1
|
Tan HC, Hsu JW, Tai ES, Chacko S, Kovalik JP, Jahoor F. The impact of obesity-associated glycine deficiency on the elimination of endogenous and exogenous metabolites via the glycine conjugation pathway. Front Endocrinol (Lausanne) 2024; 15:1343738. [PMID: 38633754 PMCID: PMC11023637 DOI: 10.3389/fendo.2024.1343738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Glycine is an integral component of the human detoxification system as it reacts with potentially toxic exogenous and endogenously produced compounds and metabolites via the glycine conjugation pathway for urinary excretion. Because individuals with obesity have reduced glycine availability, this detoxification pathway may be compromised. However, it should be restored after bariatric surgery because of increased glycine production. Objective To examine the impact of obesity-associated glycine deficiency on the glycine conjugation pathway. We hypothesize that the synthesis rates of acylglycines from endogenous and exogenous sources are significantly reduced in individuals with obesity but increase after bariatric surgery. Methods We recruited 21 participants with class III obesity and 21 with healthy weight as controls. At baseline, [1,2-13C2] glycine was infused to study the glycine conjugation pathway by quantifying the synthesis rates of several acylglycines. The same measurements were repeated in participants with obesity six months after bariatric surgery. Data are presented as mean ± standard deviation, and p-value< 0.05 is considered statistically significant. Results Baseline data of 20 participants with obesity were first compared to controls. Participants with obesity were significantly heavier than controls (mean BMI 40.5 ± 7.1 vs. 20.8 ± 2.1 kg/m2). They had significantly lower plasma glycine concentration (168 ± 30 vs. 209 ± 50 μmol/L) and slower absolute synthesis rates of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Pre- and post-surgery data were available for 16 participants with obesity. Post-surgery BMI decreased from 40.9 ± 7.3 to 31.6 ± 6.0 kg/m2. Plasma glycine concentration increased from 164 ± 26 to 212 ± 38 μmol/L) and was associated with significantly higher rates of excretion of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Benzoic acid (a xenobiotic dicarboxylic acid) is excreted as benzoylglycine; its synthesis rate was significantly slower in participants with obesity but increased after bariatric surgery. Conclusion Obesity-associated glycine deficiency impairs the human body's ability to eliminate endogenous and exogenous metabolites/compounds via the glycine conjugation pathway. This impairment is ameliorated when glycine supply is restored after bariatric surgery. These findings imply that dietary glycine supplementation could treat obesity-associated metabolic complications due to the accumulation of intramitochondrial toxic metabolites. Clinical trial registration https://clinicaltrials.gov/study/NCT04660513, identifier NCT04660513.
Collapse
Affiliation(s)
- Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Jean W. Hsu
- Children’s Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Shaji Chacko
- Children’s Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Farook Jahoor
- Children’s Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Liang Z, Fu Q, Li H, Xu X, Ding P, Tang W, Ye Y, Shao X, Tan X, Wang X, Luo X, Wang J, Wang D, Zhong H, Liu M. Metabolite Comparison between Spleen-Deficiency and Healthy Children. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5937308. [PMID: 37089718 PMCID: PMC10115538 DOI: 10.1155/2023/5937308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023]
Abstract
Objective From the perspective of metabolomics, this study compares the metabolomics characteristics of feces and urine between children with spleen-deficiency and healthy children to explain the scientific connotation of children with spleen-deficiency susceptibility to digestive system diseases from the metabolic level and provide a scientific basis for further research. Methods This study included 20 children with spleen-deficiencies and 17 healthy children. Children's symptom scores, height, and weight were recorded in groups, and feces and urine samples were collected. The samples were detected using ultrahigh-performance liquid chromatography-mass spectrometry. The data were analyzed using multivariate statistical analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Related differential metabolites were identified through database comparisons between two groups based on the MS and KEGG. Results Compared to healthy children, the metabolites glucuronic acid, xanthine, and indole-3-acetaldehyde tend to be reduced in children with spleen-deficiency. Moreover, these children showed an increase in metabolites such as quinic acid, adenine, 4-methyl-5-thiazole-ethanol, 3-formyl indole, and 5-hydroxy indole-3-acetic acid. The condition affected many of the critical metabolic pathways, including the metabolism of tryptophan, cysteine, methionine, and pentose phosphate. Conclusion The children with spleen-deficiency had disorders at the metabolic level, which might be due to factors such as diet, personal preferences, and genes, leading to various symptoms, making spleen-deficiency children more prone to suffer from digestive diseases than healthy children. The results set a basis for the research on children's TCM constitution, which can be a reference to further studies to deal with the spleen-deficiency.
Collapse
Affiliation(s)
- Zhiyi Liang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qianzeng Fu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Acupuncture & Moxibustion, Clinical Medicine Research Center, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Haiman Li
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Acupuncture & Moxibustion, Clinical Medicine Research Center, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Panting Ding
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Tang
- Hunan Acupuncture & Moxibustion, Clinical Medicine Research Center, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yong Ye
- Hunan Acupuncture & Moxibustion, Clinical Medicine Research Center, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xiangning Shao
- Hunan Acupuncture & Moxibustion, Clinical Medicine Research Center, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xiaowen Tan
- Xiangxi Hospital of Chinese Medicine of Tujia and Miao Ethnic Group, Jishou 416000, China
| | - Xiaojun Wang
- Xiangxi Hospital of Chinese Medicine of Tujia and Miao Ethnic Group, Jishou 416000, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518000, China
| | - Jun Wang
- Department of Anatomy, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Dejun Wang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Zhang J, Zhang Y, Guo Q, Wen G, Xiao H, Qi S, Wang Y, Zhang H, Wang L, Sun H. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. ACS Sens 2022; 7:1105-1112. [PMID: 35357825 DOI: 10.1021/acssensors.2c00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing probes to simultaneously detect and discriminate biothiols is important, yet challenging. Activatable photoacoustic (PA) probes for discriminating biothiols in vivo are still lacking, and this hinders the diagnosis of thiol-related diseases. Herein we present the first PA and fluorescence dual-modality probe MB-NBD for discriminating different biothiol species. The probe has the advantages of both fluorescence imaging and PA imaging (high sensitivity and deep penetration) with distinct signal patterns toward hydrogen sulfide (H2S), cysteine/homocysteine (Cys/Hcy), and glutathione (GSH) treatment. The biothiol-activated product of MB-NBD exhibits enhancements in near-infrared fluorescence (NIRF) at 690 nm and absorbance/PA at 664 nm upon fast reaction, allowing it to selectively detect biothiol species over other reactive species. On the other hand, MB-NBD displays characteristic absorbance enhancement at 547 nm toward H2S, rendering specific detection of H2S. In addition, the specific enhancements in absorbance/PA at 470 nm and fluorescence at 550 nm toward Cys/Hcy treatment endows the probe with the capability of selectively detecting Cys/Hcy. Furthermore, MB-NBD is able to discriminate Cys and GSH by fluorescent imaging in live-cell and ratiometric PA imaging in mice experiments. MB-NBD has been successfully used to diagnose tumors by dual-channel ratiometric PA imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hanyue Xiao
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421200, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
4
|
Deep-Red Emissive Fluorescent Probe for Sensitive Detection of Cysteine in Milk and Living Cells. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Ruan S, Zhou Y, Zhang M, Zhang H, Wang Y, Hu P. Rapid determination of cysteine and chiral discrimination of D-/L-cysteine via the aggregation-induced emission enhancement of gold nanoclusters by Ag . ANAL SCI 2022; 38:541-551. [PMID: 35359272 DOI: 10.2116/analsci.21p207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Cysteine (Cys) plays vital roles in various physiological and pathological functions. Either a deficiency or excess of Cys could lead to severe ailments in human. The identification and determination of Cys are the key issues for the early diagnosis of relevant diseases. This contribution has presented a promising potential of fluorescent gold nanoclusters (AuNCs) for Cys determination and D-/L-Cys enantiomer discrimination. Cys determination and discrimination are involved three steps. First, as a reducing and capping ligand, glutathione was applied to fabricate weak fluorescent AuNCs. Second, Ag+ was introduced to lead the aggregation-induced emission (AIE) to form well-dispersed aggregates. The fluorescence intensity of AuNCs was monitored at excitation/emission wavelengths of 396/620 nm. Third, Cys was found to quickly bind with Ag+ to form a grid network to light up the system via aggregation-induced emission enhancement (AIEE). A novel sensor for a sensitive and a visually selective detection of Cys was established on the basis of the AIEE mechanism. Rapid quantitative determination of Cys was achieved in 2 min via AIEE within the range of 0.5-100 μmol L-1 and a detection limit of 0.365 μmol L-1. Moreover, due to the specific interactions of D-/L-Cys with mandelic acid and tartaric acid, the visual discrimination of D-/L-Cys enantiomers with naked eyes was realized by replacing the organic acid buffer.
Collapse
Affiliation(s)
- Shengli Ruan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy Department, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy Department, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Jiao N, Wang L, Wang Y, Xu D, Zhang X, Yin J. Cysteine exerts an essential role in maintaining intestinal integrity and function independent of glutathione. Mol Nutr Food Res 2021; 66:e2100728. [PMID: 34787361 DOI: 10.1002/mnfr.202100728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/02/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Enteral feeding is a primary source of cysteine for intestinal mucosa given negligible transsulfuration activity in enterocytes and furthermore very few cysteine uptake from arterial blood. This study aims to explore the role of cysteine in maintaining intestinal integrity and function. METHODS AND RESULTS The intestinal porcine enterocytes (IPEC-J2) were cultured in a cysteine-deprived medium with or without glutathione supplementation upon the inhibitions of glutathione synthesis or degradation. As a result, cysteine deprivation impaired mitochondrial function, suppressed mechanistic target of rapamycin (mTOR) signaling and activated general control nonderepressible 2 (GCN2) signaling, and might lead to resultant ferroptosis. Glutathione supplementation could restore the impairment through degradating into cysteine, while glutathione synthesis inhibition did not disturb the role of cysteine in keeping the intestinal epithelial cells. Furthermore, piglets were fed with cysteine-deficient, -adequate and -surplus diet for 28 d as a porcine model. We evidenced that intestinal integrity and individual growth benefit from adequate dietary cysteine. CONCLUSION Adequate dietary cysteine supply is essential for intestinal mucosal integrity, epithelial cell turnover and amino acid sensing as well as optimal individual growth. Cysteine exerts its role independent of glutathione and glutathione restores the impairment of cysteine-deprivation on intestinal mucosal through degrading into cysteine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Jiao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Wei YN, Lin B, Shu Y, Wang JH. Mitochondria-targeted ratiometric fluorescent imaging of cysteine. Analyst 2021; 146:4642-4648. [PMID: 34170269 DOI: 10.1039/d1an00758k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an indispensable biothiol, cysteine (Cys) plays a critical part in cellular redox homeostasis, and pathological and physiological processes. One of the main sources of reactive oxygen species (ROS) in human cells is the substrate end of the respiratory chain in the mitochondrial inner membrane. Therefore, it is valuable to develop probes targeting mitochondria to detect Cys. In this work, we designed a novel fluorescent probe, 2-(2-(6-(acryloyloxy) naphthalen-2-yl) vinyl)-3-ethylbenzothiazol-3-ium (ANET). The naphthyl benzothiazole is the fluorophore group and the acrylate moiety is the Cys response site to avoid the interference of homocysteine (Hcy) and glutathione (GSH). ANET combines multiple strengths for detecting Cys: targeting mitochondria, ratiometric fluorescence, high selectivity, and a large Stokes shift. After ANET reacted with Cys, the fluorescence signals changed from green (λem = 525 nm) to orange red (λem = 595 nm), and the detection limit was calculated to be 74 nM through a linear relationship between ratiometric fluorescence F595/F525 and Cys concentration. The imaging of Cys was confirmed in HepG2 cells.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
8
|
Deng Q, Wang Y, Wang X, Wang Q, Yi Z, Xia J, Hu Y, Zhang Y, Wang J, Wang L, Jiang S, Li R, Wan D, Yang H, Yin Y. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci 2021; 99:skab002. [PMID: 33515478 PMCID: PMC7846194 DOI: 10.1093/jas/skab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.
Collapse
Affiliation(s)
- Qingqing Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenfeng Yi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jun Xia
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuyao Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jingjing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shuzhong Jiang
- Hunan Jiuding Technology (Group) Co., Ltd. Yueyang, Hunan, China
| | - Rong Li
- Hunan Longhua Agriculture and Animal Husbandry Development Co., Ltd., TRS Group, Zhuzhou, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
9
|
Schwinger C, Chowdhury R, Sharma S, Bhandari N, Taneja S, Ueland PM, Strand TA. Association of Plasma Total Cysteine and Anthropometric Status in 6-30 Months Old Indian Children. Nutrients 2020; 12:nu12103146. [PMID: 33076294 PMCID: PMC7602373 DOI: 10.3390/nu12103146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
High-quality protein has been associated with child growth; however, the role of the amino acid cysteine remains unclear. The aim was to measure the extent to which plasma total cysteine (tCys) concentration is associated with anthropometric status in children aged 6–30 months living in New Delhi, India. The study was a prospective cohort study including 2102 children. We calculated Z-scores for height-for-age (HAZ), weight-for-height (WHZ), or weight-for-age (WAZ) according to the WHO Child Growth Standards. We used multiple regression models to estimate the association between tCys and the anthropometric indices. A high proportion of the children were categorized as malnourished at enrolment; 41% were stunted (HAZ ≤ −2), 19% were wasted (WHZ ≤ −2) and 42% underweight (WAZ ≤ −2). Plasma total cysteine (tCys) was significantly associated with HAZ, WHZ and WAZ after adjusting for relevant confounders (p < 0.001). Low tCys (≤25th percentile) was associated with a decrease of 0.28 Z-scores for HAZ, 0.10 Z-scores for WHZ, and 0.21 Z-scores for WAZ compared to being >25th percentile. In young Indian children from low-to-middle socioeconomic neighborhoods, a low plasma total cysteine concentration was associated with an increased risk of poor anthropometric status.
Collapse
Affiliation(s)
- Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Correspondence: ; Tel.: +47-5558-9733
| | - Ranadip Chowdhury
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Shakun Sharma
- Department of Child Health, Institute of Medicine, Tribuhvan University, Kathmandu 44613, Nepal;
| | - Nita Bhandari
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Sunita Taneja
- Society for Applied Studies, New Delhi 110016, India;
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen,5020 Bergen, Norway;
| | - Tor A. Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Department of Research, Innlandet Hospital Trust, 2618 Lillehammer, Norway
| |
Collapse
|
10
|
Elango R. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition. J Nutr 2020; 150:2518S-2523S. [PMID: 33000159 DOI: 10.1093/jn/nxaa155] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Methionine is a nutritionally indispensable amino acid, and is unique among indispensable amino acids due to its sulfur atom. Methionine is involved in cysteine synthesis via the transsulfuration pathway, which is rate limiting for the key antioxidant molecule, glutathione. Methionine is also the primary methyl donor in the body through S-adenosylmethionine via the transmethylation pathway, which is involved in the synthesis of several key metabolites including creatine and phosphatidylcholine. Methionine can also be remethylated from homocysteine, in the presence of betaine via choline and/or folate. Thus methionine demands from a dietary perspective are regulated not only by the presence of cysteine in the body, but also by the demands in vivo for the various metabolites formed from it, and also by the presence of these compounds in foods. Indeed, methionine, cysteine, and the various methyl donors/acceptors vary in human foods, and thus regulate methionine availability, especially under conditions of growth and development. Much of our understanding of methionine nutrition and metabolism arises from experiments in animal models. This is because most animal feed formulations are plant-based and plant sources are relatively low in methionine and cysteine amounts. Thus, this brief review will touch on some broad aspects of human methionine nutrition, including requirements in different life stages, disease, and bioavailability, with some examples from the insights/lessons learned from experiments initially conducted in animals.
Collapse
Affiliation(s)
- Rajavel Elango
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; and the Department of Pediatrics, and School of Population and Public Health, University of British Columbia, British Columbia, Canada
| |
Collapse
|
11
|
Arora N, Strand TA, Chandyo RK, Elshorbagy A, Shrestha L, Ueland PM, Ulak M, Schwinger C. Association of Maternal Plasma Total Cysteine and Growth among Infants in Nepal: A Cohort Study. Nutrients 2020; 12:E2849. [PMID: 32957568 PMCID: PMC7551827 DOI: 10.3390/nu12092849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cysteine is a semi-essential amino acid that has been positively associated with growth in children. However, transgenerational effects remain unclear. The aim of this analysis was to assess whether maternal plasma total cysteine (tCys) concentration is associated with various growth indicators in infants living in peri-urban settings in Bhaktapur, Nepal. We used data from the 561 mothers enrolled in an ongoing randomized controlled trial. We built linear regression models to evaluate the associations between maternal tCys and birth weight, length-for-age Z-scores (LAZ) and weight-for-length Z-scores (WLZ) at birth and six months of age. Maternal tCys was inversely associated with birth weight among boys after adjusting for confounders (p < 0.05). In addition, there was a negative association between maternal tCys and LAZ at birth (p < 0.01). No associations between maternal tCys and the other anthropometric indicators were found significant, although there was a tendency for maternal tCys to be associated positively with WLZ at birth among girls (p < 0.10). This is a first study evaluating transgenerational relation of tCys on growth in infants. Further, larger and more comprehensive studies are needed to determine if and how maternal tCys alters child growth.
Collapse
Affiliation(s)
- Nikhil Arora
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway;
| | - Tor A. Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
- Department of Research, Innlandet Hospital Trust, 2609 Lillehammer, Norway
| | - Ram K. Chandyo
- Department of Community Medicine, Kathmandu Medical College, Kathmandu 44600, Nepal;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt; or
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Laxman Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
| | - Manjeswori Ulak
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
| |
Collapse
|
12
|
Schutt AK, Blesson CS, Hsu JW, Valdes CT, Gibbons WE, Jahoor F, Yallampalli C. Preovulatory exposure to a protein-restricted diet disrupts amino acid kinetics and alters mitochondrial structure and function in the rat oocyte and is partially rescued by folic acid. Reprod Biol Endocrinol 2019; 17:12. [PMID: 30654812 PMCID: PMC6337842 DOI: 10.1186/s12958-019-0458-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Detrimental exposures during pregnancy have been implicated in programming offspring to develop permanent changes in physiology and metabolism, increasing the risk for developing diseases in adulthood such as hypertension, diabetes, heart disease and obesity. This study investigated the effects of protein restriction on the metabolism of amino acids within the oocyte, liver, and whole organism in a rat model as well as effects on mitochondrial ultrastructure and function in the cumulus oocyte complex. METHODS Wistar outbred female rats 8-11 weeks of age (n = 24) were assigned to three isocaloric dietary groups, including control (C), low protein (LP) and low protein supplemented with folate (LPF). Animals were superovulated and 48 h later underwent central catheterization. Isotopic tracers of 1-13C-5C2H3-methionine, 2H2-cysteine, U-13C3-cysteine and U-13C3-serine were administered by a 4 h prime-constant rate infusion. After sacrifice, oocytes were denuded of cumulus cells and liver specimens were obtained. RESULTS Oocytes demonstrated reduced serine flux in LP vs. LPF (p < 0.05), reduced cysteine flux in LP and LPF vs. C (p < 0.05), and a trend toward reduced transsulfuration in LP vs. C and LPF. Folic acid supplementation reversed observed effects on serine flux and transsulfuration. Preovulatory protein restriction increased whole-body methionine transmethylation, methionine transsulfuration and the flux of serine in LP and LPF vs. C (p = 0.003, p = 0.002, p = 0.005). The concentration of glutathione was increased in erythrocytes and liver in LP and LPF vs. C (p = 0.003 and p = 0.0003). Oocyte mitochondrial ultrastructure in LP and LPF had increased proportions of abnormal mitochondria vs. C (p < 0.01 and p < 0.05). Cumulus cell mitochondrial ultrastructure in LP and LPF groups had increased proportions of abnormal mitochondria vs. C (p < 0.001 and p < 0.05). Preovulatory protein restriction altered oocyte expression of Drp1, Opa-1, Mfn1/2, Parl and Ndufb6 (p < 0.05) and Hk2 (p < 0.01), which are genes involved in mitochondrial fission (division) and fusion, mitochondrial apoptotic mechanisms, respiratory electron transport and glucose metabolism. CONCLUSIONS Preovulatory protein restriction resulted in altered amino acid metabolism, abnormal cumulus oocyte complex mitochondrial ultrastructure and differential oocyte expression of genes related to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Amy K. Schutt
- 0000 0001 2160 926Xgrid.39382.33Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX USA
- 0000 0001 2200 2638grid.416975.8Texas Children’s Hospital Pavilion for Women, 6651 Main St, Suite F1020, Houston, TX 77030 USA
| | - Chellakkan S. Blesson
- 0000 0001 2160 926Xgrid.39382.33Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX USA
| | - Jean W. Hsu
- 0000 0001 2160 926Xgrid.39382.33USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Cecilia T. Valdes
- 0000 0001 2160 926Xgrid.39382.33Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX USA
| | - William E. Gibbons
- 0000 0001 2160 926Xgrid.39382.33Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX USA
| | - Farook Jahoor
- 0000 0001 2160 926Xgrid.39382.33USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Chandra Yallampalli
- 0000 0001 2160 926Xgrid.39382.33Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
13
|
Xue Z, Fu X, Rao H, Hassan Ibrahim M, Xiong L, Liu X, Lu X. A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta 2017; 174:667-672. [DOI: 10.1016/j.talanta.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022]
|
14
|
Xue Z, Wang X, Rao H, Liu X, Lu X. A colorimetric sensor of cysteine based on self-assembly nanostructures of Fe 3+-H 2O 2/Tetramethylbenzidine system with "On-Off" switching function. Anal Biochem 2017; 534:1-9. [PMID: 28693991 DOI: 10.1016/j.ab.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
Many strategies have been explored for selectively and sensitively detecting cysteine in different samples. Here, a novel colorimetric sensor based on self-assembly nanostructures of Fe3+-H2O2/Tetramethylbenzidine system with dual-level logic gate function and colorimetric determination of cysteine were firstly explored. The proposed Fe3+-H2O2-TMB system provides a sensitive optical signal due to the selectively reductive ability of cysteine to the oxidized TMB and thus could be successfully applied to the construction of instant on-site visual detection method with a paper based test strip for cysteine determination in a sample solution as well as for a dual-level logic gate fabrication.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaofen Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Honghong Rao
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
15
|
Devi S, Mukhopadhyay A, Dwarkanath P, Thomas T, Crasta J, Thomas A, Sheela CN, Hsu JW, Tang GJ, Jahoor F, Kurpad AV. Combined Vitamin B-12 and Balanced Protein-Energy Supplementation Affect Homocysteine Remethylation in the Methionine Cycle in Pregnant South Indian Women of Low Vitamin B-12 Status. J Nutr 2017; 147:1094-1103. [PMID: 28446631 DOI: 10.3945/jn.116.241042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 03/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Low-quality dietary protein intake and vitamin B-12 deficiency could interact to decrease methionine transmethylation and remethylation rates during pregnancy and may affect epigenetic modifications of the fetal genome.Objective: The objective of this randomized, partially open-labeled intervention trial was to examine the effect of supplemental high-quality protein and vitamin B-12 on third-trimester methionine kinetics in pregnant Indian women with a low vitamin B-12 status.Methods: Pregnant women with low serum vitamin B-12 concentrations (<200 pmol/L) were randomly assigned to 1 of 3 groups: the first group received balanced protein-energy supplementation of 500 mL milk/d plus a 10-μg vitamin B-12 tablet/d (M+B-12 group; n = 30), the second group received milk (500 mL/d) plus a placebo tablet (M+P group; n = 30), and the third group received a placebo tablet alone (P group; n = 33). Third-trimester fasting plasma amino acid kinetics were measured by infusing 1-13C,methyl-2H3-methionine, ring-2H5-phenylalanine, ring-2H4-tyrosine,1-13C-glycine, and 2,3,3-2H3,15N-serine in a subset of participants. Placental mRNA expression of genes involved in methionine pathways, placental long interspersed nuclear elements 1 (LINE-1) methylation, and promoter methylation levels of vascular endothelial growth factor (VEGF) were analyzed.Results: Remethylation rates in the M+B-12, M+P, and P groups were 5.1 ± 1.7, 4.1 ± 1.0, and, 5.0 ± 1.4 μmol ⋅ kg-1 ⋅ h-1, respectively (P = 0.057), such that the percentage of transmethylation remethylated to methionine tended to be higher in the M+B-12 group (49.5% ± 10.5%) than in the M+P group (42.3% ± 8.4%; P = 0.053) but neither differed from the P group (44.2% ± 8.1%; P > 0.1). Placental mRNA expression, LINE-1, and VEGF promoter methylation did not differ between groups.Conclusions: Combined vitamin B-12 and balanced protein-energy supplementation increased the homocysteine remethylation rate in late pregnancy. Thus, vitamin B-12 along with balanced protein-energy supplementation is critical for optimal functioning of the methionine cycle in the third trimester of pregnancy in Indian women with low serum vitamin B-12 in early pregnancy. This trial was registered at clinicaltrials.gov as CTRI/2016/01/006578.
Collapse
Affiliation(s)
| | | | | | - Tinku Thomas
- Epidemiology and Biostatistics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Annamma Thomas
- Obstetrics and Gynecology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India; and
| | - C N Sheela
- Obstetrics and Gynecology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India; and
| | - Jean W Hsu
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Grace J Tang
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Farook Jahoor
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
16
|
Vassilyadi P, Harding SV, Nitschmann E, Wykes LJ. Experimental colitis and malnutrition differentially affect the metabolism of glutathione and related sulfhydryl metabolites in different tissues. Eur J Nutr 2015. [DOI: 10.1007/s00394-015-0995-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2015; 60:134-46. [PMID: 25929483 DOI: 10.1002/mnfr.201500031] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Chongyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
18
|
Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm Coulthard's hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia. Paediatr Int Child Health 2015; 35:90-109. [PMID: 25844980 DOI: 10.1179/2046905515y.0000000010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The various types of oedema in man are considered in relation to Starling's hypothesis of fluid movement from capillaries, with the main emphasis on nutritional oedema and the nephrotic syndrome in children. It is concluded that each condition has sufficient anomalous findings to render Starling's hypothesis untenable. The finding that the endothelial glycocalyx is key to control of fluid movement from and into the capillaries calls for complete revision of our understanding of oedema formation. The factors so far known to affect the function of the glycocalyx are reviewed. As these depend upon sulphated proteoglycans and other glycosaminoglycans, the argument is advanced that the same abnormalities will extend to the interstitial space and that kwashiorkor is fundamentally related to a defect in sulphur metabolism which can explain all the clinical features of the condition, including the formation of oedema.
Collapse
Key Words
- Albumin,
- Aldosterone,
- Angiotensin,
- Beriberi,
- Edema,
- Epidemic dropsy,
- Famine oedema,
- Glycocalyx,
- Glycosaminoglycans,
- Heart failure,
- Hunger oedema,
- Kwashiorkor,
- Malnutrition,
- Nephrotic syndrome,
- Oedema,
- Potassium deficiency,
- Pre-eclampsia,
- Protein-energy malnutrition,
- Proteoglycans,
- Renin,
- Salt,
- Severe acute malnutrition
- Vitamin E deficiency,
- War oedema,
- Water,
Collapse
|
19
|
Green CO, Badaloo AV, Hsu JW, Taylor-Bryan C, Reid M, Forrester T, Jahoor F. Effects of randomized supplementation of methionine or alanine on cysteine and glutathione production during the early phase of treatment of children with edematous malnutrition. Am J Clin Nutr 2014; 99:1052-8. [PMID: 24598154 PMCID: PMC3985210 DOI: 10.3945/ajcn.113.062729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 01/30/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We have shown that a low glutathione concentration and synthesis rate in erythrocytes are associated with a shortage of protein-derived cysteine in children with edematous severe acute malnutrition (SAM). OBJECTIVE We tested the hypothesis that methionine supplementation may increase protein-derived cysteine and upregulate cysteine synthesis, thereby improving glutathione synthesis during the early treatment of edematous SAM. DESIGN The cysteine flux, its de novo synthesis and release from protein breakdown, and erythrocyte glutathione synthesis rate were measured in 12 children with edematous SAM in the fed state by using stable isotope tracers at 3 clinical phases as follows: 3 ± 1 d (±SE) [clinical phase 1 (CP1)], 8 ± 1 d [clinical phase 2 (CP2)], and 14 ± 2 d (clinical phase 3) after admission. Subjects were randomly assigned to receive equimolar supplements (0.5 mmol ⋅ kg(-1) ⋅ d(-1)) of methionine or alanine (control) immediately after CP1. RESULTS In the methionine compared with the alanine group, cysteine flux derived from protein breakdown was faster at CP2 than CP1 (P < 0.05), and the change in plasma cysteine concentration from CP1 to CP2 was greater (P < 0.05). However, there was no evidence of a difference in cysteine de novo synthesis and its total flux or erythrocyte glutathione synthesis rate and concentration between groups. CONCLUSIONS Methionine supplementation increased cysteine flux from body protein but had no significant effect on glutathione synthesis rates. Although cysteine is made from methionine, increased dietary cysteine may be necessary to partially fulfill its demand in edematous SAM because glutathione synthesis rates and concentrations were less than previous values shown at full recovery. This study was registered at clinicaltrials.gov as NCT00473031.
Collapse
Affiliation(s)
- Curtis O Green
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Kingston, Jamaica (COG, AVB, CT-B, MR, and TF), and the USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JWH and FJ)
| | | | | | | | | | | | | |
Collapse
|
20
|
Hsu JW, Badaloo A, Wilson L, Taylor-Bryan C, Chambers B, Reid M, Forrester T, Jahoor F. Dietary supplementation with aromatic amino acids increases protein synthesis in children with severe acute malnutrition. J Nutr 2014; 144:660-6. [PMID: 24647391 PMCID: PMC3985822 DOI: 10.3945/jn.113.184523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/14/2022] Open
Abstract
Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained during the catch-up growth and recovery phases of treatment. This study aimed to determine whether supplementation with an AAA cocktail (330 mg · kg(-1) · d(-1)) vs. isonitrogenous Ala would improve measures of protein kinetics in 22 children, aged 4-31 mo, during the catch-up growth and recovery phases of treatment for SAM. Protein kinetics were assessed by measuring leucine, phenylalanine, and urea kinetics with the use of standard stable isotope tracer methods in the fed state. Supplementation started at the end of the maintenance period when the children were clinically/metabolically stable and continued up to full nutritional recovery. Three experiments were performed: at the end of maintenance (at ∼13 d postadmission), at mid-catch-up growth (at ∼23 d post- admission when the children had replenished 50% of their weight deficit), and at recovery (at ∼48 d postadmission when they had achieved at least 90% weight for length). Children in the AAA group had significantly faster protein synthesis compared with those in the Ala group at mid-catch-up growth (101 ± 10 vs. 72 ± 7 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and better protein balance at mid-catch-up growth (49 ± 5 vs. 30 ± 2 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and at recovery (37 ± 8 vs. 11 ± 3 μmol phenylalanine · kg(-1) · h(-1); P < 0.05). We conclude that dietary supplementation with AAA accelerates net protein synthesis in children during nutritional rehabilitation for SAM.
Collapse
Affiliation(s)
- Jean W. Hsu
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Asha Badaloo
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Lorraine Wilson
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Carolyn Taylor-Bryan
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Bentley Chambers
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Marvin Reid
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Terrence Forrester
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | - Farook Jahoor
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| |
Collapse
|
21
|
Bahwere P, Banda T, Sadler K, Nyirenda G, Owino V, Shaba B, Dibari F, Collins S. Effectiveness of milk whey protein-based ready-to-use therapeutic food in treatment of severe acute malnutrition in Malawian under-5 children: a randomised, double-blind, controlled non-inferiority clinical trial. MATERNAL AND CHILD NUTRITION 2014; 10:436-51. [PMID: 24521353 PMCID: PMC6860310 DOI: 10.1111/mcn.12112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cost of ready‐to‐use therapeutic food (RUTF) used in community‐based management of acute malnutrition has been a major obstacle to the scale up of this important child survival strategy. The current standard recipe for RUTF [peanut‐based RUTF (P‐RUTF)] is made from peanut paste, milk powder, oil, sugar, and minerals and vitamins. Milk powder forms about 30% of the ingredients and may represent over half the cost of the final product. The quality of whey protein concentrates 34% (WPC34) is similar to that of dried skimmed milk (DSM) used in the standard recipe and can be 25–33% cheaper. This blinded, parallel group, randomised, controlled non‐inferiority clinical trial tested the effectiveness in treating severe acute malnutrition (SAM) of a new RUTF formulation WPC‐RUTF in which WPC34 was used to replace DSM. Average weight gain (non‐inferiority margin Δ = −1.2 g kg−1 day−1) and recovery rate (Δ = −10%) were the primary outcomes, and length of stay (LOS) was the secondary outcome (Δ = +14 days). Both per‐protocol (PP) and intention‐to‐treat (ITT) analyses showed that WPC‐RUTF was not inferior to P‐RUTF for recovery rate [difference and its 95% confidence interval (CI) of 0.5% (95% CI –2.7, 3.7) in PP analysis and 0.6% (95% CI –5.2, 6.3) in ITT analysis] for average weight gain [0.2 (−0.5; 0.9) for both analyses] and LOS [−1.6 days (95% CI, −4.6, 1.4 days) in PP analysis and −1.9 days (95% CI, −4.6, 0.8 days) for ITT analysis]. In conclusion, whey protein‐based RUTF is an effective cheaper alternative to the standard milk‐based RUTF for the treatment of SAM.
Collapse
Affiliation(s)
- Paluku Bahwere
- Valid International, Oxford, UK; Centre of Research in Epidemiology, Biostatistics and Clinical Research, School of Public Health, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|