1
|
Comprehensive review of liquid chromatography methods for fumonisin determination, a 2006-2022 update. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
2
|
Neckermann K, Antonissen G, Doupovec B, Schatzmayr D, Gathumbi J, Delcenserie V, Uhlig S, Croubels S. Efficacy of Fumonisin Esterase in Piglets as Animal Model for Fumonisin Detoxification in Humans: Pilot Study Comparing Intraoral to Intragastric Administration. Toxins (Basel) 2022; 14:toxins14020136. [PMID: 35202163 PMCID: PMC8874667 DOI: 10.3390/toxins14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Fumonisins, a group of highly prevalent and toxic mycotoxins, are suspected to be causal agents of several diseases in animals and humans. In the animal feed industry, fumonisin esterase is used as feed additive to prevent mycotoxicosis caused by fumonisins. In humans, a popular dosage form for dietary supplements, with high patient acceptance for oral intake, is capsule ingestion. Thus, fumonisin esterase provided in a capsule could be an effective strategy against fumonisin intoxication in humans. To determine the efficacy of fumonisin esterase through capsule ingestion, two modes of application were compared using piglets in a small-scale preliminary study. The enzyme was administered intraorally (in-feed analogue) or intragastrically (capsule analogue), in combination with fumonisin B1 (FB1). Biomarkers for FB1 exposure; namely FB1, hydrolysed FB1 (HFB1) and partially hydrolysed forms (pHFB1a and pHFB1b), were measured both in serum and faeces using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and toxicokinetic parameters were calculated. Additionally, the serum sphinganine/sphingosine (Sa/So) ratio, a biomarker of effect, was determined using LC-MS/MS. A significantly higher Sa/So ratio was shown in the placebo group compared to both esterase treatments, demonstrating the efficacy of the esterase. Moreover, a significant decrease in serum FB1 area under the concentration-time curve (AUC) and an increase of faecal HFB1 AUC were observed after intraoral esterase administration. However, these effects were not observed with statistical significance after intragastric esterase administration with the current sample size.
Collapse
Affiliation(s)
- Kaat Neckermann
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.N.); (G.A.)
- Department of Food Sciences and Fundamental and Applied Research for Animal Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium;
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.N.); (G.A.)
| | - Barbara Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.D.); (D.S.)
| | - Dian Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.D.); (D.S.)
| | - James Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya;
| | - Véronique Delcenserie
- Department of Food Sciences and Fundamental and Applied Research for Animal Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium;
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway;
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.N.); (G.A.)
- Correspondence:
| |
Collapse
|
3
|
Logrieco A, Battilani P, Leggieri MC, Jiang Y, Haesaert G, Lanubile A, Mahuku G, Mesterházy A, Ortega-Beltran A, Pasti M, Smeu I, Torres A, Xu J, Munkvold G. Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. PLANT DISEASE 2021; 105:525-537. [PMID: 32915118 DOI: 10.1094/pdis-06-20-1322-fe] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU-funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxin impacts in key food and feed chains. MycoKey included several working groups comprising international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For preharvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For postharvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines.
Collapse
Affiliation(s)
- Antonio Logrieco
- National Council of Research, Institute of Sciences of Food Production, Bari, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Yu Jiang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Geert Haesaert
- Faculty Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | | | - Marco Pasti
- Italian Corn Growers' Association, Eraclea, Italy
| | - Irina Smeu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, Romania
| | - Adriana Torres
- Microbiology and Immunology Department, IMICO-Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - Jing Xu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Gary Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA
| |
Collapse
|
4
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
5
|
De Ruyck K, Huybrechts I, Yang S, Arcella D, Claeys L, Abbeddou S, De Keyzer W, De Vries J, Ocke M, Ruprich J, De Boevre M, De Saeger S. Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling. ENVIRONMENT INTERNATIONAL 2020; 137:105539. [PMID: 32035364 DOI: 10.1016/j.envint.2020.105539] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The European Food Consumption Validation (EFCOVAL) project includes 600 men and women from Belgium, the Czech Republic, France, the Netherlands, and Norway, who had given serum and 24-hour urine samples, and completed 24-hour dietary recall (24-HDR) interviews. Consumption, according to 24-HDR, was matched against the European Food Safety Authority (EFSA) databases of mycotoxin contaminations, via the FoodEx1 standard classifications, producing an indirect external estimate of dietary mycotoxin exposure. Direct, internal measurements of dietary mycotoxin exposure were made in serum and urine by ultra-performance liquid chromatography coupled to tandem mass spectrometry. For the first time, mycotoxin exposures were thoroughly compared between two 24-HDRs, and two 24-hour urine samples collected during the same days covered by the 24-HDRs. These measurements were compared to a single-time point serum measurement to investigate evidence of chronic mycotoxin exposure. According to 24-HDR data, all 600 individuals were exposed to between 4 and 34 mycotoxins, whereof 10 found to exceed the tolerable daily intake. Correlations were observed between two time points, and significant correlations were observed between concentrations in serum and urine. However, only acetyldeoxynivalenol, ochratoxin A, and sterigmatocystin were found to have significant positive correlations between 24-HDR exposures and serum, while aflatoxin G1 and G2, HT-2 toxin, and deoxynivalenol were associated between concurrent 24-HDR and 24-hour urine. Substantial agreements on quantitative levels between serum and urine were observed for the groups Type B Trichothecenes and Zearalenone. Further research is required to bridge the interpretation of external and internal exposure estimates of the individual on a time scale of hours. Additionally, metabolomic profiling of dietary mycotoxin exposures could help with a comprehensive assessment of single time-point exposures, but also with the identification of chronic exposure biomarkers. Such detailed characterization informs population exposure assessments, and aids in the interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.
Collapse
Affiliation(s)
- Karl De Ruyck
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), Nutritional Epidemiology Group, Lyon, France
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Liesel Claeys
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Souheila Abbeddou
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Willem De Keyzer
- Department of Nutrition and Dietetics, University College Ghent, Ghent, Belgium
| | - Jeanne De Vries
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Marga Ocke
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jiri Ruprich
- National Institute of Public Health, Department for Health, Nutrition and Food, Brno, Czech Republic
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Alberts J, Rheeder J, Gelderblom W, Shephard G, Burger HM. Rural Subsistence Maize Farming in South Africa: Risk Assessment and Intervention models for Reduction of Exposure to Fumonisin Mycotoxins. Toxins (Basel) 2019; 11:toxins11060334. [PMID: 31212811 PMCID: PMC6628387 DOI: 10.3390/toxins11060334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022] Open
Abstract
Maize is a staple crop in rural subsistence regions of southern Africa, is mainly produced for direct household consumption and is often contaminated with high levels of mycotoxins. Chronic exposure to mycotoxins is a risk factor for human diseases as it is implicated in the development of cancer, neural tube defects as well as stunting in children. Although authorities may set maximum levels, these regulations are not effective in subsistence farming communities. As maize is consumed in large quantities, exposure to mycotoxins will surpass safe levels even where the contamination levels are below the regulated maximum levels. It is clear that the lowering of exposure in these communities requires an integrated approach. Detailed understanding of agricultural practices, mycotoxin occurrence, climate change/weather patterns, human exposure and risk are warranted to guide adequate intervention programmes. Risk communication and creating awareness in affected communities are also critical. A range of biologically based products for control of mycotoxigenic fungi and mycotoxins in maize have been developed and commercialised. Application of these methods is limited due to a lack of infrastructure and resources. Other challenges regarding integration and sustainability of technological and community-based mycotoxin reduction strategies include (i) food security, and (ii) the traditional use of mouldy maize.
Collapse
Affiliation(s)
- Johanna Alberts
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - John Rheeder
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Wentzel Gelderblom
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Gordon Shephard
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| |
Collapse
|
7
|
Systematic review of clinician awareness of mycotoxin impact in neural tube defects and best practices for pediatric neurosurgeons: implications for public health and policy. Childs Nerv Syst 2019; 35:637-644. [PMID: 30552445 DOI: 10.1007/s00381-018-4023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE In lower-income populations, high rates of neural tube defects (NTDs) are a concern. Nutritional folate deficiencies and mycotoxins in contaminated food supplies increase risk of NTDs. As physicians in public health and involved in the care of children with NTDs, pediatric neurosurgeons have an interest in the treatment and prevention of NTDs. We aimed to evaluate the literature to assess the awareness and the existence of best practices/educational materials on this issue to better guide management. METHODS A systematic review using the National Library of Medicine PubMed database was conducted to find articles related to mycotoxins in foods causing neural tube defects. Additional citation searches of key publications and personal collections were used. Two reviewers evaluated the resulting studies for subject area analysis. Best practice recommendations were drawn from articles selected for full-text review. RESULTS Seventy-three articles were identified. Most articles were found in "nutritional sciences" (18), "teratology" (14), and "toxicology" (13). No articles were found in neurosurgery. Thirty-two additional articles were identified through other sources to screen best practice recommendations. Of the 105 articles, 34 journal articles were included in best practice recommendation guidelines. Key recommendations included education of proper food storage, hygienic agricultural practices, decontamination techniques, diet diversification, folate supplementation, risk assessment, and food safety policy and public health initiatives. CONCLUSION There is an absence of neurosurgical literature-related mycotoxins and NTDs. We suggest a set of best practices/educational materials on this topic and advocate pediatric neurosurgery engagement in public health initiatives targeted towards populations most affected by mycotoxins.
Collapse
|
8
|
Braun D, Ezekiel CN, Abia WA, Wisgrill L, Degen GH, Turner PC, Marko D, Warth B. Monitoring Early Life Mycotoxin Exposures via LC-MS/MS Breast Milk Analysis. Anal Chem 2018; 90:14569-14577. [DOI: 10.1021/acs.analchem.8b04576] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Wilfred A. Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine Medical University of Vienna, 1090 Vienna, Austria
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Paul C. Turner
- MIAEH, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Chen C, Riley RT, Wu F. Dietary Fumonisin and Growth Impairment in Children and Animals: A Review. Compr Rev Food Sci Food Saf 2018; 17:1448-1464. [DOI: 10.1111/1541-4337.12392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
- Inst. of Quality Standards and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing 100081 China
| | - Ronald T. Riley
- Dept. of Environmental Health Science; Univ. of Georgia; Athens GA 30602 U.S.A
| | - Felicia Wu
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
| |
Collapse
|
10
|
Chen C, Mitchell NJ, Gratz J, Houpt ER, Gong Y, Egner PA, Groopman JD, Riley RT, Showker JL, Svensen E, Mduma ER, Patil CL, Wu F. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. ENVIRONMENT INTERNATIONAL 2018; 115:29-37. [PMID: 29544138 PMCID: PMC5989662 DOI: 10.1016/j.envint.2018.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 05/11/2023]
Abstract
Growth impairment is a major public health issue for children in Tanzania. The question remains as to whether dietary mycotoxins play a role in compromising children's growth. We examined children's exposures to dietary aflatoxin and fumonisin and potential impacts on growth in 114 children under 36 months of age in Haydom, Tanzania. Plasma samples collected from the children at 24 months of age (N = 60) were analyzed for aflatoxin B1-lysine (AFB1-lys) adducts, and urine samples collected between 24 and 36 months of age (N = 94) were analyzed for urinary fumonisin B1 (UFB1). Anthropometric, socioeconomic, and nutritional parameters were measured and growth parameter z-scores were calculated for each child. Seventy-two percent of the children had detectable levels of AFB1-lys, with a mean level of 5.1 (95% CI: 3.5, 6.6) pg/mg albumin; and 80% had detectable levels of UFB1, with a mean of 1.3 (95% CI: 0.8, 1.8) ng/ml. This cohort had a 75% stunting rate [height-for-age z-scores (HAZ) < -2] for children at 36 months. No associations were found between aflatoxin exposures and growth impairment as measured by stunting, underweight [weight-for-age z-scores (WAZ) < -2], or wasting [weight-for-height z-scores (WHZ) < -2]. However, fumonisin exposure was negatively associated with underweight (with non-detectable samples included, p = 0.0285; non-detectable samples excluded, p = 0.005) in this cohort of children. Relatively low aflatoxin exposure at 24 months was not linked with growth impairment, while fumonisin exposure at 24-36 months based on the UFB1 biomarkers may contribute to the high growth impairment rate among children of Haydom, Tanzania; which may be associated with their breast feeding and weaning practices.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Nicole J Mitchell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Uckele Health and Nutrition, Blissfield, MI, USA
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, UK
| | - Patricia A Egner
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ronald T Riley
- Toxicology and Mycotoxin Research Unit, National Poultry Disease Research Center, R.B. Russell Research Center, USDA-ARS, Athens, GA, USA
| | - Jency L Showker
- Toxicology and Mycotoxin Research Unit, National Poultry Disease Research Center, R.B. Russell Research Center, USDA-ARS, Athens, GA, USA
| | - Erling Svensen
- Haukeland University Hospital, Bergen, Norway; Haydom Lutheran Hospital, Manyara Region, Tanzania; University of Bergen, Norway
| | | | - Crystal L Patil
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, College of Nursing, Chicago, IL, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Knutsen HK, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Gutleb AC, Humpf HU, Galli C, Metzler M, Oswald IP, Parent-Massin D, Binaglia M, Steinkellner H, Alexander J. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J 2018; 16:e05172. [PMID: 32625807 PMCID: PMC7009576 DOI: 10.2903/j.efsa.2018.5172] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for fumonisin B1 (FB 1) of 1.0 μg/kg body weight (bw) per day based on increased incidence of megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the limited data available on toxicity and mode of action and structural similarities of FB 2-6 and found it appropriate to include FB 2, FB 3 and FB 4 in a group TDI with FB 1. Modified forms of FBs are phase I and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed FB 1-4 (HFB 1-4), partially hydrolysed FB 1-2 (pHFB 1-2), N-(carboxymethyl)-FB 1-3 (NCM-FB 1-3), N-(1-deoxy-d-fructos-1-yl)-FB 1 (NDF-FB 1), O-fatty acyl FB 1, N-fatty acyl FB 1 and N-palmitoyl-HFB 1. HFB 1, pHFB 1, NCM-FB 1 and NDF-FB 1 show a similar toxicological profile but are less potent than FB 1. Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB 1, no in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not appropriate to include modified FBs in the group TDI for FB 1-4. The uncertainty associated with the present assessment is high, but could be reduced provided more data are made available on occurrence, toxicokinetics and toxicity of FB 2-6 and modified forms of FB 1-4.
Collapse
|
12
|
Misihairabgwi JM, Ezekiel CN, Sulyok M, Shephard GS, Krska R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit Rev Food Sci Nutr 2017; 59:43-58. [PMID: 28799776 DOI: 10.1080/10408398.2017.1357003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major staple foods in Southern Africa are prone to mycotoxin contamination, posing health risks to consumers and consequent economic losses. Regional climatic zones favor the growth of one or more main mycotoxin producing fungi, Aspergillus, Fusarium and Penicillium. Aflatoxin contamination is mainly reported in maize, peanuts and their products, fumonisin contamination in maize and maize products and patulin in apple juice. Lack of awareness of occurrence and risks of mycotoxins, poor agricultural practices and undiversified diets predispose populations to dietary mycotoxin exposure. Due to a scarcity of reports in Southern Africa, reviews on mycotoxin contamination of foods in Africa have mainly focused on Central, Eastern and Western Africa. However, over the last decade, a substantial number of reports of dietary mycotoxins in South Africa have been documented, with fewer reports documented in Botswana, Lesotho, Malawi, Mozambique, Zambia and Zimbabwe. Despite the reported high dietary levels of mycotoxins, legislation for their control is absent in most countries in the region. This review presents an up-to-date documentation of the epidemiology of mycotoxins in agricultural food commodities and discusses the implications on public health, current and recommended mitigation strategies, legislation, and challenges of mycotoxin research in Southern Africa.
Collapse
Affiliation(s)
- J M Misihairabgwi
- a Department of Biochemistry and Microbiology, School of Medicine , University of Namibia , Windhoek, Namibia. P. Bag 13301, Windhoek , Namibia
| | - C N Ezekiel
- b Department of Microbiology , Babcock University, Ilishan Remo , Ogun State , Nigeria
| | - M Sulyok
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| | - G S Shephard
- d Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology , Cape Peninsula University of Technology , PO Box 1906, Bellville , South Africa
| | - R Krska
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| |
Collapse
|
13
|
Fromme H, Gareis M, Völkel W, Gottschalk C. Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings – An overview. Int J Hyg Environ Health 2016; 219:143-65. [DOI: 10.1016/j.ijheh.2015.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
|
14
|
Riley RT, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Showker JL, Mitchell T, Voss KA, Maddox JR, Gelineau-van Waes JB. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol Nutr Food Res 2015; 59:2209-24. [PMID: 26264677 DOI: 10.1002/mnfr.201500499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/12/2022]
Abstract
SCOPE Fumonisin (FB) occurs in maize and is an inhibitor of ceramide synthase (CerS). We determined the urinary FB1 (UFB1 ) and sphingoid base 1-phosphate levels in blood from women consuming maize in high and low FB exposure communities in Guatemala. METHODS AND RESULTS FB1 intake was estimated using the UFB1 . Sphinganine 1-phosphate (Sa 1-P), sphingosine 1-phosphate (So 1-P), and the Sa 1-P/So 1-P ratio were determined in blood spots collected on absorbent paper at the same time as urine collection. In the first study, blood spots and urine were collected every 3 months (March 2011 to February 2012) from women living in low (Chimaltenango and Escuintla) and high (Jutiapa) FB exposure communities (1240 total recruits). The UFB1 , Sa 1-P/So 1-P ratio, and Sa 1-P/mL in blood spots were significantly higher in the high FB1 intake community compared to the low FB1 intake communities. The results were confirmed in a follow-up study (February 2013) involving 299 women living in low (Sacatepéquez) and high (Santa Rosa and Chiquimula) FB exposure communities. CONCLUSIONS High levels of FB1 intake are correlated with changes in Sa 1-P and the Sa 1-P/So 1-P ratio in human blood in a manner consistent with FB1 inhibition of CerS.
Collapse
Affiliation(s)
- Ronald T Riley
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Olga Torres
- Laboratorio Diagnostico Molecular S.A, Guatemala City, Guatemala.,Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala
| | - Jorge Matute
- Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala
| | - Simon G Gregory
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Jency L Showker
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Trevor Mitchell
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Joyce R Maddox
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
15
|
Riley RT, Showker JL, Lee CM, Zipperer CE, Mitchell TR, Voss KA, Zitomer NC, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Maddox JR, Gardner N, Gelineau-Van Waes JB. A blood spot method for detecting fumonisin-induced changes in putative sphingolipid biomarkers in LM/Bc mice and humans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:934-49. [PMID: 25833119 DOI: 10.1080/19440049.2015.1027746] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fumonisins (FB) are mycotoxins found in maize. They are hypothesised risk factors for neural tube defects (NTDs) in humans living where maize is a dietary staple. In LM/Bc mice, FB1-treatment of pregnant dams induces NTDs and results in increased levels of sphingoid base 1-phosphates in blood and tissues. The increased level of sphingoid base 1-phosphates in blood is a putative biomarker for FB1 inhibition of ceramide synthase in humans. Collection of blood spots on paper from finger sticks is a relatively non-invasive way to obtain blood for biomarker analysis. The objective of this study was to develop and validate in an animal model, and ultimately in humans, a method to estimate the volume of blood collected as blood spots on absorbent paper so as to allow quantification of the molar concentration of sphingoid base 1-phosphates in blood. To accomplish this objective, blood was collected from unexposed male LM/Bc and FB1-exposed pregnant LM/Bc mice and humans and applied to two types of absorbent paper. The sphingoid base 1-phosphates, absorbance at 270 nm (A270), and total protein content (Bradford) were determined in the acetonitrile:water 5% formic acid extracts from the dried blood spots. The results show that in both mouse and human the A270, total protein, and blood volume were closely correlated and the volume of blood spotted was accurately estimated using only the A270 of the extracts. In mouse blood spots, as in tissues and embryos, the FB1-induced changes in sphingolipids were correlated with urinary FB1. The half-life of FB1 in the urine was short (<24 h) and the elevation in sphingoid base 1-phosphates in blood was also short, although more persistent than the urinary FB1.
Collapse
Affiliation(s)
- Ronald T Riley
- a Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, USDA - ARS , Athens , GA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen J, Jia Z, Song J, Yuan Y, Zhang L. Fumonisins in China: update on occurrence, epidemiology, exposure and regulation. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2015. [DOI: 10.3920/qas2012.0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J. Chen
- West China School of Public Health, Sichuan University, 16# Third Section, Renmin South Road, Chengdu, Sichuan 610041, China P.R
| | - Z. Jia
- West China School of Public Health, Sichuan University, 16# Third Section, Renmin South Road, Chengdu, Sichuan 610041, China P.R
| | - J. Song
- West China School of Public Health, Sichuan University, 16# Third Section, Renmin South Road, Chengdu, Sichuan 610041, China P.R
| | - Y. Yuan
- West China School of Public Health, Sichuan University, 16# Third Section, Renmin South Road, Chengdu, Sichuan 610041, China P.R
| | - L. Zhang
- West China School of Public Health, Sichuan University, 16# Third Section, Renmin South Road, Chengdu, Sichuan 610041, China P.R
| |
Collapse
|
17
|
Berthiller F, Brera C, Crews C, Iha M, Krsha R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2013-2014. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights developments in the determination of mycotoxins over a period between mid-2013 and mid-2014. It continues in the format of the previous articles of this series, emphasising on analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. The importance of proper sampling and sample preparation is briefly addressed in a dedicated section, while another chapter summarises new methods used to analyse botanicals and spices. As LC-MS/MS instruments are becoming more and more widespread in the determination of multiple classes of mycotoxins, another section is focusing on such newly developed multi-mycotoxin methods. While the wealth of published methods during the 12 month time span makes it impossible to cover every single one, this exhaustive review nevertheless aims to address and briefly discuss the most important developments and trends.
Collapse
Affiliation(s)
- F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Department of Veterinary Public Health and Food Safety — GMO and Mycotoxins Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Laboratório I de Ribeiro Preto, Instituto Adolfo Lutz, CEP 14085-410, Ribeiro Preto, SP, Brazil
| | - R. Krsha
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - J. Stroka
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, Raleigh, NC 27695-7625, USA
| |
Collapse
|
18
|
|
19
|
Torres O, Matute J, Gelineau-van Waes J, Maddox JR, Gregory SG, Ashley-Koch AE, Showker JL, Zitomer NC, Voss KA, Riley RT. Urinary fumonisin B1and estimated fumonisin intake in women from high- and low-exposure communities in Guatemala. Mol Nutr Food Res 2013; 58:973-83. [DOI: 10.1002/mnfr.201300481] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/27/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Olga Torres
- Centro de Investigaciones en Nutrición y Salud; Guatemala City Guatemala
| | - Jorge Matute
- Centro de Investigaciones en Nutrición y Salud; Guatemala City Guatemala
| | | | - Joyce R. Maddox
- Department of Pharmacology, School of Medicine; Creighton University; Omaha NE USA
| | - Simon G. Gregory
- Department of Medicine, Duke University Medical Center; Durham NC USA
| | | | - Jency L. Showker
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Nicholas C. Zitomer
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Kenneth A. Voss
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Ronald T. Riley
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| |
Collapse
|
20
|
Barug D, van Egmond H. Foreword. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.x002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|