1
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Nag A, Chowdhury RR. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease 2020; 31:308-315. [PMID: 32904842 PMCID: PMC7458978 DOI: 10.1007/s13337-020-00619-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Ebola and Dengue are the critical diseases caused by RNA viruses, especially in the tropical parts of the globe, including Asia and Africa, and no prominent therapeutic options are available so far. Here, an effort was made to evaluate the efficacy of black pepper (Piper nigrum L.) alkaloid Piperine as a potential drug through computational docking simulation. Eight structurally essential proteins of Dengue and Ebola virus were selected as in silico docking targets for Piperine. Absorption, Distribution, Metabolism, and Excretion profile showed that Piperine was safe and possessed significant drug-like properties. Molecular dynamic simulation and binding free energy calculation showed that Piperine could inhibit Methyltransferase (PDB id 1L9K) of Dengue and VP35 Interferon Inhibitory Domain (PDB id 3FKE) of Ebola virus in comparison with the commercial antiviral Ribavirin. Furthermore, statistical analysis based on multivariate and clustering approaches revealed that Piperine had more affinity towards viral proteins than that of Ribavirin.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | | |
Collapse
|
3
|
Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants (Basel) 2020; 9:antiox9060501. [PMID: 32521712 PMCID: PMC7346139 DOI: 10.3390/antiox9060501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022] Open
Abstract
Grafting is a widely utilized agronomical technique to improve yield, disease resistance, and quality of fruit and vegetables. This work aims to assess the effect of grafting and fruit ripening on the production, physico-chemical characteristics, and nutritional quality of fruit from Spanish local pepper landraces. Landraces "Cuerno," "Sueca," and "Valencia" were used as scions, and "NIBER®" as the rootstock. Two ripening stages of the fruits were sampled: green and red. Grafting improved the yield and marketable quality and did not negatively influence the physico-chemical and nutritional characteristics of the fruit. It was noteworthy that the bioactive compound contents and antioxidant capacity were more related to maturity stage and genotype, and red fruit had a higher antioxidant capacity than green fruit. However, in all the scions, grafting significantly enhanced lycopene content in both red and green fruit. Another important effect of grafting was the volatile compound composition evidenced by discriminant analyses, which was characterized for the first time in the fruit of these landraces. The rootstock and scion combination could be a way to improve not only the production, but also the fruit quality of peppers.
Collapse
|
4
|
Joshi DD, Changkija S, Sujata W, Somkuwar BG, Rana VS, Talukdar NC. Nutraceutical from Capsicum chinense fruits in shelf-stable herbal matrix. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Roche A, Ross E, Walsh N, O'Donnell K, Williams A, Klapp M, Fullard N, Edelstein S. Representative literature on the phytonutrients category: Phenolic acids. Crit Rev Food Sci Nutr 2017; 57:1089-1096. [PMID: 25831057 DOI: 10.1080/10408398.2013.865589] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Research concerning the benefits derived from dietary polyphenols, a significant class within the family of phytonutrients, has increased considerably in the last decade. Prior to the late 1990s, the nutritional spotlight focused on the antioxidant capabilities of carotenoids, vitamins, and minerals. More recently, however, research has emerged in strong support of the antioxidant capacity of polyphenols and their role in the prevention and/or treatment of certain cancers, diabetes, cardiovascular diseases, and inflammation. Polyphenols are categorized according to the nature of their carbon skeleton, ranging from basic phenolic molecules to highly complex compounds, such as flavonoids, the most common and widely studied of all phenolic compounds. The most prevalent phenolic acids include ellagic acid, gallic acid, tannic acid, and capsaicin.
Collapse
Affiliation(s)
- Andrea Roche
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Erika Ross
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Nicole Walsh
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Kierin O'Donnell
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Alyssa Williams
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Marjorie Klapp
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Nova Fullard
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| | - Sari Edelstein
- a Nutrition Department , Simmons College , Boston , Massachusetts , USA
| |
Collapse
|
6
|
Toledo-Martín EM, García-García MC, Font R, Moreno-Rojas JM, Gómez P, Salinas-Navarro M, Del Río-Celestino M. Application of visible/near-infrared reflectance spectroscopy for predicting internal and external quality in pepper. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3114-3125. [PMID: 26456941 DOI: 10.1002/jsfa.7488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The characterization of internal (°Brix, pH, malic acid, total phenolic compounds, ascorbic acid and total carotenoid content) and external (color, firmness and pericarp wall thickness) pepper quality is necessary to better understand its possible applications and increase consumer awareness of its benefits. The main aim of this work was to examine the feasibility of using visible/near-infrared reflectance spectroscopy (VIS-NIRS) to predict quality parameters in different pepper types. Commercially available spectrophotometers were evaluated for this purpose: a Polychromix Phazir spectrometer for intact raw pepper, and a scanning monochromator for freeze-dried pepper. RESULTS The RPD values (ratio of the standard deviation of the reference data to the standard error of prediction) obtained from the external validation exceeded a value of 3 for chlorophyll a and total carotenoid content; values ranging between 2.5 < RPD < 3 for total phenolic compounds; between 1.5 < RPD <2.5 for °Brix, pH, color parameters a* and h* and chlorophyll b; and RPD values below 1.5 for fruit firmness, pericarp wall thickness, color parameters C*, b* and L*, vitamin C and malic acid content. CONCLUSION The present work has led to the development of multi-type calibrations for pepper quality parameters in intact and freeze-dried peppers. The majority of NIRS equations obtained were suitable for screening purposes in pepper breeding programs. Components such as pigments (xanthophyll, carotenes and chlorophyll), glucides, lipids, cellulose and water were used by modified partial least-squares regression for modeling the predicting equations. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva María Toledo-Martín
- Department of Plant Breeding and Crop Biotechnology, Center IFAPA La Mojonera, Camino San Nicolás, 1, 04745, La Mojonera, Almería, Spain
| | - María Carmen García-García
- Department of Crop Production, Center IFAPA La Mojonera, Camino San Nicolás, 1, 04745, La Mojonera, Almería, Spain
| | - Rafael Font
- Department of Postharvest technology and the Agrifood Industry, Center IFAPA La Mojonera, Camino San Nicolás, 1, 04745, La Mojonera, Almería, Spain
| | - José Manuel Moreno-Rojas
- Department of Postharvest technology and the Agrifood Industry, Center IFAPA Alameda del Obispo, 14080, Córdoba, Spain
| | - Pedro Gómez
- Department of Plant Breeding and Crop Biotechnology, Center IFAPA La Mojonera, Camino San Nicolás, 1, 04745, La Mojonera, Almería, Spain
| | - María Salinas-Navarro
- Department of Applied Biology (Genetic), University of Almería, Edificio CITE II-B, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Mercedes Del Río-Celestino
- Department of Plant Breeding and Crop Biotechnology, Center IFAPA La Mojonera, Camino San Nicolás, 1, 04745, La Mojonera, Almería, Spain
| |
Collapse
|