectively monitored in a group of volunteers throughout a restriction period followed by a free-diet period. The proposed multi-detection methodology for urinary OTA and DON metabolites was validated, providing suitable recovery, linearity and precision. The results from the pilot trial showed that urinary OTA, DON and its metabolites were detected in most background samples, displaying moderate reductions after the restriction period and subsequently recovering the background levels. Despite the restriction period, some DON metabolites, such as 3-ADON or DOM-1, were still found in urine samples, placing alternative sources of DON exposure other than the ones considered in the study under suspicion. DON and DON-3-glucuronide were significantly associated with consumption of bread, pasta and pastries, while OTA was only associated with consumption of wine and breakfast cereals. The urinary levels of OTA were significantly correlated with plasmatic levels of OTA and ochratoxin α, supporting the results from the multidetection method in urine. The results also showed that the high exposure to DON could be held throughout the time by the same person, exceeding the tolerable daily intake systematically instead of eventually. The estimates of OTA exposure through urine are largely higher than those obtained with the dietary approach. The background levels found in urine revealed that the exposure to DON and OTA could be of concern for the Catalonian population, thus, further studies applying this biomonitoring methodology in a larger sample of Catalonian population are needed to accurately characterise the human health risks at population level.
Collapse
Affiliation(s)
- A. Vidal
- Food Technology Department, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - G. Cano-Sancho
- Department of Environmental Toxicology, University of California at Davis, One Shields Avenue, Davis, CA 95616-8627, USA
| | - S. Marín
- Department of Environmental Toxicology, University of California at Davis, One Shields Avenue, Davis, CA 95616-8627, USA
| | - A.J. Ramos
- Food Technology Department, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
17
|
Warth B, Del Favero G, Wiesenberger G, Puntscher H, Woelflingseder L, Fruhmann P, Sarkanj B, Krska R, Schuhmacher R, Adam G, Marko D. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Sci Rep 2016; 6:33854. [PMID: 27659167 PMCID: PMC5034337 DOI: 10.1038/srep33854] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.
Collapse
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria.,University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Gerlinde Wiesenberger
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Hannes Puntscher
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Lydia Woelflingseder
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Philipp Fruhmann
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria.,Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bojan Sarkanj
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.,Josip Juraj Strossmayer University, Department of Applied Chemistry and Ecology, Faculty of Food Technology, 31000 Osijek, Croatia
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| |
Collapse
|
18
|
Warth B, Braun D, Ezekiel CN, Turner PC, Degen GH, Marko D. Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chem Res Toxicol 2016; 29:1087-97. [DOI: 10.1021/acs.chemrestox.6b00125] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria
- Partnership
for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, Addis Ababa, Ethiopia
| | - Paul C. Turner
- Maryland
Institute for Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
19
|
Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res 2016; 32:69-75. [PMID: 26888520 DOI: 10.1007/s12550-016-0241-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Four diets contaminated with 1.1 to 5.0 mg/kg deoxynivalenol (DON) and 0.4 to 2.4 mg/kg zearalenone (ZEA) were fed to four groups of six growing Large White pigs. Urine samples were collected after 3 to 4 days and again after 6 to 7 days on the diets. On each sampling day, half of the animals were sampled in the morning, after an 8-h fast, and the other half were sampled in the afternoon, after 7 h of ad libitum access to feed. The urinary concentrations of DON, DON-glucuronide, DON-3-sulphate, de-epoxy-DON, as well as of ZEA, ZEA-14-glucuronide, α-zearalenol and α-zearalenol-14-glucuronide, analysed using LC-MS/MS, were used to calculate urinary DON and ZEA equivalent concentrations (DONe and ZEAe). The urinary concentration of DONe (P < 0.001), but not of ZEAe (P = 0.31), was lower in the fasted than that in the fed animals. The urinary DONe/creatinine and ZEAe/creatinine ratios were highly correlated with DON and ZEA intake per kg body weight the day preceding sampling (r = 0.76 and 0.77; P < 0.001). The correlations between DON intake during the 7 h preceding urine sampling in the afternoon and urinary DONe/creatinine ratio (r = 0.88) as well as between mean ZEA intake during 3 days preceding urine sampling and urinary ZEAe/creatinine ratio (r = 0.84) were even higher, reflecting the plasma elimination half-time of several hours for DON and of more than 3 days for ZEA. ZEAe analysed in enzymatically hydrolysed urine using an ELISA kit was highly correlated with the LC-MS/MS data (r = 0.94). The urinary DONe and ZEAe to creatinine ratios, analysed in pooled urine samples of several pigs fed the same diet, can be used to estimate their exposure to DON and ZEA.
Collapse
|
20
|
Warth B, Petchkongkaew A, Sulyok M, Krska R. Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:2040-6. [DOI: 10.1080/19440049.2014.969329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Schwartz-Zimmermann HE, Hametner C, Nagl V, Slavik V, Moll WD, Berthiller F. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application. Anal Bioanal Chem 2014; 406:7911-24. [DOI: 10.1007/s00216-014-8252-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
22
|
Fruhmann P, Skrinjar P, Weber J, Mikula H, Warth B, Sulyok M, Krska R, Adam G, Rosenberg E, Hametner C, Fröhlich J. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron 2014; 70:5260-5266. [PMID: 25170180 PMCID: PMC4082130 DOI: 10.1016/j.tet.2014.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior to use. All protected intermediates and final products were characterized via NMR and will serve as reference materials for further investigations in the fields of toxicology and bioanalytics of mycotoxins.
Collapse
Affiliation(s)
- Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Philipp Skrinjar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Julia Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Benedikt Warth
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. of Applied Genetics and Cell Biology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| |
Collapse
|
23
|
Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig-Pauka I, Moll WD, Adam G, Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett 2014; 229:190-7. [PMID: 24968060 DOI: 10.1016/j.toxlet.2014.06.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
Plants can metabolize the Fusarium mycotoxin deoxynivalenol (DON) by forming the masked mycotoxin deoxynivalenol-3-β-D-glucoside (D3G). D3G might be cleaved during digestion, thus increasing the total DON burden of an individual. Due to a lack of in vivo data, D3G has not been included in the various regulatory limits established for DON so far. The aim of our study was to contribute to the risk assessment of D3G by determination of its metabolism in pigs. Four piglets received water, D3G (116 μg/kg b.w.) and the equimolar amount of DON (75 μg/kg b.w.) by gavage on day 1, 5 and 9 of the experiment, respectively. Additionally, 15.5 μg D3G/kg b.w. were administered intravenously on day 13. Urine and feces were collected for 24 h and analyzed for DON, D3G, deoxynivalenol-3-glucuronide (DON-3-GlcA), deoxynivalenol-15-GlcA (DON-15-GlcA) and deepoxy-deoxynivalenol (DOM-1) by UHPLC-MS/MS. After oral application of DON and D3G, in total 84.8±9.7% and 40.3±8.5% of the given dose were detected in urine, respectively. The majority of orally administered D3G was excreted in form of DON, DON-15-GlcA, DOM-1 and DON-3-GlcA, while urinary D3G accounted for only 2.6±1.4%. In feces, just trace amounts of metabolites were found. Intravenously administered D3G was almost exclusively excreted in unmetabolized form via urine. Data indicate that D3G is nearly completely hydrolyzed in the intestinal tract of pigs, while the toxin seems to be rather stable after systemic absorption. Compared to DON, the oral bioavailability of D3G and its metabolites seems to be reduced by a factor of up to 2, approximately.
Collapse
Affiliation(s)
- Veronika Nagl
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, Tulln 3430, Austria
| | - Bettina Woechtl
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, Tulln 3430, Austria
| | - Isabel Hennig-Pauka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | | | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, Tulln 3430, Austria.
| |
Collapse
|
24
|
In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Arch Toxicol 2014; 89:949-60. [DOI: 10.1007/s00204-014-1286-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
25
|
Ezekiel CN, Warth B, Ogara IM, Abia WA, Ezekiel VC, Atehnkeng J, Sulyok M, Turner PC, Tayo GO, Krska R, Bandyopadhyay R. Mycotoxin exposure in rural residents in northern Nigeria: a pilot study using multi-urinary biomarkers. ENVIRONMENT INTERNATIONAL 2014; 66:138-145. [PMID: 24583186 DOI: 10.1016/j.envint.2014.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
A pilot, cross-sectional, correlational study was conducted in eight rural communities in northern Nigeria to investigate mycotoxin exposures in 120 volunteers (19 children, 20 adolescents and 81 adults) using a modern LC-MS/MS based multi-biomarker approach. First morning urine samples were analyzed and urinary biomarker levels correlated with mycotoxin levels in foods consumed the day before urine collection. A total of eight analytes were detected in 61/120 (50.8%) of studied urine samples, with ochratoxin A, aflatoxin M1 and fumonisin B1 being the most frequently occurring biomarkers of exposure. These mycotoxin biomarkers were present in samples from all age categories, suggestive of chronic (lifetime) exposures. Rough estimates of mycotoxin intake suggested some exposures were higher than the tolerable daily intake. Overall, rural consumer populations from Nasarawa were more exposed to several mixtures of mycotoxins in their diets relative to those from Kaduna as shown by food and urine biomarker data. This study has shown that mycotoxin co-exposure may be a major public health challenge in rural Nigeria; this calls for urgent intervention.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria; Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria.
| | - Benedikt Warth
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Isaac M Ogara
- Faculty of Agriculture, Nasarawa State University Keffi, Lafia Campus, Nasarawa State, Nigeria
| | - Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, University of Yaounde I, Yaounde, Cameroon; Department of Food Technology, Faculty of Science, University of Johannesburg, South Africa
| | | | - Joseph Atehnkeng
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Grace O Tayo
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Ranajit Bandyopadhyay
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| |
Collapse
|
26
|
Abia WA, Warth B, Sulyok M, Krska R, Tchana A, Njobeh PB, Turner PC, Kouanfack C, Eyongetah M, Dutton M, Moundipa PF. Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 2013; 62:927-34. [PMID: 24128729 DOI: 10.1016/j.fct.2013.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022]
Abstract
Bio-monitoring of human exposure to mycotoxin has mostly been limited to a few individually measured mycotoxin biomarkers. This study aimed to determine the frequency and level of exposure to multiple mycotoxins in human urine from Cameroonian adults. 175 Urine samples (83% from HIV-positive individuals) and food frequency questionnaire responses were collected from consenting Cameroonians, and analyzed for 15 mycotoxins and relevant metabolites using LC-ESI-MS/MS. In total, eleven analytes were detected individually or in combinations in 110/175 (63%) samples including the biomarkers aflatoxin M1, fumonisin B1, ochratoxin A and total deoxynivalenol. Additionally, important mycotoxins and metabolites thereof, such as fumonisin B2, nivalenol and zearalenone, were determined, some for the first time in urine following dietary exposures. Multi-mycotoxin contamination was common with one HIV-positive individual exposed to five mycotoxins, a severe case of co-exposure that has never been reported in adults before. For the first time in Africa or elsewhere, this study quantified eleven mycotoxin biomarkers and bio-measures in urine from adults. For several mycotoxins estimates indicate that the tolerable daily intake is being exceeded in this study population. Given that many mycotoxins adversely affect the immune system, future studies will examine whether combinations of mycotoxins negatively impact Cameroonian population particularly immune-suppressed individuals.
Collapse
Affiliation(s)
- Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon; Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria; Department of Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028 Gauteng, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dänicke S, Brezina U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem Toxicol 2013; 60:58-75. [DOI: 10.1016/j.fct.2013.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
28
|
Sarkanj B, Warth B, Uhlig S, Abia WA, Sulyok M, Klapec T, Krska R, Banjari I. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 2013; 62:231-7. [PMID: 23994093 DOI: 10.1016/j.fct.2013.08.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.).
Collapse
Affiliation(s)
- Bojan Sarkanj
- Subdepartment of Biochemistry and Toxicology, Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University, Osijek, Croatia; Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Warth B, Sulyok M, Krska R. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Anal Bioanal Chem 2013; 405:5687-95. [PMID: 23774829 PMCID: PMC3695324 DOI: 10.1007/s00216-013-7011-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
Abstract
Mycotoxins are toxic fungal secondary metabolites that frequently contaminate food and feed worldwide, and hence represent a major hazard for food and feed safety. To estimate human exposure arising from contaminated food, so-called biomarker approaches have been developed as a complementary biomonitoring tool besides traditional food analysis. The first methods based on radioimmunoassays and enzyme-linked immunosorbent assays as well as on liquid chromatography were developed in the late 1980s and early 1990s for the carcinogenic aflatoxins and in the last two decades further tailor-made methods for some major mycotoxins have been published. Since 2010, there has been a clear trend towards the development and application of multianalyte methods based on liquid chromatography–electrospray ionization tandem mass spectrometry for assessment of mycotoxin exposure made possible by the increased sensitivity and selectivity of modern mass spectrometry instrumentation and sophisticated sample cleanup approaches. With use of these advanced methods, traces of mycotoxins and relevant breakdown and conjugation products can be quantified simultaneously in human urine as so-called biomarkers and can be used to precisely describe the real exposure, toxicokinetics, and bioavailability of the toxins present. In this article, a short overview and comparison of published multibiomarker methods focusing on the determination of mycotoxins and relevant excretion products in human urine is presented. Special attention is paid to the main challenges when analyzing these toxic food contaminants in urine, i.e., very low analyte concentrations, appropriate sample preparation, matrix effects, and a lack of authentic, NMR-confirmed calibrants and reference materials. Finally, the progress in human exposure assessment studies facilitated by these analytical methods is described and an outlook on probable developments and possibilities is presented. Mycotoxin exposure assessment: traditional food analysis compared to the innovative, complementary biomarker approach ![]()
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
30
|
Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 2013; 220:88-94. [PMID: 23623764 DOI: 10.1016/j.toxlet.2013.04.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022]
Abstract
This study reports on the detailed investigation of human deoxynivalenol (DON) and zearalenone (ZEN) in vivo metabolism through the analysis of urine samples obtained from one volunteer following a naturally contaminated diet containing 138μg DON and 10μg ZEN over a period of four days. Based on the mycotoxin intake and the concentrations of mycotoxin conjugates in urine, a mass balance was established. The average rates of DON excretion and glucuronidation were determined to be 68 and 76%, respectively. The investigation of formed glucuronides revealed DON-15-glucuronide as main conjugation product besides DON-3-glucuronide. Furthermore, for the first time in human urine a third DON-glucuronide was detected and the fate of ingested masked DON forms (3-acetyl-DON and DON-3-glucoside) was preliminary assessed. The mean excretion rate of ZEN was determined to be 9.4%. ZEN was mainly present in its glucuronide form and in some samples ZEN-14-glucuronide was directly determined 3-10h after exposure. For the first time concrete figures have become available for the excretion pattern of DON and ZEN-glucuronides throughout a day, the comparison of total DON in 24h and first morning urine samples and the urinary excretion rate of total ZEN in humans following exposure through naturally contaminated food. Therefore, valuable preliminary information has been obtained through the chosen experimental approach although the study involved only one single individual and needs to be confirmed in larger monitoring studies. The presented experiment contributes to a better understanding of human DON and ZEN in vivo metabolism and thereby supports advanced exposure and risk assessment to increase food safety and examine the relationship between these mycotoxins and potentially associated chronic diseases in the future.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | |
Collapse
|
31
|
Uhlig S, Ivanova L, Fæste CK. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2006-2012. [PMID: 23374009 DOI: 10.1021/jf304655d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
4-Deoxynivalenol is one of the most prevalent mycotoxins in grain-based food and feed products worldwide. Conjugation of deoxynivalenol to glucuronic acid and elimination via the urine appears to be the major metabolism pathway, although with differing efficiency in different species. In order to make pure deoxynivalenol glucuronides for analytical methodologies available we intended to enzymatically synthesize glucuronides of deoxynivalenol using rat and human liver microsomes supplemented with uridine 5'-diphosphoglucuronic acid and alamethicin as detergent. Three glucuronides were isolated and purified using solid-phase extraction of microsomal incubations and subsequent semipreparative hydrophilic interaction chromatography. NMR spectra were obtained for all three compounds from solutions in methanol, showing that deoxynivalenol 3-O-β-D-glucuronide and deoxynivalenol 15-O-β-D-glucuronide were the major products from incubations of deoxynivalenol with rat and human liver microsomes, respectively. The NMR spectra of a third glucuronide showed replacement of the C-8 carbonyl by a ketal carbon. This glucuronide was finally identified as deoxynivalenol 8-O-β-D-glucuronide. The present study provides unequivocal structural evidence for three glucuronides of deoxynivalenol formed by liver enzymes.
Collapse
|
32
|
Maul R, Warth B, Kant JS, Schebb NH, Krska R, Koch M, Sulyok M. Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chem Res Toxicol 2012; 25:2715-7. [DOI: 10.1021/tx300348x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronald Maul
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Benedikt Warth
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Jill-Sandra Kant
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Nils Helge Schebb
- Institute of Food Toxicology and
Chemical Analysis, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Rudolf Krska
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Matthias Koch
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Michael Sulyok
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| |
Collapse
|
33
|
Nagl V, Schwartz H, Krska R, Moll WD, Knasmüller S, Ritzmann M, Adam G, Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol Lett 2012; 213:367-73. [PMID: 22884771 PMCID: PMC3448059 DOI: 10.1016/j.toxlet.2012.07.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 01/04/2023]
Abstract
Deoxynivalenol-3-β-D-glucoside (D3G), a plant metabolite of the Fusarium mycotoxin deoxynivalenol (DON), might be hydrolyzed in the digestive tract of mammals, thus contributing to the total dietary DON exposure of individuals. Yet, D3G has not been considered in regulatory limits set for DON for foodstuffs due to the lack of in vivo data. The aim of our study was to evaluate whether D3G is reactivated in vivo by investigation of its metabolism in rats. Six Sprague-Dawley rats received water, DON (2.0 mg/kg body weight (b.w.)) and the equimolar amount of D3G (3.1 mg/kg b.w.) by gavage on day 1, 8 and 15, respectively. Urine and feces were collected for 48 h and analyzed for D3G, DON, deoxynivalenol-glucuronide (DON-GlcA) and de-epoxy deoxynivalenol (DOM-1) by a validated LC-tandem mass spectrometry (MS/MS) based biomarker method. After administration of D3G, only 3.7±0.7% of the given dose were found in urine in the form of analyzed analytes, compared to 14.9±5.0% after administration of DON, and only 0.3±0.1% were detected in the form of urinary D3G. The majority of administered D3G was recovered as DON and DOM-1 in feces. These results suggest that D3G is little bioavailable, hydrolyzed to DON during digestion, and partially converted to DOM-1 and DON-GlcA prior to excretion. Our data indicate that D3G is of considerably lower toxicological relevance than DON, at least in rats.
Collapse
Key Words
- d3g, deoxynivalenol-3-β-d-glucoside
- don, deoxynivalenol
- jecfa, joint fao/who expert committee on food additives
- dom-1, de-epoxy deoxynivalenol
- don-glca, deoxynivalenol-glucuronide
- dom-1-glca, dom-1-glucuronide
- b.w., body weight
- spe, solid phase extraction
- meoh, methanol
- acn, acetonitrile
- hplc, high performance liquid chromatography
- ms, mass spectrometry
- ms/ms, tandem mass spectrometry
- srm, selected reaction monitoring
- dp, declustering potential
- ce, collision energy
- ra, apparent recovery
- sse, signal suppression/enhancement
- re, recovery of the extraction step
- lod, limit of detection
- loq, limit of quantification
- z14g, zearalenone-14-β-d-glucoside
- deoxynivalenol
- conjugated mycotoxins
- adme
- urine
- feces
- rodent
Collapse
Affiliation(s)
- Veronika Nagl
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Heidi Schwartz
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Rudolf Krska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Mathias Ritzmann
- Clinic for Swine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleißheim, Germany
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
34
|
Abstract
In 1990, Gareis et al. referred to a zearalenone-glycoside as a ‘masked mycotoxin’ to emphasise the fact that this mycotoxin conjugate was not detected by routine analysis of food or feed, but probably contributed to the total mycotoxin content and subsequent effects. Indeed, pigs fed with mixed feed, artificially contaminated with synthesised zearalenone-4-ß-D-glucopyranoside, excreted zearalenone (ZEA) and α-zearalenol in their faeces and urine, demonstrating release of the aglucone during digestion. Earlier, in 1988, Engelhardt et al. demonstrated that wheat and maize cell cultures were able to transform ZEA to the ß-D-glucopyranoside-conjugate as part of their plant metabolism. It is generally known that plants can reduce the toxicity of phytotoxic compounds by chemical modification. This plant detoxification process includes the conjugation of mycotoxins to polar substances such as sugars, amino acids and sulphate, and subsequent storage of the conjugates in cell vacuoles. In 2002, Schneweis et al. described the natural occurrence of zearalenone-4-glucoside in wheat, while in 2005, Berthiller et al. published the first report on the natural occurrence of deoxynivalenol-3-glucoside (DON-3G) in maize and wheat samples. Since then, research on masked mycotoxins has grown exponentially. Besides plant metabolism, food technological processes also have an impact on the masking mechanism, specifically in cereal-based products in the case of fumonisins (Humpf and Voss, 2004; Dall’Asta et al., 2008) and deoxynivalenol (DON) (Lancova et al., 2008).
Collapse
|
35
|
Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicol Lett 2012; 211:85-90. [DOI: 10.1016/j.toxlet.2012.02.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/18/2022]
|