1
|
Belda-Perez R, Cimini C, Valbonetti L, Orsini T, D'Elia A, Massari R, Di Carlo C, Paradiso A, Maqsood S, Scavizzi F, Raspa M, Bernabò N, Barboni B. Exploring swine oviduct anatomy through micro-computed tomography: a 3D modeling perspective. Front Vet Sci 2024; 11:1456524. [PMID: 39290503 PMCID: PMC11405376 DOI: 10.3389/fvets.2024.1456524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The oviduct plays a crucial role in the reproductive process, serving as the stage for fertilization and the early stages of embryonic development. When the environment of this organ has been mimicked, it has been shown to enhance in vitro embryo epigenetic reprogramming and to improve the yield of the system. This study explores the anatomical intricacies of two oviduct regions, the uterotubal junction (UTJ) and the ampullary-isthmic junction (AIJ) by using micro-computed tomography (MicroCT). In this study, we have characterized and 3D-reconstructed the oviduct structure, by measuring height and width of the oviduct's folds, along with the assessments of fractal dimension, lacunarity and shape factor. Results indicate distinct structural features in UTJ and AIJ, with UTJ displaying small, uniformly distributed folds and high lacunarity, while AIJ shows larger folds with lower lacunarity. Fractal dimension analysis reveals values for UTJ within 1.189-1.1779, while AIJ values range from 1.559-1.770, indicating differences in structural complexity between these regions. Additionally, blind sacs or crypts are observed, akin to those found in various species, suggesting potential roles in sperm sequestration or reservoir formation. These morphological differences align with functional variations and are essential for developing an accurate 3D model. In conclusion, this research provides information about the oviduct anatomy, leveraging MicroCT technology for detailed 3D reconstructions, which can significantly contribute to the understanding of geometric-morphological characteristics influencing functional traits, providing a foundation for a biomimetic oviduct-on-a-chip.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Carlo Di Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Paradiso
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Seerat Maqsood
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Maia L, Ladeia KT, Althoff BF, Marchetto A, Meneghel D, Baldo GV. Partial Shoulder Arthroplasty Guided by Three-dimensional Prototyping. Rev Bras Ortop 2024; 59:e73-e77. [PMID: 39027171 PMCID: PMC11254443 DOI: 10.1055/s-0042-1749625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 10/17/2022] Open
Abstract
Three-dimensional (3D) printing technology is a reality in medicine. In Orthopedics and Traumatology, 3D printing guides a precise and tailored surgical treatment. Understanding and disseminating its applicability, use, and outcomes can foster academicism and improve patient care. This is a report of a rare case of a female young adult patient with osteonecrosis of the humeral head due to avascular necrosis developed in early childhood. The treatment was tailored and optimized with 3D printing, which helped determine the steps for partial humeral arthroplasty.
Collapse
Affiliation(s)
- Lucas Maia
- Divisão de Cirurgia de Ombro e Cotovelo, Pontifícia Universidade Católica de Campinas (PUC), Campinas, São Paulo, Brasil
| | - Kennedy Tavares Ladeia
- Divisão de Cirurgia de Ombro e Cotovelo, Pontifícia Universidade Católica de Campinas (PUC), Campinas, São Paulo, Brasil
| | - Bernardo Figueira Althoff
- Divisão de Cirurgia de Mão, Pontifícia Universidade Católica de Campinas (PUC), Campinas, São Paulo, Brasil
| | - Adriano Marchetto
- Divisão de Cirurgia de Ombro e Cotovelo, Instituto Wilson Mello, Campinas, São Paulo, Brasil
| | - Diego Meneghel
- Divisão de Cirurgia de Pé e Tornozelo, Escola Paulista de Medicina da Universidade Federal de São Paulo, São Paulo, Brasil
| | - Guilherme Valdir Baldo
- Divisão de Cirurgia de Ombro e Cotovelo, Centro Universitário para o Desenvolvimento do Alto Vale do Itajaí (UNIDAVI), Rio do Sul, Santa Catarina, Brasil
| |
Collapse
|
3
|
He H, Fan L, Lü G, Li X, Li Y, Zhang O, Chen Z, Yuan H, Pan C, Wang X, Kuang L. Myth or fact: 3D-printed off-the-shelf prosthesis is superior to titanium mesh cage in anterior cervical corpectomy and fusion? BMC Musculoskelet Disord 2024; 25:96. [PMID: 38279132 PMCID: PMC10811816 DOI: 10.1186/s12891-024-07213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND To find out if three-dimensional printing (3DP) off-the-shelf (OTS) prosthesis is superior to titanium mesh cages in anterior cervical corpectomy and fusion (ACCF) when treating single-segment degenerative cervical spondylotic myelopathy (DCSM). METHODS DCSM patients underwent ACCF from January 2016 to January 2019 in a single center were included. Patients were divided into the 3DP group (28) and the TMC group (23). The hospital stays, operation time, intraoperative blood loss, and the cost of hospitalization were compared. The Japanese Orthopedic Association (JOA) scores and Neck Disability Index (NDI) were recorded pre-operatively, 1 day, 3, 6, 12, and 24 months post-operatively. Radiological data was measured to evaluate fusion, subsidence, and cervical lordosis. Patients were sent with SF-36 to assess their health-related quality of life (HRQoL). RESULTS The differences in operative time, intraoperative blood loss, and hospital stay were not statistically significant between groups (p > 0.05). Postoperative dysphagia occurred in 2 cases in the 3DP group and 3 cases in the TMC group, which all relieved one week later. The difference in improvement of JOA and NDI between the two groups was not statistically significant (p > 0.05). No hardware failure was found and bony fusion was achieved in all cases except one in the 3DP group. The difference in cervical lordosis (CL), fused segmental angle (FSA), mean vertebral height (MVH), and subsidence rates between groups at each follow-up time point was not statistically significant and the results of the SF-36 were similar (p > 0.05). The total cost was higher in the 3DP group with its higher graft cost (p < 0.05). CONCLUSION In treating single-segment DCSM with ACCF, both 3DP OTS prosthesis and TMC achieved satisfactory outcomes. However, the more costly 3DP OTS prosthesis was not able to reduce subsidence as it claimed.
Collapse
Affiliation(s)
- Haoyu He
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lei Fan
- Department of Spinal Surgery, Third Hospital of Changsha, Changsha, Hunan Province, China
| | - Guohua Lü
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xinyi Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ou Zhang
- Department of Medical Education, California University of Science and Medicine, Colton, CA, USA
| | - Zejun Chen
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Hui Yuan
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Changyu Pan
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xiaoxiao Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Cheng KY, Gupta P, Kanniyappan H, Zahurullah H, Sun Y, Alhamad M, Mathew MT. Survivability of Titanium Implant Materials: In Vitro Simulated Inflammatory and Infectious Environment. Ann Biomed Eng 2023; 51:2749-2761. [PMID: 37530907 PMCID: PMC10834857 DOI: 10.1007/s10439-023-03330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Titanium-based implants utilized in total joint arthroplasties could restore primary musculoskeletal function to patients suffering from osteoarthritis and other conditions. Implants are susceptible to failure stemming from aseptic loosening and infection at the joint site, eventually requiring revision surgery. We hypothesized that there might be a feedback loop by which metal degradation particles and ions released from the implant decrease cell viability and increase immune response, thereby creating biochemical conditions that increase the corrosion rate and release more metal ions. This study focused on the synergistic process through cell viability assays and electrochemical tests. From the results, inflammatory conditions from ion release resulting in cell death would further increase the corrosion rate at the metal implant site. The synergistic interaction in the implant surroundings in which infectious conditions produce Ti ions that contribute to more infection, creating a potential cycle of accelerating corrosion.
Collapse
Affiliation(s)
- Kai Yuan Cheng
- Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA
| | - Puranjay Gupta
- Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA
| | - Hemalatha Kanniyappan
- Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA
| | - Hamza Zahurullah
- Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA
| | - Yani Sun
- Department of Biomedical Engineering, College of Engineering, University of Illinois , Chicago, IL, USA
| | - Mostafa Alhamad
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Ad Dammām, Saudi Arabia
| | - Mathew T Mathew
- Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA.
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, College of Engineering, University of Illinois , Chicago, IL, USA.
| |
Collapse
|
5
|
Ranaldo D, Zonta F, Florian S, Lazzaro J. A facile, semi-automatic protocol for the design and production of 3D printed, anatomical customized orthopedic casts for forearm fractures. J Clin Orthop Trauma 2023; 42:102206. [PMID: 37529548 PMCID: PMC10388574 DOI: 10.1016/j.jcot.2023.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 06/24/2023] [Indexed: 08/03/2023] Open
Abstract
Closed fractures of distal radius and ulna are one of the most common skeletal injuries, occurring at all ages. Temporary arm immobilization through cast is part of the standard treatments. However, traditional casting procedures are time consuming, operator's skill dependent and do not always guarantee a satisfactory outcome. From a clinical perspective, casts are often considered uncomfortable and can be associated to skin lesions. To overcome these limitations, the recent growth of 3D technologies has enabled new standardized casting procedures: additive manufacturing (AM) is a technique that creates highly customized cast models from anatomical 3D data by using digitally controlled and operated material laying tools. Compared with conventional casts, those produced with AM technique could potentially reduce skin complications and satisfy both mechanical and clinical requirements of functionality, comfort, and aesthetics. The objective of this study is to describe the new practical methodology to produce a 3D printable cast for upper arm immobilization. The parametric modelling tool, employed to develop a semi-automatic design system for generating the printable cast model, reduces the complex process of orthosis design to a few minutes and all the manufacturing operations remain unaffected by CAD skills of the operator. Specific hardware and software tools (3D scanner, modelling software and FDM technology) were chosen to mitigate design and production costs while guaranteeing suitable levels of data accuracy, process efficiency and design versatility. To highlight the effectiveness of the proposed solution, a finite element analysis simulation was performed on models with different geometry, highlighting the mechanical strength of generated structures. The final result is a personalized 3D printed cast with a highly ventilated structure that is lightweight but still maintains a high level of strength and provides hygienic benefits, reducing the risk of cutaneous complications, potentially improving treatment efficacy and increasing patient satisfaction.
Collapse
|
6
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
7
|
Xu SSD, Yeh TT, Chen JE, Li YT. Significantly reducing the presurgical preparation time for anterior pelvic fracture surgery by faster creating patient-specific curved plates. J Orthop Surg Res 2023; 18:265. [PMID: 37005637 PMCID: PMC10067232 DOI: 10.1186/s13018-023-03749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND To shorten the preoperative preparation time, reconstruction plates were designed using the computed tomography (CT)-based three-dimensional (3D) medical imaging surgical planning software OOOPDS. In addition, 3D printing was used to generate curved plates for anterior pelvic fracture surgeries. METHODS This study analyzed two groups with the same 21 patients who underwent surgery for traumatic anterior pelvic ring fractures. In Group 1, the direct reconstruction plates were preoperatively contoured according to the anatomical 3D-printed pelvic model. In Group 2, the fixation plates were contoured according to the 3D printed plate templates, which were created based on the simulated plate templates by the OOOPDS software. The processing time, including the 3D printing time for the pelvic models in Group 1, the 3D printing time for the fixation plate templates in Group 2, and the pre-contouring time for the plates in both groups, was recorded. RESULTS The mean time of pre-contouring for the curved reconstruction plates in Group 2 was significantly less than in Group 1 (-55 min; P < 0.01). The mean time of 3D printing for the 3D plate template model in Group 2 was significantly less than that for the 3D pelvic model in Group 1 (-869 min; P < 0.01). Experimental results showed that the printing time for the plate pre-contouring and the 3D plate templates could be effectively reduced by approximately 93% and 90%, respectively. CONCLUSION This method can shorten the preoperative preparation time significantly.
Collapse
Grants
- Grant TSGH-NTUST-109-04 National Taiwan University of Science and Technology
- Grant TSGH-NTUST-109-04 National Taiwan University of Science and Technology
- Grants MOST 109-2221-E-011-074, MOST 110-2221-E-011-121, and MOST 111-2221-E-011-146-MY2. The Ministry of Science and Technology (MOST), Taiwan
- Grants TSGH-D-110105, TSGH-B-110008, MND-MAB-110-016, TSGH-NTUST-109-04, TSGH-A-109004, TSGH-B-109007, TSGH-C108-001, MAB-108-034, MND-MAB-C-11109-111035, and TSGH-C107-001. The Tri-Service General Hospital, Taiwan
- Grants TSGH-D-110105, TSGH-B-110008, MND-MAB-110-016, TSGH-NTUST-109-04, TSGH-A-109004, TSGH-B-109007, TSGH-C108-001, MAB-108-034, MND-MAB-C-11109-111035, and TSGH-C107-001. The Tri-Service General Hospital, Taiwan
Collapse
Affiliation(s)
- Sendren Sheng-Dong Xu
- Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da'an Dist., Taipei City, 106335, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da'an Dist., Taipei City, 106335, Taiwan
| | - Tsu-Te Yeh
- Department of Orthopedic Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chenggong Rd., Sec. 2, Neihu Dist., Taipei City, 114202, Taiwan.
- Medical 3D Printing Center, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chenggong Rd., Sec. 2, Neihu Dist., Taipei City, 114202, Taiwan.
| | - Jia-En Chen
- Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da'an Dist., Taipei City, 106335, Taiwan
- Medical 3D Printing Center, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chenggong Rd., Sec. 2, Neihu Dist., Taipei City, 114202, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, No. 325, Chenggong Rd., Sec. 2, Neihu Dist., Taipei City, 114202, Taiwan
| | - Yuan-Ta Li
- Department of Orthopedic Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chenggong Rd., Sec. 2, Neihu Dist., Taipei City, 114202, Taiwan
- Department of Surgery, Tri-Service General Hospital Penghu Branch, No. 90, Qianliao, Magong City, Penghu County, 880026, Taiwan
| |
Collapse
|
8
|
Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A, Zhang Q. 3D printing method for bone tissue engineering scaffold. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 17:None. [PMID: 36909661 PMCID: PMC9995276 DOI: 10.1016/j.medntd.2022.100205] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
3D printing technology is an emerging technology. It constructs solid bodies by stacking materials layer by layer, and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients. The field of life sciences has received a great deal of attention. However, different 3D printing technologies and materials have their advantages and disadvantages, and there are limitations in clinical application. In this paper, the technology, materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed, and the future development trends and challenges in this field are prospected.
Collapse
Affiliation(s)
- Qiliang Zhang
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jian Zhou
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Peixuan Zhi
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Leixin Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Ao Fang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| | - Qidong Zhang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Aman ZS, DePhillipo NN, Peebles LA, Familiari F, LaPrade RF, Dekker TJ. Improved Accuracy of Coronal Alignment Can Be Attained Using 3D-Printed Patient-Specific Instrumentation for Knee Osteotomies: A Systematic Review of Level III and IV Studies. Arthroscopy 2022; 38:2741-2758. [PMID: 35247513 DOI: 10.1016/j.arthro.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the accuracy and precision of postoperative coronal plane alignment using 3D-printed patient-specific instrumentation (PSI) in the setting of proximal tibial or distal femoral osteotomies. METHODS A systematic review evaluating the accuracy of 3D-printed PSI for coronal plane alignment correcting knee osteotomies was performed. The primary outcomes were accuracy of coronal plane limb alignment correction and number of correction outliers. Secondary variables were duration of surgery, number of intraoperative fluoroscopic images, complications, cost, and clinical outcomes (as applicable). RESULTS Ninety-three studies were identified, and 14 were included in the final analysis. Overall, mean postoperative deviation from target correction ranged from 0.3° to 1° for all studies using hip-knee angle measurements and 2.3% to 4.9% for all studies using weight-bearing line measurements. The incidence of correction outliers was assessed in 8 total studies and ranged from 0 to 25% (total n = 10 knees) of patients corrected with 3D-printed PSI. Osteotomies performed with 3D-printed cutting guides or wedges demonstrated significantly shorter operative times (P < .05) and fewer intraoperative fluoroscopic images (P < .05) than control groups in four case control studies. CONCLUSION Patients undergoing distal femoral osteotomy or proximal tibial osteotomy procedures with 3D-printed patient-specific cutting guides and wedges had highly accurate coronal plane alignment with a low rate of outliers. Patients treated with 3D printed PSI also demonstrated significantly shorter operative times and decreased intraoperative fluoroscopy when compared to conventional techniques. LEVEL OF EVIDENCE Level IV, systematic review of Level III-IV studies.
Collapse
Affiliation(s)
- Zachary S Aman
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | | | - Liam A Peebles
- Tulane University School of Medicine, New Orleans, Louisiana, U.S.A
| | - Filippo Familiari
- Department of Orthopaedics and Trauma Surgery, Magna Graecia University, Catanzaro, Italy
| | | | | |
Collapse
|
10
|
Yang X, Huang W, Zhan D, Ren D, Ji H, Liu Z, Wang Q, Zhang N, Zhang Z. Biodegradability and Cytocompatibility of 3D-Printed Mg-Ti Interpenetrating Phase Composites. Front Bioeng Biotechnol 2022; 10:891632. [PMID: 35837550 PMCID: PMC9274132 DOI: 10.3389/fbioe.2022.891632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic hybrid implants combining both titanium (Ti) and magnesium (Mg) have gained wide attraction nowadays. However, it still remains a huge challenge in the fabrication of Mg-Ti composites because of the different temperatures of Ti melting point and pure Mg volatilization point. In this study, we successfully fabricated a new Mg-Ti composite with bi-continuous interpenetrating phase architecture by infiltrating Mg melt into Ti scaffolds, which were prepared by 3D printing and subsequent acid treatment. We attempted to understand the 7-day degradation process of the Mg-Ti composite and examine the different Mg2+ concentration composite impacts on the MC3T3-E1 cells, including toxicity, morphology, apoptosis, and osteogenic activity. CCK-8 results indicated cytotoxicity and absence of the Mg-Ti composite during 7-day degradation. Moreover, the composite significantly improved the morphology, reduced the apoptosis rate, and enhanced the osteogenic activity of MC3T3-E1 cells. The favorable impacts might be attributed to the appropriate Mg2+ concentration of the extracts. The results on varying Mg2+ concentration tests indicated that Mg2+ showed no cell adverse effect under 10-mM concentration. The 8-mM group exhibited the best cell morphology, minimum apoptosis rate, and maximum osteogenic activity. This work may open a new perspective on the development and biomedical applications for Mg-Ti composites.
Collapse
Affiliation(s)
- Xixiang Yang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanyi Huang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Desong Zhan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dechun Ren
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Haibin Ji
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qiang Wang, ; Ning Zhang,
| | - Ning Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qiang Wang, ; Ning Zhang,
| | - Zhefeng Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
11
|
Manufacturing Polymer Model of Anatomical Structures with Increased Accuracy Using CAx and AM Systems for Planning Orthopedic Procedures. Polymers (Basel) 2022; 14:polym14112236. [PMID: 35683908 PMCID: PMC9182597 DOI: 10.3390/polym14112236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, medicine uses typical industrial structure techniques, including reverse engineering, data processing, 3D-CAD modeling, 3D printing, and coordinate measurement techniques. Taking this into account, one can notice the applications of procedures used in the aviation or automotive industries based on the structure of Industry 4.0 in the planning of operations and the production of medical models with high geometric accuracy. The procedure presented in the publication shortens the processing time of tomographic data and increases the reconstruction accuracy within the hip and knee joints. The procedure allows for the partial removal of metallic artifacts from the diagnostic image. Additionally, numerical models of anatomical structures, implants, and bone cement were developed in more detail by averaging the values of local segmentation thresholds. Before the model manufacturing process, additional tests of the PLA material were conducted in terms of its strength and thermal properties. Their goal was to select the appropriate type of PLA material for manufacturing models of anatomical structures. The numerical models were divided into parts before being manufactured using the Fused Filament Fabrication technique. The use of the modifier made it possible to change the density, type of filling, number of counters, and the type of supporting structure. These treatments allowed us to reduce costs and production time and increase the accuracy of the printout. The accuracy of the manufactured model geometry was verified using the MCA-II measuring arm with the MMDx100 laser head and surface roughness using a 3D Talyscan 150 profilometer. Using the procedure, a decrease in geometric deviations and amplitude parameters of the surface roughness were noticed. The models based on the presented approach allowed for detailed and meticulous treatment planning.
Collapse
|
12
|
Abstract
The 3D printing technology is a relatively new procedure with a high potential, especially in the field of shoulder surgery. The 3D printing procedures are increasingly being developed and also gaining new users. Principally, 3D printing procedures can be applied preoperatively in planning the surgical procedure, patient clarification and in teaching; however, the technology is increasing being used intraoperatively. In addition to intraoperative visualization of the models, 3D printing permits the use of individual and specific instruments and implants. This allows the precise transfer of the preoperative planning to the surgical procedure. Inaccuracies are mainly caused by soft tissues. The 3D printing can be beneficial in the fields of arthroplasty, shoulder instability as well as orthopedic trauma. The literature shows promising results in relation to duration of surgery, blood loss and clinical results of the procedure. On the other hand, it is still unclear which indications warrant the use of 3D printing. Other aspects that raise questions are the time of planning, the production time and the additional cost that the use of 3D printing entails. Nonetheless, 3D printing represents a meaningful enhancement of the portfolio of surgeons, which becomes highly beneficial and useful in complex situations. Furthermore, this procedure enables a certain amount of flexibility when reacting to certain circumstances.
Collapse
|
13
|
Jin JY, Zhang LY, Guo S, Tang K, Zeng L, Xiang R, Liang JY. Genetic analysis combined with 3D-printing assistant surgery in diagnosis and treatment for an X-linked hypophosphatemia patient. J Clin Lab Anal 2022; 36:e24243. [PMID: 35106857 PMCID: PMC8906030 DOI: 10.1002/jcla.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022] Open
Abstract
Background Hypophosphatemia is mainly characterized by hypophosphatemia and a low level of 1alpha,25‐Dihydroxyvitamin D2 (1,25‐(OH)2D2) and/or 1alpha,25‐Dihydroxyvitamin D3 (1,25‐(OH)2D3) in the blood. Previous studies have demonstrated that variants in PHEX and FGF23 are primarily responsible for this disease. Although patients with variants of these two genes share almost the same symptoms, they exhibit the different hereditary pattern, X‐link dominant and autosome dominant, respectively. Three‐dimensional (3D) printing is a method which can accurately reconstruct physical objects, and its applications in orthopedics can contribute to realizing a more accurate surgical performance and a better outcome. Methods An X‐linked hypophosphatemia (XLH) family was recruited, with four patients across three generations. We screened candidate genes and filtered a duplication variant in PHEX. Variant analysis and co‐segregation confirmation were then performed. Before the operation of our patient, a digital model of our patient's leg had been rebuilt upon the CT scan data, and a polylactic acid (PLA) model had been 3D‐printed. Results A novel duplication PHEX variant c.574dupG (p.A192GfsX20) was identified in a family with XLH. Its pathogenicity was confirmed by the co‐segregation assay and online bioinformatics database. The preoperative plan was made with the help of the PLA model. Then, arch osteotomy and transverse osteotomy were performed under the guidance of the previous simulation. The appearance of the surgical‐intervened leg was satisfactory. Conclusions This study identified a novel PHEX variant and showed that 3D printing tech is a very promising approach for corrective osteotomies.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shuai Guo
- School of Life Sciences, Central South University, Changsha, China
| | - Ke Tang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lei Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jie-Yu Liang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
14
|
Shen YW, Tsai YS, Hsu JT, Shie MY, Huang HL, Fuh LJ. Biomechanical Analyses of Porous Designs of 3D-Printed Titanium Implant for Mandibular Segmental Osteotomy Defects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:576. [PMID: 35057294 PMCID: PMC8779878 DOI: 10.3390/ma15020576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Clinically, a reconstruction plate can be used for the facial repair of patients with mandibular segmental defects, but it cannot restore their chewing function. The main purpose of this research is to design a new three-dimensionally (3D) printed porous titanium mandibular implant with both facial restoration and oral chewing function reconstruction. Its biomechanical properties were examined using both finite element analysis (FEA) and in vitro experiments. Cone beam computed tomography images of the mandible of a patient with oral cancer were selected as a reference to create 3D computational models of the bone and of the 3D-printed porous implant. The pores of the porous implant were circles or hexagons of 1 or 2 mm in size. A nonporous implant was fabricated as a control model. For the FEA, two chewing modes, namely right unilateral molar clench and right group function, were set as loading conditions. Regarding the boundary condition, the displacement of both condyles was fixed in all directions. For the in vitro experiments, an occlusal force (100 N) was applied to the abutment of the 3D-printed mandibular implants with and without porous designs as the loading condition. The porous mandibular implants withstood higher stress and strain than the nonporous mandibular implant, but all stress values were lower than the yield strength of Ti-6Al-4V (800 MPa). The strain value of the bone surrounding the mandibular implant was affected not only by the shape and size of the pores but also by the chewing mode. According to Frost's mechanostat theory of bone, higher bone strain under the porous implants might help maintain or improve bone quality and bone strength. The findings of this study serve as a biomechanical reference for the design of 3D-printed titanium mandibular implants and require confirmation through clinical investigations.
Collapse
Affiliation(s)
- Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
| | - Yuen-Shan Tsai
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
| | - Jui-Ting Hsu
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404, Taiwan
| | - Heng-Li Huang
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung 404, Taiwan; (Y.-W.S.); (Y.-S.T.); (J.-T.H.); (M.-Y.S.)
| |
Collapse
|
15
|
Keyu G, Shuaishuai L, Raj A, Shuofeng L, Shuai L, Yuan Z, Haitao Z, Junqi W. A 3D printing personalized percutaneous puncture guide access plate for percutaneous nephrolithotomy: a pilot study. BMC Urol 2021; 21:184. [PMID: 34952574 PMCID: PMC8705092 DOI: 10.1186/s12894-021-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE CT-Urography combined with 3D printing technology, digital design, construction of individualized PCNL puncture guides, and preliminary analyze their efficacy, safety puncture positioning for PCNL. METHODS Twenty-two patients with renal calculi were randomly selected at the affiliated Hospital of Xuzhou Medical University during 2017-2018. We randomly divided the patients into two groups: in 10 experimental groups, we used our 3D printing personalized percutaneous puncture guide access plate for PCNL, and in the control group, 12 patients with standard USG guide PCNL. The accuracy of puncture position, puncture time, and intraoperative blood loss was compared. RESULTS In the experimental group, 10 patients with 3D printing personalized percutaneous puncture guide access plate. The puncture needle was accessed through the guide plate and verified by the color Doppler. The single puncture, needle position, and depth success rate were 100.00% (10/10). The angles were consistent with the preoperative design. In the control group, 12 patients via USG guided PCNL success rate was 75.00% (9/12). The puncture time and amount of hemorrhage was (7.78 ± 0.94) min and (49.31 ± 6.43) mL, and (9.04 ± 1.09) min and (60.08 ± 12.18) mL, respectively. The above data of the two groups were statistically significant (P < 0.05). CONCLUSION 3D printing personalized percutaneous nephrolithotomy guide plate for PCNL can improve PCNL renal puncture channel positioning accuracy, shorten puncture time, reduce intraoperative blood loss, bleeding-related complications and provide a new method for PCNL renal puncture positioning, which is worthy of further clinical exploration.
Collapse
Affiliation(s)
- Gao Keyu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | | | - Ashok Raj
- Xuzhou Medical University, Xuzhou, 221000, China
| | - Li Shuofeng
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Liu Shuai
- Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Zhang Yuan
- Xuzhou Children's Hospital, Xuzhou, 221000, China
| | - Zhu Haitao
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Wang Junqi
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
16
|
Turek P, Pakla P, Budzik G, Lewandowski B, Przeszłowski Ł, Dziubek T, Wolski S, Frańczak J. Procedure Increasing the Accuracy of Modelling and the Manufacturing of Surgical Templates with the Use of 3D Printing Techniques, Applied in Planning the Procedures of Reconstruction of the Mandible. J Clin Med 2021; 10:jcm10235525. [PMID: 34884227 PMCID: PMC8658254 DOI: 10.3390/jcm10235525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The application of anatomical models and surgical templates in maxillofacial surgery allows, among other benefits, the increase of precision and the shortening of the operation time. Insufficiently precise anastomosis of the broken parts of the mandible may adversely affect the functioning of this organ. Applying the modern mechanical engineering methods, including computer-aided design methods (CAD), reverse engineering (RE), and rapid prototyping (RP), a procedure used to shorten the data processing time and increase the accuracy of modelling anatomical structures and the surgical templates with the use of 3D printing techniques was developed. The basis for developing and testing this procedure was the medical imaging data DICOM of patients treated at the Maxillofacial Surgery Clinic of the Fryderyk Chopin Provincial Clinical Hospital in Rzeszów. The patients were operated on because of malignant tumours of the floor of the oral cavity and the necrosis of the mandibular corpus, requiring an extensive resection of the soft tissues and resection of the mandible. Familiarity with and the implementation of the developed procedure allowed doctors to plan the operation precisely and prepare the surgical templates and tools in terms of the expected accuracy of the procedures. The models obtained based on this procedure shortened the operation time and increased the accuracy of performance, which accelerated the patient’s rehabilitation in the further course of events.
Collapse
Affiliation(s)
- Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.B.); (Ł.P.); (T.D.)
- Correspondence:
| | - Paweł Pakla
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszów, 35-055 Rzeszów, Poland; (P.P.); (B.L.); (J.F.)
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.B.); (Ł.P.); (T.D.)
| | - Bogumił Lewandowski
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszów, 35-055 Rzeszów, Poland; (P.P.); (B.L.); (J.F.)
- Collegium Medicum, University of Rzeszów, 35-315 Rzeszów, Poland
| | - Łukasz Przeszłowski
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.B.); (Ł.P.); (T.D.)
| | - Tomasz Dziubek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.B.); (Ł.P.); (T.D.)
| | - Sławomir Wolski
- Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, 35-959 Rzeszów, Poland;
| | - Jan Frańczak
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszów, 35-055 Rzeszów, Poland; (P.P.); (B.L.); (J.F.)
| |
Collapse
|
17
|
Korytkin AA, Orlinskaya NY, Novikova YS, Gerasimov SA, Davydenko DV, Kulakova KV, Tverdokhlebov SI, Bolbasov EN. Biocompatibility and Osseointegration of Calcium Phosphate-Coated and Non-Coated Titanium Implants with Various Porosities. Sovrem Tekhnologii Med 2021; 13:52-57. [PMID: 34513077 PMCID: PMC8353716 DOI: 10.17691/stm2021.13.2.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 11/14/2022] Open
Abstract
The aim of the investigation was to study the influence of pore size and the presence of a biologically active calcium phosphate coating in porous 3D printed titanium implants on the process of integration with the bone tissue. Materials and Methods Samples of cylindrical implants with three different pore diameters (100, 200, and 400 μm) were fabricated from titanium powder on the Arcam 3D printer (Sweden) using electron beam melting technology. A calcium phosphate coating with a thickness of 20±4 μm was applied to some of the products by microarc oxidation. Cytotoxicity of the implants was determined in vitro on human dermal fibroblast cultures. The samples were implanted in the femoral bones of 36 rabbits in vivo. The animals were divided into 6 groups according to the bone implant samples. The prepared samples and peri-implant tissues were studied on days 90 and 180 after implantation using scanning electron microscopy and histological methods. Results All samples under study were found to be non-toxic and well biocompatible with the bone tissue. There were revealed no differences between coated and non-coated implants of 100 and 200 μm pore diameters in terms of their histological structure, intensity of vascularization in the early stages, and bone formation in the later stages. Samples with pore diameters of 100 and 200 μm were easily removed from the bone tissue, the depth of bone growth into the pores of the implant was lower than in the samples with pore diameter of 400 μm (p<0.001). There were differences between coated and non-coated samples of 400 μm pore diameter, which was expressed in a more intensive osseointegration of samples with calcium phosphate coating (p<0.05). Conclusion The optimal surface characteristics of the material for repairing bone defects are a pore diameter of 400 μm and the presence of a calcium phosphate coating.
Collapse
Affiliation(s)
- A A Korytkin
- Director, Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation, 17 Frunze St., Novosibirsk, 630091, Russia
| | - N Yu Orlinskaya
- Professor, Head of Department of Pathological Anatomy with Tissue Conservation, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Chief Researcher, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - Ya S Novikova
- Junior Researcher, Scientific Research Department, Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation, 17 Frunze St., Novosibirsk, 630091, Russia
| | - S A Gerasimov
- Head of Adult Orthopedics Department, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D V Davydenko
- Researcher, Department of Pathological Anatomy with Tissue Conservation, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K V Kulakova
- Researcher, Department of Pathological Anatomy with Tissue Conservation, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S I Tverdokhlebov
- Acting Head of the Laboratory for Plasma Hybrid Systems, National Research Tomsk Polytechnic University, 30 Prospect Lenina, Tomsk, 634050, Russia
| | - E N Bolbasov
- Researcher, Laboratory for Plasma Hybrid Systems, National Research Tomsk Polytechnic University, 30 Prospect Lenina, Tomsk, 634050, Russia
| |
Collapse
|
18
|
Jiang M, Coles-Black J, Chen G, Alexander M, Chuen J, Hardidge A. 3D Printed Patient-Specific Complex Hip Arthroplasty Models Streamline the Preoperative Surgical Workflow: A Pilot Study. Front Surg 2021; 8:687379. [PMID: 34513912 PMCID: PMC8427196 DOI: 10.3389/fsurg.2021.687379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Surgical planning for complex total hip arthroplasty (THA) often presents a challenge. Definitive plans can be difficult to decide upon, requiring unnecessary equipment to be ordered and a long theatre list booked. We present a pilot study utilising patient-specific 3D printed models as a method of streamlining the pre-operative planning process. Methods: Complex patients presenting for THA were referred to the research team. Patient-specific 3D models were created from routine Computed Tomography (CT) imaging. Simulated surgery was performed to guide prosthesis selection, sizing and the surgical plan. Results: Seven patients were referred for this pilot study, presenting with complex conditions with atypical anatomy. Surgical plans provided by the 3D models were more detailed and accurate when compared to 2D CT and X ray imaging. Streamlined equipment selection was of great benefit, with augments avoided post simulation in three cases. The ability to tackle complex surgical problems outside of the operating theatre also flagged potential complications, while also providing teaching opportunities in a low risk environment. Conclusion: This study demonstrated that 3D printed models can improve the surgical plan and streamline operative logistics. Further studies investigating the optimal 3D printing material and workflow, along with cost-benefit analyses are required before this process is ready for routine use.
Collapse
Affiliation(s)
- Michael Jiang
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Jasamine Coles-Black
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Gordon Chen
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew Alexander
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Jason Chuen
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Andrew Hardidge
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
19
|
Lebowitz C, Massaglia J, Hoffman C, Lucenti L, Dheer S, Rivlin M, Beredjiklian PK. The Accuracy of 3D Printed Carpal Bones Generated from Cadaveric Specimens. THE ARCHIVES OF BONE AND JOINT SURGERY 2021; 9:432-438. [PMID: 34423093 DOI: 10.22038/abjs.2020.50236.2495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022]
Abstract
Background Computer assisted three-dimensional (3D) printing of anatomic models using advanced imaging has wide applications within orthopaedics. The purpose of this study is to evaluate the 3D printing accuracy of carpal bones. Methods Seven cadaveric wrists underwent CT scanning, after which select carpal bones (scaphoid, capitate, lunate, and trapezium) were dissected in toto. Dimensions including length, circumference, and volume were measured directly from the cadaver bones. The CT images were converted into 3D printable stereolithography (STL) files. The STL files were converted into solid prints using a commercially available 3D printer. The 3D printed models' dimensions were measured and compared to those of the cadaver bones. A paired t-test was performed to determine if a statistically significant difference existed between the mean measurements of the cadavers and 3D printed models. The intraclass correlation coefficients (ICC) between the two groups were calculated to measure the degree of agreement. Results On average, the length and circumference of the 3D printed models were within 2.3 mm and 2.2 mm, respectively, of the cadaveric bones. There was a larger discrepancy in the volume measured, which on average was within 0.65 cc (15.9%) of the cadaveric bones. These differences were not statistically significant (P > 0.05). There was strong agreement between all measurements except the capitate's length and lunate's volume. Conclusion 3D printing can add value to patient care and improve outcomes. This study demonstrates that 3D printing can both accurately and reproducibly fabricate boney models that closely resemble the corresponding cadaveric anatomy.
Collapse
Affiliation(s)
- Cory Lebowitz
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Joseph Massaglia
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Christopher Hoffman
- Department of Hand & Upper Extremity Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludovico Lucenti
- Department of Hand & Upper Extremity Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sachin Dheer
- Department of Radiology, Thomas Jefferson University Hospitals, Cherry Hill, NJ, USA
| | - Michael Rivlin
- Department of Hand & Upper Extremity Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pedro K Beredjiklian
- Department of Hand & Upper Extremity Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Zhang JW, Liu XL, Zeng YM, Zhai ZJ, Mao YQ, Yu DG, Wang L, Yan MN, Zhu ZN, Li HW. Comparison of 3D Printing Rapid Prototyping Technology with Traditional Radiographs in Evaluating Acetabular Defects in Revision Hip Arthroplasty: A Prospective and Consecutive Study. Orthop Surg 2021; 13:1773-1780. [PMID: 34409750 PMCID: PMC8523770 DOI: 10.1111/os.13108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/02/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022] Open
Abstract
Objective To compare rapid prototyping technology (RP tech) in revision total hip arthroplasty (RTHA) with traditional examination methods and to see how they are different in evaluating acetabular anatomy and designing surgical procedure. Methods From February 2014 to March 2018, 43 RTHA patients with complex acetabulum defects were enrolled in this prospective study regardless of age or gender. Incomplete and unclear data were excluded. Three types of radiographic examination were performed on each patient before the revision surgery. Four groups of evaluations were designed: (i) X‐ray; (ii) computed tomography (CT‐scan); (iii) RP tech; and (iv) CT‐aided RP tech. Discrepancies between preoperative radiographic analysis and intra‐operative findings were separately compared by a team of surgeons. Premade surgical plans based on each evaluation method were compared with the final surgical procedure. The compliance of anatomic evaluation and surgical plan‐design based on 3D RP tech and traditional radiographs were ranked manually by a of team surgeons into: (i) complete accordance; (ii) general accordance; and (iii) undetermined structure/procedure. The difference in ranks between RP tech and traditional radiographic methods were analyzed with a nonparametric Kruskal‐Wallis test. P < 0.05 was considered significant. Multiple adjustments were taken for the statistical tests level according to the Bonferroni method. Results For anatomic analysis, the accordance in four groups of evaluating methods differed from each other (P < 0.05) except for the comparison of RP tech and CT‐aided RP tech. RP tech displayed better anatomic evaluating accuracy than traditional methods (X‐ray and CT) with the “complete accordance” rates of these groups being 88.37%, 4.65% and 27.91%, respectively. But CT‐aided RP tech did not improve accuracy significantly compared with using RP tech individually, although the value seems high in the CT‐aided RP group with the “complete accordance” rate of 95.35%. For surgery design, RP tech significantly showed better applicable surgical design compared with X‐ray and CT (P < 0.05), and the “complete accordance” rates were 88.37%, 6.98% and 23.26%, but no significant difference was observed between RP tech and CT‐aided RP tech, and the “complete accordance” rate of CT‐aided RP tech group was 97.67%. RP tech showed remarkable improvement in bone defect assessment and surgical plan design. Conclusion Using RP technology improved both sensibility and accuracy in acetabular defect evaluation with better locating and evaluating efficiency compared with X‐ray and CT‐scans. It also improved surgical schedule designing in complex acetabular defecting revision surgery. In particularly complex cases, CT aided RP tech may increase the accuracy of RP tech.
Collapse
Affiliation(s)
- Jing-Wei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Liang Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Ming Zeng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zan-Jing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Qing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - De-Gang Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng-Ning Yan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe-Nan Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui-Wu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
The malunion of distal radius fracture: Corrective osteotomy through planning with prototyping in 3D printing. Injury 2021; 52 Suppl 3:S44-S48. [PMID: 34134854 DOI: 10.1016/j.injury.2021.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Distal radius fractures (DRF) are among the most frequent in the body. About one third of these fractures can result in malunion with restriction of movement and pain in the wrist, the treatment in these cases consists of corrective osteotomy of the deformity. Due to its three-dimensional (3D) complexity, careful preoperative planning is a fundamental step in correction. The prototyping from the 3D reconstruction of the computed tomography of the affected wrist, allows the real understanding of the deformity. METHODS Patients with malunion of the distal radius with indication for surgical treatment, from December 2019, were included in the group of corrective osteotomies through planning with prototyping in 3D printing. The postoperative functional outcome was assessed by the Disabilities of the Arm, Shoulder and Hand Score (DASH) and visual analogue scale (VAS). Radiographic data including radial inclination, volar tilt and joint step were recorded from standard posteroanterior and lateral radiographic views. RESULTS A total of 9 patients were included. The mean age was 47 years. The average postoperative DASH value of the patients was 24.9 and VAS was 3.6. Radiographically, the palmar tilt had an average improvement of 25.22°, and the radial inclination had an average improvement of 2°. CONCLUSION Corrective osteotomy through planning with prototyping in 3D printing is an effective method of treating symptomatic distal radius malunions. The possibility of performing the osteotomy in a 3D model, simulating the surgery, making the procedure more predictable.
Collapse
|
22
|
Charilaou J, Dey R, Burger M, Sivarasu S, van Staden R, Roche S. Quantitative fit analysis of acromion fracture plating systems using three-dimensional reconstructed scapula fractures - A multi-observer study. SICOT J 2021; 7:36. [PMID: 34014164 PMCID: PMC8136237 DOI: 10.1051/sicotj/2021028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/17/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Surgical treatment of displaced acromial and scapula spine fractures may be challenging due to the bony anatomy and variable fracture patterns. This difficulty is accentuated by the limitations of the available scapular plates for fracture fixation. This study compares the quantitative fitting of anatomic scapular plates and clavicle plates, using three-dimensional (3D) printed fractured scapulae. METHODS Fourteen scapulae with acromion and spine fractures were used for this study. Computerized tomographic (CT) scans of the fractured scapulae were obtained from the Philips picture archiving and communication system (PACS) database of patients admitted to a tertiary teaching hospital in Cape Town, South Africa between 2012 and 2016. The reconstructed scapulae were 3D printed and the anatomical acromion and clavicle plates were templated about the fracture regions. The fit assessment was performed by five observers who classified the plates as no-fit, intermediate fit, and anatomical fit according to the surgical guidelines. RESULTS The 6-hole anterior clavicle plate performed better than any of the scapular plates as they were able to fit 45.7% of the fractured acromion, including the spine. Among the pre-contoured anatomical scapula plates, both the short and the long acromion plates could fit only 27.3% of the fractured acromion. The intraclass correlation coefficient was 0.965 suggesting excellent consensus among the five observers. CONCLUSION Clavicle plates were found to be better suited to fit around a scapula fracture in its acromion and spine region.
Collapse
Affiliation(s)
- Johan Charilaou
- Department of Surgery, Division of Orthopaedic Surgery, Groote Schuur Hospital, 7935 Cape Town, South Africa
| | - Roopam Dey
- Department of Surgery, Division of Orthopaedic Surgery, Groote Schuur Hospital, 7935 Cape Town, South Africa - Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, 7935 Cape Town, South Africa
| | - Marilize Burger
- Faculty of Medicine and Health Sciences, Division of Orthopaedic Surgery, Stellenbosch University, 7935 Cape Town, South Africa
| | - Sudesh Sivarasu
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, 7935 Cape Town, South Africa
| | - Ruan van Staden
- Department of Surgery, Division of Orthopaedic Surgery, Groote Schuur Hospital, 7935 Cape Town, South Africa
| | - Stephen Roche
- Department of Surgery, Division of Orthopaedic Surgery, Groote Schuur Hospital, 7935 Cape Town, South Africa
| |
Collapse
|
23
|
Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS GLOBAL RESEARCH AND REVIEWS 2021; 5:e20.00230-11. [PMID: 33877073 PMCID: PMC8059996 DOI: 10.5435/jaaosglobal-d-20-00230] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
Three-dimensional (3D) printing is an exciting form of manufacturing technology that has transformed the way we can treat various medical pathologies. Also known as additive manufacturing, 3D printing fuses materials together in a layer-by-layer fashion to construct a final 3D product. This technology allows flexibility in the design process and enables efficient production of both off-the-shelf and personalized medical products that accommodate patient needs better than traditional manufacturing processes. In the field of orthopaedic surgery, 3D printing implants and instrumentation can be used to address a variety of pathologies that would otherwise be challenging to manage with products made from traditional subtractive manufacturing. Furthermore, 3D bioprinting has significantly impacted bone and cartilage restoration procedures and has the potential to completely transform how we treat patients with debilitating musculoskeletal injuries. Although costs can be high, as technology advances, the economics of 3D printing will improve, especially as the benefits of this technology have clearly been demonstrated in both orthopaedic surgery and medicine as a whole. This review outlines the basics of 3D printing technology and its current applications in orthopaedic surgery and ends with a brief summary of 3D bioprinting and its potential future impact.
Collapse
|
24
|
Francoisse CA, Sescleifer AM, King WT, Lin AY. Three-dimensional printing in medicine: a systematic review of pediatric applications. Pediatr Res 2021; 89:415-425. [PMID: 32503028 DOI: 10.1038/s41390-020-0991-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Three-dimensional printing (3DP) addresses distinct clinical challenges in pediatric care including: congenital variants, compact anatomy, high procedural risk, and growth over time. We hypothesized that patient-specific applications of 3DP in pediatrics could be categorized into concise, discrete categories of use. METHODS Terms related to "three-dimensional printing" and "pediatrics" were searched on PubMed, Scopus, Ovid MEDLINE, Cochrane CENTRAL, and Web of Science. Initial search yielded 2122 unique articles; 139 articles characterizing 508 patients met full inclusion criteria. RESULTS Four categories of patient-specific 3DP applications were identified: Teaching of families and medical staff (9.3%); Developing intervention strategies (33.9%); Procedural applications, including subtypes: contour models, guides, splints, and implants (43.0%); and Material manufacturing of shaping devices or prosthetics (14.0%). Procedural comparative studies found 3DP devices to be equivalent or better than conventional methods, with less operating time and fewer complications. CONCLUSION Patient-specific applications of Three-Dimensional Printing in Medicine can be elegantly classified into four major categories: Teaching, Developing, Procedures, and Materials, sharing the same TDPM acronym. Understanding this schema is important because it promotes further innovation and increased implementation of these devices to improve pediatric care. IMPACT This article classifies the pediatric applications of patient-specific three-dimensional printing. This is a first comprehensive review of patient-specific three-dimensional printing in both pediatric medical and surgical disciplines, incorporating previously described classification schema to create one unifying paradigm. Understanding these applications is important since three-dimensional printing addresses challenges that are uniquely pediatric including compact anatomy, unique congenital variants, greater procedural risk, and growth over time. We identified four classifications of patient-specific use: teaching, developing, procedural, and material uses. By classifying these applications, this review promotes understanding and incorporation of this expanding technology to improve the pediatric care.
Collapse
Affiliation(s)
- Caitlin A Francoisse
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Anne M Sescleifer
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Wilson T King
- Division of Pediatric Cardiology, Saint Louis University School of Medicine, St. Louis, MO, USA.,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA
| | - Alexander Y Lin
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA. .,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA.
| |
Collapse
|
25
|
Gomez-Feria J, Narros JL, Ciriza GG, Roldan-Lora F, Schrader IM, Martin-Rodríguez JF, Mir P. 3D Printing of Diffuse Low-Grade Gliomas Involving Eloquent Cortical Areas and Subcortical Functional Pathways: Technical Note. World Neurosurg 2021; 147:164-171.e4. [PMID: 33359517 DOI: 10.1016/j.wneu.2020.12.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Surgical resection of diffuse low-grade gliomas (DLGGs) involving cortical eloquent areas and subcortical functional pathways represents a challenge in neurosurgery. Patient-specific, 3-dimensional (3D)-printed models of head and brain structures have emerged in recent years as an educational and clinical tool for patients, doctors, and surgical residents. METHODS Using multimodal high-definition magnetic resonance imaging data, which incorporates information from specific task-based functional neuroimaging and diffusion tensor imaging tractography and rapid prototyping technologies with specialized software and "in-house" 3D printing, we were able to generate 3D-printed head models that were used for preoperative patient education and consultation, surgical planning, and resident training in 2 complicated DLGG surgeries. RESULTS This 3D-printed model is rapid prototyped and shows a means to model individualized, diffuse, low-level glioma in 3D space with respect to cortical eloquent areas and subcortical pathways. Survey results from 8 surgeons with different levels of expertise strongly support the use of this model for surgical planning, intraoperative surgical guidance, doctor-patient communication, and surgical training (>95% acceptance). CONCLUSIONS Spatial proximity of DLGG to cortical eloquent areas and subcortical tracts can be readily assessed in patient-specific 3D printed models with high fidelity. 3D-printed multimodal models could be helpful in preoperative patient consultation, surgical planning, and resident training.
Collapse
Affiliation(s)
- Jose Gomez-Feria
- Movement Disorders Unit, Neurology and Clinical Neurophysiology Service, Seville Institute of Biomedicine, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose Luis Narros
- Neurosurgery Service, Virgen del Rocío University Hospital, Seville, Spain
| | - Gorka Gómez Ciriza
- Digital Manufacturing Laboratory (FAB-LAB), Virgen del Rocío University Hospital, Biomedicine Institute of Seville, Seville, Spain
| | - Florinda Roldan-Lora
- Radiodiagnosis Service Virgen del Rocío Hospital, Diagnostic Neuroradiology Unit, Seville, Spain
| | | | - Juan Francisco Martin-Rodríguez
- Movement Disorders Unit, Neurology and Clinical Neurophysiology Service, Seville Institute of Biomedicine, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Pablo Mir
- Movement Disorders Unit, Neurology and Clinical Neurophysiology Service, Seville Institute of Biomedicine, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
26
|
Gruber MS, Jesenko M, Burghuber J, Hochreiter J, Ritschl P, Ortmaier R. Functional and radiological outcomes after treatment with custom-made acetabular components in patients with Paprosky type 3 acetabular defects: short-term results. BMC Musculoskelet Disord 2020; 21:835. [PMID: 33302907 PMCID: PMC7731632 DOI: 10.1186/s12891-020-03851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Severe acetabular defects require special treatment with either impaction bone grafting, metal augmented cups or cup-cage constructs. Even these options are often not adequate, especially in hips with Paprosky type 3 defects with loss of anterior and posterior columns. This study investigates the clinical and radiological outcomes of custom-made acetabular components (© Materialise NV, Leuven, Belgium) for Paprosky type 3 defects. METHODS Sixteen patients were eligible for this trial, nine of whom agreed to be included. All of them completed one year of follow-up. The Harris hip score and the Oxford hip score were used to compare pre- and postoperative functional outcomes. Radiological follow-up comprised anteversion and inclination of the implanted cup and offset measurements in both hips (femoral, medial, ischial offset and center of rotation). Statistical analyses were performed with IBM SPSS Statistics. RESULTS The mean follow-up time of the nine patients was 12.2 months (range: 10-18). The Oxford hip score and Harris hip score improved from 19.8 and 50.1 to 29.4 and 68.8, respectively (p = 0.009 and 0.01). There were complications in three cases (33.3%), which led to one re-revision (11.1%). Radiologic follow-up showed restoration of the height of the center of rotation and of the global offset. Significant difference was detected in the femoral offset. CONCLUSIONS The functional and radiological outcomes are promising. However, long-term outcomes still need to be examined. LEVEL OF EVIDENCE Therapeutic Level IV.
Collapse
Affiliation(s)
| | | | | | - Josef Hochreiter
- Department of Orthopedic Surgery, Ordensklinikum Barmherzige Schwestern Linz, Vinzenzgruppe Center of Orthopedic Excellence, Teaching Hospital of the Paracelsus Medical University Salzburg, Linz, 4020 Austria
| | | | - Reinhold Ortmaier
- Department of Orthopedic Surgery, Ordensklinikum Barmherzige Schwestern Linz, Vinzenzgruppe Center of Orthopedic Excellence, Teaching Hospital of the Paracelsus Medical University Salzburg, Linz, 4020 Austria
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Tirol Kliniken GmbH, Innsbruck and UMIT, Hall Austria, Innsbruck, 6020 Tyrol Austria
| |
Collapse
|
27
|
Gao X, Wang H, Zhang X, Gu X, Liu Y, Zhou G, Luan S. Preparation of Amorphous Poly(aryl ether nitrile ketone) and Its Composites with Nano Hydroxyapatite for 3D Artificial Bone Printing. ACS APPLIED BIO MATERIALS 2020; 3:7930-7940. [PMID: 35019533 DOI: 10.1021/acsabm.0c01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEEK had been used to fabricate artificial bones by 3D printing widely, but it expressed unsatisfactory interlayer performance of 3D printing and weak compatibility with nano hydroxyapatite(nHA) due to the limits of molecular structures. Here an amorphous poly(aryl ether ketone) for 3D bone printing, PEK-CN, was designed and synthesized via nucleophilic substitution from 4,4'-difluorobenzophenone, phenolphthalein and 2,6-dichlorobenzonitrile, which possessed much stronger interlayer strength due to van der Waals force between polar groups(-CNs). Specifically, the stronger interlayer strength resulted in lower porosity(3% with 100% infill rate) and more comparable mechanical properties(the maximum tensile strength was ∼110 MPa) to cortical bone. Importantly, PEK-CN had passed in vitro cytotoxicity testing and samples of human mandible and maxillary bones based on PEK-CN were printed by fused deposition modeling(FDM) successfully. Moreover, PEK-CN/nHA composites were obtained to enhance bioactivity of resin, and PEK-CN without limits of crystal lattices expressed excellent compatibility with nano hydroxyapatite. Our work provided a high performance resin for 3D bone printing, which would bring better solutions for artificial bone materials.
Collapse
Affiliation(s)
- Xinshuai Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, Dalian 116023, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinming Gu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuzhe Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun 130022, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, Dalian 116023, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
28
|
Characterization of 3D-printed bolus produced at different printing parameters. Med Dosim 2020; 46:157-163. [PMID: 33172711 DOI: 10.1016/j.meddos.2020.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
We aimed to analyze the effects of printing parameters on characterization of three-dimensional (3D) printed bolus used in external beam radiotherapy. Two sets of measurements were performed to investigate the dosimetric and physical characterization of 3D-printed bolus at different printing parameters. In the first step, boluses were produced at different infill-percentages, infill-patterns and printing directions. Two-dimensional (2D) dose measurements were performed in Elekta Versa HD linear accelerator using 6 MV photon energy. Measured 2D dose maps for both printed and reference bolus materials were compared using the 2D gamma analysis method. Additionally, patient-specific bolus was produced with defined optimum printing parameters for anthropomorphic head and neck phantom. Then, point dose measurements were performed to evaluate the feasibility of printed bolus in clinical use. In the second step, physical measurements were carried out to evaluate the printing accuracy, the mean hounsfield unit (HU) value and the weight of 3D-printed boluses. According to our measurement, infill-percentage, infill-pattern and printing direction significantly changed the dosimetric and physical properties of the 3D-printed bolus independently. Maximum gamma passing rate at 1.5 and 5 cm depths were found as 93.8% and 98.8%, respectively, for 60% infill-percentage, sunglass fill infill-pattern and horizontal printing direction. The printing accuracy of the products was within 0.4 mm. Dosimetric and physical properties of the printed bolus material changed significantly with the selected printing parameters. Therefore, it is important to note that each combination of these printing parameters that will be used in the production of patient-specific bolus should be investigated separately.
Collapse
|
29
|
Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT, Bowoto OK, Olawumi MA, Muhammad MA. 3D printing of PEEK–cHAp scaffold for medical bone implant. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00098-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Kadakia RJ, Wixted CM, Allen NB, Hanselman AE, Adams SB. Clinical applications of custom 3D printed implants in complex lower extremity reconstruction. 3D Print Med 2020; 6:29. [PMID: 33006702 PMCID: PMC7531160 DOI: 10.1186/s41205-020-00083-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Three dimensional printing has greatly advanced over the past decade and has made an impact in several industries. Within the field of orthopaedic surgery, this technology has vastly improved education and advanced patient care by providing innovating tools to complex clinical problems. Anatomic models are frequently used for physician education and preoperative planning, and custom instrumentation can assist in complex surgical cases. Foot and ankle reconstruction is often complicated by multiplanar deformity and bone loss. 3D printing technology offers solutions to these complex cases with customized implants that conform to anatomy and patient specific instrumentation that enables precise deformity correction. Case presentation The authors present four cases of complex lower extremity reconstruction involving segmental bone loss and deformity – failed total ankle arthroplasty, talus avascular necrosis, ballistic trauma, and nonunion of a tibial osteotomy. Traditional operative management is challenging in these cases and there are high complication rates. Each case presents a unique clinical scenario for which 3D printing technology allows for innovative solutions. Conclusions 3D printing is becoming more widespread within orthopaedic surgery. This technology provides surgeons with tools to better tackle some of the more challenging clinical cases especially within the field of foot and ankle surgery.
Collapse
Affiliation(s)
- Rishin J Kadakia
- Department of Orthopaedic Surgery, Duke University, 4709 Creekstone Drive, Suite 300, Durham, NC, 27703, USA.
| | - Colleen M Wixted
- Department of Orthopaedic Surgery, Duke University, 4709 Creekstone Drive, Suite 300, Durham, NC, 27703, USA
| | - Nicholas B Allen
- Department of Orthopaedic Surgery, Duke University, 4709 Creekstone Drive, Suite 300, Durham, NC, 27703, USA
| | - Andrew E Hanselman
- Department of Orthopaedic Surgery, Duke University, 4709 Creekstone Drive, Suite 300, Durham, NC, 27703, USA
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University, 4709 Creekstone Drive, Suite 300, Durham, NC, 27703, USA
| |
Collapse
|
31
|
3D printing in pharmaceuticals: An emerging technology full of challenges. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:107-118. [PMID: 32853575 DOI: 10.1016/j.pharma.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Although in its infancy, when compared with the other sectors, year 2005 marked the rapid evolution of 3 Dimensional printing (3DP) technologies in pharma sector with a huge potential in the dosage form designing and personalisation of the medication. 3DP is an innovative and highly promising way for the instant manufacturing in contrast with the tailored made conventional manufacturing. Various 3DP technologies are categorized into the various areas on the basis of the type of material used, deposition techniques and the solidification/fusion techniques. 3DP technologies have multiple pharmaceutical applications including formulation of the precise and unique dosage forms, medical research, personalization of medicine, tissues engineering and surgical application. In the present article, we have accentuated the comparative merits and demerits of various 3DP technologies used in the pharmaceutical sector. An insight in to the challenges, apropos availability and the choice of the excipients, as well as the printer, regulatory and safety concern of the product is provided.
Collapse
|
32
|
Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med 2020; 9:E2238. [PMID: 32679657 PMCID: PMC7408636 DOI: 10.3390/jcm9072238] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows the production of an individualized 3D object based on a material of choice, a specific computer-aided design and precise manufacturing. Developments in digital technology, smart biomaterials and advanced cell culturing, combined with 3D printing, provide promising grounds for patient-tailored treatments. In dentistry, the "digital workflow" comprising intraoral scanning for data acquisition, object design and 3D printing, is already in use for manufacturing of surgical guides, dental models and reconstructions. 3D printing, however, remains un-investigated for oral mucosa/gingiva. This scoping literature review provides an overview of the 3D printing technology and its applications in regenerative medicine to then describe 3D printing in dentistry for the production of surgical guides, educational models and the biological reconstructions of periodontal tissues from laboratory to a clinical case. The biomaterials suitable for oral soft tissues printing are outlined. The current treatments and their limitations for oral soft tissue regeneration are presented, including "off the shelf" products and the blood concentrate (PRF). Finally, tissue engineered gingival equivalents are described as the basis for future 3D-printed oral soft tissue constructs. The existing knowledge exploring different approaches could be applied to produce patient-tailored 3D-printed oral soft tissue graft with an appropriate inner architecture and outer shape, leading to a functional as well as aesthetically satisfying outcome.
Collapse
Affiliation(s)
- Dobrila Nesic
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | | | - Yue Sun
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, CH-3010 Bern, Switzerland;
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| |
Collapse
|
33
|
Jung H, Lee JS, Lee JH, Park KJ, Lee JJ, Park HS. A Feasibility Study for 3D-printed Poly(methyl methacrylate)-resin Tracheostomy Tube Using a Hamster Cheek Pouch Model. In Vivo 2020; 34:1749-1758. [PMID: 32606143 DOI: 10.21873/invivo.11968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM A three-dimensional (3D) printed tracheostomy tube has potential application for patients who require a specialized tube. The aim of this study was to evaluate the characteristics of various 3D printing materials and determine their use in producing 3D-printed tracheostomy tube. MATERIALS AND METHODS Mechanical, chemical, and microbiological in vivo changes in the scaffolds were analyzed using a hamster cheek pouch (HCP) model. RESULTS The poly methyl methacylate (PMMA)-resin showed superior pre- and post-insertion mechanical properties and a relatively consistent lower biofilm formation compared with other scaffolds. PMMA-resin was successfully 3D-printed with dimensional accuracy without a support system. The use of a 3D-printed PMMA tracheostomy tube in a rabbit trachea showed no definite signs of infection, allergy or foreign body reaction. CONCLUSION PMMA-resin can be proposed as an alternative for a 3D-printed tracheostomy tube material. In addition, we suggest HCPs as an in vivo model for evaluating indwelling medical devices.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ki Joon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hae Sang Park
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea .,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
34
|
Campana V, Cardona V, Vismara V, Monteleone AS, Piazza P, Messinese P, Mocini F, Sircana G, Maccauro G, Saccomanno MF. 3D printing in shoulder surgery. Orthop Rev (Pavia) 2020; 12:8681. [PMID: 32913609 PMCID: PMC7459384 DOI: 10.4081/or.2020.8681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/25/2022] Open
Abstract
Three-dimensional (3D) printing is a novel modality with the potential to make a huge impact in the surgical field. The aim of this paper is to provide an overview on the current use of 3D printing in shoulder surgery. We have reviewed the use of this new method in 3 fields of shoulder surgery: shoulder arthroplasty, recurrent shoulder instability and orthopedic shoulder traumatology. In shoulder arthroplasty, several authors have shown that the use of the 3D printer improves the positioning of the glenoid component, even if longer clinical follow-up is needed to determine whether the cost of this system rationalizes the potential improved functional outcomes and decreases glenoid revision rates. In the treatment of anterior shoulder instability, the literature agrees on the fact that the use of the 3D printing can: enhance the dept and size of bony lesions, allowing a patient tailored surgical planning and potentially reducing operative times; allow the production of personalized implants to restore substantial bone loss; restore glenohumeral morphology and instability. In orthopedic trauma, the use of 3D printing can be helpful to increase the understanding of fracture patterns, facilitating a more personalized planning, and can be used for resident training and education. We can conclude the current literature regarding the use of 3D printed models in orthopedic surgery agrees finding objective improvements to preoperative planning and to the surgical procedure itself, by shortening the intraoperative time and by the possibility to develop custom-made, patient-specific surgical instruments, and it suggests that there are tangible benefits for its implementation.
Collapse
Affiliation(s)
- Vincenzo Campana
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Valentina Cardona
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Valeria Vismara
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | | | - Piero Piazza
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Piermarco Messinese
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Fabrizio Mocini
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Giuseppe Sircana
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | - Giulio Maccauro
- Orthopedic Institute, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | | |
Collapse
|
35
|
Benham S, San S. Student Technology Acceptance of 3D Printing in Occupational Therapy Education. Am J Occup Ther 2020; 74:7403205060p1-7403205060p7. [PMID: 32365312 DOI: 10.5014/ajot.2020.035402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPORTANCE Reports on the integration of 3D printing in occupational therapy education and changes in student acceptance of technology over time are lacking. OBJECTIVE 3D printing technology applications may offer effective solutions to increase client participation in occupations. However, the use of these applications in occupational therapy practice requires attention to occupational therapy students' perception of the technology's usefulness and ease of use. Students' perception of technology potentially influences their perceptions of technology use in future practice. DESIGN This was an exploratory one-group, pretest-posttest, repeated-measures study over 12 wk to examine whether an assignment that integrated 3D printing improved students' perceptions of technology acceptance. The study used a modified questionnaire based on the Technology Acceptance Model (TAM). SETTING Academic educational institution. PARTICIPANTS Second-year entry-level occupational therapy students (N = 58). RESULTS Paired t tests showed significant differences for all categories of the TAM questionnaire, including perceived usefulness (p = .001), perceived ease of use (p < .001), attitude toward using (p = .014), and intention to use (p < .001). CONCLUSION The experiential learning assignment increased students' acceptance of 3D printing technology; however, future studies should include an exploration of clients' acceptance and perception of technology. WHAT THIS ARTICLE ADDS This study provides evidence for the use of instructional strategies for "maker" technologies by educators when integrating experiential and interactive approaches.
Collapse
Affiliation(s)
- Sara Benham
- Sara Benham, OTD, OTR/L, ATP, is Assistant Professor, Department of Rehabilitation Sciences, Moravian College, Bethlehem, PA. At the time of this study, she was Assistant Professor, Department of Occupational Therapy, University of the Sciences in Philadelphia;
| | - Steven San
- Steven San, DrOT, OTR/L, is Occupational Therapist, EBS Healthcare, Philadelphia
| |
Collapse
|
36
|
Nunez R, Albuquerque L, Pereira R, Silva R, Peruquetti P, Carvalho Y. 3D printing of canine hip dysplasia: anatomic models and radiographs. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-10899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Canine Hip Dysplasia (CHD) is a highly prevalent articular pathological condition. In this sense, radiography becomes an important diagnostic method to determine the presence and severity of the disease. The objective was to create 3D models and their respective radiographs representing the CHD (3D AMCHD). The research was carried out in the Laboratory of 3D Educational Technologies of UFAC, under no. 23107.007273/2017-49 (CEUA/UFAC). A canine skeleton (hip bone, femurs and patellae) was used without anatomical deformities compatible with DCF (pelvis, femurs and patella), which were scanned in order to obtain the files of the base model. In these files the deformations representing the different degrees of CHD were performed. Subsequently, the 3D AMCHD files were printed, mounted and X-rayed. The 3D AMCHD represented the bone deformations of the different degrees of CHD. In the radiographs of the 3D AMCHD it was possible to observe and determine each of the bones that constituted the hip joints. This allowed to reproduce the correct positioning to represent the CHD diagnosis and establish the precise points to determine the Norberg angle. In this way, it was evidenced that the 3D AMCHD can be a possible tool to be used in the Teaching of Veterinary Medicine.
Collapse
|
37
|
Basgul C, MacDonald DW, Siskey R, Kurtz SM. Thermal Localization Improves the Interlayer Adhesion and Structural Integrity of 3D printed PEEK Lumbar Spinal Cages. MATERIALIA 2020; 10:100650. [PMID: 32318685 PMCID: PMC7172383 DOI: 10.1016/j.mtla.2020.100650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Additive manufacturing (AM) is a potential application for polyetheretherketone (PEEK) spinal interbody fusion cages, which were introduced as an alternative to titanium cages because of their biocompatibility, radiolucency and strength. However, AM of PEEK is challenging due to high melting temperature and thermal gradient. Although fused filament fabrication (FFF) techniques have been shown to 3D print PEEK, layer delamination was identified in PEEK cages printed with a first generation FFF PEEK printer [1]. A standard cage design [2] was 3D printed with a second generation FFF PEEK printer. The effect of changing layer cooling time on FFF cages' mechanical strength was investigated by varying nozzle sizes (0.2 mm and 0.4 mm), print speeds (1500 and 2500 mm/min), and the number of cages printed in a single build (1, 4 and 8). To calculate the porosity percentage, FFF cages were micro-CT scanned prior to destructive testing. Mechanical tests were then conducted on FFF cages according to ASTM F2077 [2]. Although altering the cooling time of a layer was not able to change the failure mechanism of FFF cages, it was able to improve cages' mechanical strength. Printing a single cage per build caused a higher ultimate load than printing multiple cages per build. Regardless of the cage number printed per build, cages printed with bigger nozzle diameter achieved higher ultimate load compared to cages printed with smaller nozzle diameter. Printing with a bigger nozzle diameter resulted in less porosity, which might have an additional affect on the interlayer delamination failure mechanism.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Daniel W. MacDonald
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan Siskey
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| | - Steven M. Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| |
Collapse
|
38
|
Horas K, Hoffmann R, Faulenbach M, Heinz SM, Langheinrich A, Schweigkofler U. Advances in the Preoperative Planning of Revision Trauma Surgery Using 3D Printing Technology. J Orthop Trauma 2020; 34:e181-e186. [PMID: 32304565 DOI: 10.1097/bot.0000000000001708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The management of complex fractures at the time of revision surgery remains one of the most challenging tasks for orthopaedic trauma surgeons. As the major principle of treatment remains to achieve an anatomic reduction and a stable fixation, precise preoperative diagnostics and treatment planning are of utmost importance. Thus, knowledge of the 3-dimensional anatomy of the fracture site and its surrounding tissue is indispensable. However, radiographic tools have thus far mostly been unable to recapitulate the complexity of the fracture site in toto. In recent years, the development of 3-dimensional (3D) printers has led to novel opportunities in preoperative planning of complex operative procedures. Although the application of 3D printers has become increasingly popular in orthopaedic surgery, its implementation in trauma surgery is so far mostly limited to the preoperative planning of surgery in patients with pelvic and acetabular fractures/defects. Moreover, reports describing the advantages using this sophisticated methodology in revision trauma surgery are sparse. In this article, we report our experience using novel 3D printing technologies for the management of revision surgery in orthopaedic trauma. In particular, we describe the benefit of using 3D printing technologies in the preoperative planning of complex revision surgery of the proximal tibia, the elbow joint, the distal femur, the ankle joint, and several others. With the advantage to preoperatively plan the optimal surgical approach, implant placement, and contouring as well as the possibility to anticipate intraoperative difficulties, we believe that this emerging technology is of significant value for revision surgery in orthopaedic trauma.
Collapse
|
39
|
Chen JV, Tanaka KS, Dang ABC, Dang A. Identifying a commercially-available 3D printing process that minimizes model distortion after annealing and autoclaving and the effect of steam sterilization on mechanical strength. 3D Print Med 2020; 6:9. [PMID: 32297041 PMCID: PMC7161250 DOI: 10.1186/s41205-020-00062-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fused deposition modeling 3D printing is used in medicine for diverse purposes such as creating patient-specific anatomical models and surgical instruments. For use in the sterile surgical field, it is necessary to understand the mechanical behavior of these prints across 3D printing materials and after autoclaving. It has been previously understood that steam sterilization weakens polylactic acid, however, annealing heat treatment of polylactic acid increases its crystallinity and mechanical strength. We aim to identify an optimal and commercially available 3D printing process that minimizes distortion after annealing and autoclaving and to quantify mechanical strength after these interventions. METHODS Thirty millimeters cubes with four different infill geometries were 3D printed and subjected to hot water-bath annealing then immediate autoclaving. Seven commercially available 3D printing materials were tested to understand their mechanical behavior after intervention. The dimensions in the X, Y, and Z axes were measured before and after annealing, and again after subsequent autoclaving. Standard and strength-optimized Army-Navy retractor designs were printed using the 3D printing material and infill geometry that deformed the least. These retractors were subjected to annealing and autoclaving interventions and tested for differences in mechanical strength. RESULTS For both the annealing and subsequent autoclaving intervention, the material and infill geometry that deformed the least, respectively, was Essentium PLA Gray and "grid". Standard retractors without intervention failed at 95 N +/- 2.4 N. Annealed retractors failed at 127.3 N +/- 10 N. Autoclave only retractors failed at 15.7 N +/- 1.4 N. Annealed then autoclaved retractors failed at 19.8 N +/- 3.1 N. Strength-optimized retractors, after the annealing then autoclaving intervention, failed at 164.8 N +/- 12.5 N. CONCLUSION For 30 mm cubes, the 3D printing material and infill geometry that deformed the least, respectively, was Essentium PLA and "grid". Hot water-bath annealing results in increased 3D printed model strength, however autoclaving 3D prints markedly diminishes strength. Strength-optimized 3D printed PLA Army-Navy retractors overcome the strength limitation due to autoclaving.
Collapse
Affiliation(s)
- Joshua V. Chen
- Department of Orthopaedic Surgery, University of California, San Francisco, CA USA
| | - Kara S. Tanaka
- Department of Orthopaedic Surgery, University of California, San Francisco, CA USA
| | - Alan B. C. Dang
- Department of Orthopaedic Surgery, University of California, San Francisco, CA USA
- Department of Surgery, Orthopaedic Section, San Francisco VA Health Care System, San Francisco, CA USA
| | - Alexis Dang
- Department of Orthopaedic Surgery, University of California, San Francisco, CA USA
- Department of Surgery, Orthopaedic Section, San Francisco VA Health Care System, San Francisco, CA USA
| |
Collapse
|
40
|
Fan D, Li Y, Wang X, Zhu T, Wang Q, Cai H, Li W, Tian Y, Liu Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front Pharmacol 2020; 11:122. [PMID: 32265689 PMCID: PMC7100535 DOI: 10.3389/fphar.2020.00122] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing enables patient-specific anatomical level productions with high adjustability and resolution in microstructures. With cost-effective manufacturing for high productivity, 3D printing has become a leading healthcare and pharmaceutical manufacturing technology, which is suitable for variety of applications including tissue engineering models, anatomical models, pharmacological design and validation model, medical apparatus and instruments. Today, 3D printing is offering clinical available medical products and platforms suitable for emerging research fields, including tissue and organ printing. In this review, our goal is to discuss progressive 3D printing technology and its application in medical materials. The additive overview also provides manufacturing techniques and printable materials.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yan Li
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tengjiao Zhu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qi Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Hong Cai
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yun Tian
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
41
|
Sanhudo JAV, Pereira TAP. Current Trends in Fixation Techniques. Foot Ankle Clin 2020; 25:97-108. [PMID: 31997750 DOI: 10.1016/j.fcl.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hallux valgus is an extremely common and often disabling deformity. In addition to valgus deformity of the hallux, varying degrees of varus and supination of the first metatarsal and instability in the metatarsophalangeal and metatarsocuneiform joints are frequently present. Because of the complexity and multiplicity of deformities, surgical techniques and fixation methods continue to be developed to obtain better results. Recent studies have focused on correcting pronation of the first metatarsal as a way of correcting and equalizing the metatarsal sesamoid bones in a more horizontal and stable position, possibly minimizing the chance of recurrence of the deformity.
Collapse
|
42
|
Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. J Orthop Surg Res 2020; 15:40. [PMID: 32028970 PMCID: PMC7006186 DOI: 10.1186/s13018-019-1489-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Background Additively manufactured porous metallic structures have recently received great attention for bone implant applications. The morphological characteristics and mechanical behavior of 3D printed titanium alloy trabecular structure will affect the effects of artificial prosthesis replacement. However, the mechanical behavior of titanium alloy trabecular structure at present clinical usage still is lack of in-depth study from design to manufacture as well as from structure to mechanical function. Methods A unit cell of titanium alloy was designed to mimick trabecular structure. The controlled microarchitecture refers to a repeating array of unit-cells, composed of titanium alloy, which make up the scaffold structure. Five kinds of unit cell mimicking trabecular structure with different pore sizes and porosity were obtained by modifying the strut sizes of the cell and scaling the cell as a whole. The titanium alloy trabecular structure was fabricated by 3D printing based on Electron Beam Melting (EBM). The paper characterized the difference between the designs and fabrication of trabecular structures, as well as mechanical properties and the progressive collapse behavior and failure mechanism of the scaffold. Results The actual porosities of the EBM-produced bone trabeculae are lower than the designed, and the load capacity of a bearing is related to the porosity of the structure. The larger the porosity of the structure, the smaller the stiffness and the worse the load capacity is. The fracture interface of the trabecular structure under compression is at an angle of 45o with respect to the compressive axis direction, which conforms to Tresca yield criterion. The trabeculae-mimicked unit cell is anisotropy. Under quasi-static loading, loading speed has no effect on mechanical performance of bone trabecular specimens. There is no difference of the mechanical performance at various orientations and sites in metallic workspace. The elastic modulus of the scaffold decreases by 96%–93% and strength reduction 96%–91%, compared with titanium alloy dense metals structure. The apparent elastic modulus of the unit-cell-repeated scaffold is 0.39–0.618 GPa, which is close to that of natural bone and stress shielding can be reduced. Conclusion We have systematically studied the structural design, fabrication and mechanical behavior of a 3D printed titanium alloy scaffold mimicking trabecula bone. This study will be benefit of the application of prostheses with proper structures and functions.
Collapse
|
43
|
Skelley NW, Hagerty MP, Stannard JT, Feltz KP, Ma R. Sterility of 3D-Printed Orthopedic Implants Using Fused Deposition Modeling. Orthopedics 2020; 43:46-51. [PMID: 31693742 DOI: 10.3928/01477447-20191031-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
Abstract
The use of 3-dimensional (3D) printing in orthopedics is developing rapidly and impacting the areas of preoperative planning, surgical guides, and simulation. As this technology continues to improve, the greatest impact of 3D printing may be in low- and middle-income countries where surgical items are in short supply. This study investigated sterility of 3D-printed ankle fracture fixation plates and cortical screws. The hypothesis was that the process of heated extrusion in fused deposition modeling printing would create sterile prints in a timely fashion that would not require postproduction sterilization. A free computer-assisted design program was used to design the implant models. One control group and 8 study groups were printed. Print construct, orientation, size, and postproduction sterilization differed among the groups. Sterility was assessed using thioglycollate broth cultures at 24 hours, 48 hours, and 7 days. Positive growth was speciated for aerobic and anaerobic bacteria. Print time and failed prints were recorded. Control samples were 100% positive for bacterial growth. All test samples remained sterile at all time points (100%). Speciation of control samples was obtained, and Staphylococcus was the most common species. Print times varied; however, no print time exceeded 6.75 minutes. Eighteen prints (17%) failed in the printing process. These findings demonstrate an intrinsic sterilization process associated with fused deposition modeling 3D printing and indicate the feasibility of 3D-printed surgical implants and equipment for orthopedic applications. With future research, 3D-printed implants may be a treatment modality to assist orthopedic surgeons in low- and middle-income countries. [Orthopedics. 2020; 43(1): 46-51.].
Collapse
|
44
|
Abstract
Three-dimensional (3-D) printing technology is affecting how orthopaedic surgeries are planned and executed. Like many innovations, 3-D printers are becoming smaller, more affordable, and more accessible. Free access to open-source 3-D imaging software has also made clinical implementation of this technology widely feasible. Within the last decade, 3-D printing advancements have improved the way orthopaedic surgeons can approach both common and complex cases. Advanced imaging studies can be used to create musculoskeletal models, which can then be used to create custom orthopaedic guides and instruments. Similarly, 3-D printing is being applied to improve the field of biologic therapies in orthopaedics. Application of 3-D printing technology has been associated with important improvements in education, preoperative planning, surgical care, and patient-specific devices and treatments. Improvements in cost-effectiveness, access, and usability of 3-D printing technology have made it possible for orthopaedic surgeons to use this powerful tool using desktop 3-D printers in their clinic or office. The types of printers and materials available to print are constantly expanding, but many of the basic 3-D printing principles persist throughout these advances in the field. A clear understanding of this technology is important to the clinical implementation of 3-D printing for current and future practice of orthopaedic care.
Collapse
|
45
|
Abstract
Patients with symptomatic instability of the spine may be treated surgically with interbody fusion. Cost and complexity in this procedure arises owing to the implanted materials involved with facilitating fusion such as titanium or polyetheretherketone. Surface modifications have been developed to augment these base materials such as plasma-spraying polyetheretherketone with titanium or coating implants with hydroxyapatite. Although some evidence has been gathered on these novel materials, additional study is needed to establish the true efficacy of surface modifications for interbody fusion devices in improving long-term patient outcomes.
Collapse
Affiliation(s)
- Jacob J Enders
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Daniel Coughlin
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Thomas E Mroz
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Shaleen Vira
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
46
|
Jiang M, Chen G, Coles‐Black J, Chuen J, Hardidge A. Three‐dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: a systematic review. ANZ J Surg 2019; 90:243-250. [DOI: 10.1111/ans.15549] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Jiang
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
| | - Gordon Chen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
| | - Jasamine Coles‐Black
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Jason Chuen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Andrew Hardidge
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
47
|
Crump MR, Gong AT, Chai D, Bidinger SL, Pavinatto FJ, Reihsen TE, Sweet RM, MacKenzie JD. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. NANOTECHNOLOGY 2019; 30:364002. [PMID: 31121565 DOI: 10.1088/1361-6528/ab2440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Medical training simulations that utilize 3D-printed, patient-specific tissue models improve practitioner and patient understanding of individualized procedures and capacitate pre-operative, patient-specific rehearsals. The impact of these novel constructs in medical training and pre-procedure rehearsals has been limited, however, by the lack of effectively embedded sensors that detect the location, direction, and amplitude of strains applied by the practitioner on the simulated structures. The monolithic fabrication of strain sensors embedded into lifelike tissue models with customizable orientation and placement could address this limitation. The demonstration of 3D printing of an ionogel as a stretchable, piezoresistive strain sensor embedded in an elastomer is presented as a proof-of-concept of this integrated fabrication for the first time. The significant hysteresis and drift inherent to solid-phase piezoresistive composites and the dimensional instability of low-hysteresis piezoresistive liquids inspired the adoption of a 3D-printable piezoresistive ionogel composed of reduced graphene oxide and an ionic liquid. The shear-thinning rheology of the ionogel obviates the need to fabricate additional structures that define or contain the geometry of the sensing channel. Sensors are printed on and subsequently encapsulated in polydimethylsiloxane (PDMS), a thermoset elastomer commonly used for analog tissue models, to demonstrate seamless fabrication. Strain sensors demonstrate geometry- and strain-dependent gauge factors of 0.54-2.41, a high dynamic strain range of 350% that surpasses the failure strain of most dermal and viscus tissue, low hysteresis (<3.5% degree of hysteresis up to 300% strain) and baseline drift, a single-value response, and excellent fatigue stability (5000 stretching cycles). In addition, we fabricate sensors with stencil-printed silver/PDMS electrodes in place of wires to highlight the potential of seamless integration with printed electrodes. The compositional tunability of ionic liquid/graphene-based composites and the shear-thinning rheology of this class of conductive gels endows an expansive combination of customized sensor geometry and performance that can be tailored to patient-specific, high-fidelity, monolithically fabricated tissue models.
Collapse
Affiliation(s)
- Michael R Crump
- Department of Material Science & Engineering, University of Washington, Seattle, WA 98195-2120, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sallent A, Seijas R, Pérez-Bellmunt A, Oliva E, Casasayas O, Escalona C, Ares O. Feasibility of 3D-printed models of the proximal femur to real bone: a cadaveric study. Hip Int 2019; 29:452-455. [PMID: 30421629 DOI: 10.1177/1120700018811553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION 3D technology has increased popularity during the past decade due to recent advancements and has been described as a useful tool in several fields of medicine including orthopaedic surgery. Applications include preoperative planning, custom-made implants, patient-specific guides, etc. The aim of this study was to evaluate the similarity between 3D-printed models and cadaveric femoral heads, based on CT scans. METHODS Cadaveric study of 12 male hips. Computed tomography (CT) was performed and through a semi-automatic segmentation process created the 3D model. Using a 3D printer, the model was printed in ABS plastic. 1 observer performed several measurements in the cadaver, and a 2nd observer performed the same measurements in the 3D-printed model. A 3rd observer compared both measurements and performed the statistical analysis. RESULTS There were no significant differences in the measurements of bony structures between the cadaveric specimens and the 3D-printed model (p > 0.05 in all cases). We found significant differences when comparing measurements containing a soft tissue element, for example the dimensions of the cartilage covered femoral head (p < 0.0001). CONCLUSIONS 3D-printed models of the hip are accurate and feasible to the real bone and can thus be reliable for preoperative planning or other uses that may arise in orthopaedic surgery. Presence of cartilage must be considered when creating the 3D model from CT that considers bone but not cartilage.
Collapse
Affiliation(s)
- Andrea Sallent
- 1 Orthopaedic Surgery, Hospital Vall d'Hebron, Barcelona, Spain
| | - Roberto Seijas
- 2 Arthroscopy GC, Garcia Cugat Foundation Hospital Quirón, Barcelona, Spain.,3 Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Eulalia Oliva
- 4 Hospital Universitari General de Catalunya, Barcelona, Spain
| | - Oriol Casasayas
- 2 Arthroscopy GC, Garcia Cugat Foundation Hospital Quirón, Barcelona, Spain
| | - Carles Escalona
- 2 Arthroscopy GC, Garcia Cugat Foundation Hospital Quirón, Barcelona, Spain
| | - Oscar Ares
- 5 Hospital Clinic of Barcelona, University of Barcelona, Spain.,6 Centro Médico Teknon, Barcelona, Spain
| |
Collapse
|
49
|
Sobrón FB, Benjumea A, Alonso MB, Parra G, Pérez-Mañanes R, Vaquero J. 3D Printing Surgical Guide for Talocalcaneal Coalition Resection: Technique Tip. Foot Ankle Int 2019; 40:727-732. [PMID: 30808181 DOI: 10.1177/1071100719833665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Antonio Benjumea
- 1 Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Guillermo Parra
- 1 Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Javier Vaquero
- 1 Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
50
|
New Methodology for Diagnosis of Orthopedic Diseases through Additive Manufacturing Models. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our purpose is to develop the preoperative diagnosis stage for orthopedic surgical treatments using additive manufacturing technology. Our methods involve fast implementations of an additive manufactured bone model, converted from CAT data, through appropriate software use. Then, additive manufacturing of the formed surfaces through special 3D-printers. With the structural model redesigned and printed in three dimensions, the surgeon is able to look at the printed bone and he can handle it because the model perfectly reproduces the real one upon which he will operate. We found that additive manufacturing models can precisely characterize the anatomical structures of fractures or lesions. The studied practice helps the surgeon to provide a complete preoperative valuation and a correct surgery, with minimized duration and risks. This structural model is also an effective device for communication between doctor and patient.
Collapse
|