1
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Feng H, Xin K, Chen W, Meng P, Tang X, Wang H, Wang C. Transcriptome analysis reveals diverse Curvularia tsudae strategies in response to cadmium stress. CHEMOSPHERE 2024; 351:141093. [PMID: 38169201 DOI: 10.1016/j.chemosphere.2023.141093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/26/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that poses significant threats to living organisms. Curvularia tsudae has demonstrated remarkable survival capabilities in the presence of high Cd concentrations, exhibiting its exceptional Cd tolerance. Although some physiological studies have been conducted, the molecular mechanisms underlying Cd tolerance in C. tsudae is largely unknown. In this study, a comparative transcriptome analysis was performed to explore the molecular mechanisms of C. tsudae under Cd stress. Among the 10,498 identified unigenes, 2526 differentially expressed genes (DEGs) were identified between the Cd-free and Cd-treated samples. Functional annotation and enrichment analysis of these DEGs identified several key biological processes involved in coping with Cd stress. Genes related to cell wall modification and organic acid metabolism contributes to Cd binding or chelation. Fourier transform infrared spectroscopy (FTIR) analysis further highlighted the modifications in functional groups with the cell wall under Cd stress. Furthermore, the transporters tended to be modulated in response to Cd stress, and up-regulated genes involved in antioxidants likely contributes to high Cd tolerance. The processes from DNA to protein metabolism appeared to responsive to the presence of Cd stress as well. These results contribute to the advance of the current knowledge about the response of C. tsudae to Cd stress and lay the foundation for further advancements in using fungi for the remediation of Cd-polluted environments.
Collapse
Affiliation(s)
- Huan Feng
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexu Xin
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Chen
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Panpan Meng
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaan Tang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
A. Hassabo A, H.Selim M, M.Saad M, Abdelraof M. Optimization of l-methioninase and l-arginase production by newly isolated marine yeast using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Xu Y, Shi T, Cui X, Yan L, Wang Q, Xu X, Zhao Q, Xu X, Tang QQ, Tang H, Pan D. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. EMBO J 2021; 40:e108069. [PMID: 34704268 PMCID: PMC8672174 DOI: 10.15252/embj.2021108069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine‐fed mice showed better cold tolerance. In mice with diet‐induced obesity, the asparagine‐fed group was more responsive to β3‐adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13C‐glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.
Collapse
Affiliation(s)
- Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
6
|
Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol 2020; 104:2857-2869. [PMID: 32037468 DOI: 10.1007/s00253-020-10432-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Amino acid deprivation therapy (AADT) is emerging as a promising strategy for the development of novel therapeutics against cancer. This biological therapy relies upon the differences in the metabolism of cancer and normal cells. The rapid growth of tumors results in decreased expression of certain enzymes leading to auxotrophy for some specific amino acids. These auxotrophic tumors are targeted by amino acid-depleting enzymes. The depletion of amino acid selectively inhibits tumor growth as the normal cells can synthesize amino acids by their usual machinery. The enzymes used in AADT are mostly obtained from microbes for their easy availability. Microbial L-asparaginase is already approved by FDA for the treatment of acute lymphoblastic leukemia. Arginine deiminase and methionase are under clinical trials and the therapeutic potential of lysine oxidase, glutaminase and phenylalanine ammonia lyase is also being explored. The present review provides an overview of microbial amino acid depriving enzymes. Various attributes of these enzymes like structure, mode of action, production, formulations, and targeted cancers are discussed. The challenges faced and the combat strategies to establish AADT in standard cancer armamentarium are also reviewed.Key Points • Amino acid deprivation therapy is a potential therapy for auxotrophic tumors. • Microbial enzymes are used due to their ease of manipulation and high productivity. • Enzyme properties are improved by PEGylation, encapsulation, and genetic engineering. • AADT can be employed as combinational therapy for better containment of cancer.
Collapse
|
7
|
Kanazawa M, Watanabe M, Suzuki T. Protein malnutrition prevents heat conservation induced by amino acid infusion during general anesthesia in rats. Nutr Res 2019; 65:79-88. [PMID: 30967292 DOI: 10.1016/j.nutres.2019.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
The intravenous administration of an amino acid (AA) mixture during general anesthesia reduces anesthesia-induced hypothermia. AA-induced skeletal muscle protein synthesis and thermogenesis play important roles in the antihypothermic effects of AAs. We hypothesized that a preanesthetic dietary protein deficiency impairs the antihypothermic effects of AAs during general anesthesia due to a reduction in thermogenesis caused by a decrease in muscle protein synthesis. Sprague-Dawley rats were divided into 4 groups: fed a control diet plus saline (CON-SAL) or the AA mixture (CON-AA), and fed a protein-free diet plus saline (PF-SAL) or the AA mixture (PF-AA). SAL solution or AA mixture solution was infused for 180 minutes during sevoflurane anesthesia, and rectal temperatures were measured. Rectal temperatures were significantly higher in the CON-AA group than in the PF-AA group 90 to 180 minutes after initiating the intravenous infusion of the test solutions. There was no significant difference between the PF-SAL and PF-AA groups. Plasma insulin concentrations were significantly higher in the CON-AA group than in the PF-AA group (P < .05). The phosphorylation states of protein kinase B, mammalian target of rapamycin, and eukaryotic initiation factor 4E-binding protein 1 were significantly greater in the CON-AA group than in the PF-AA group (P < .05, P < .05, and P < .01, respectively). Our results indicated that a dietary protein deficiency before general anesthesia impaired the antihypothermic effects of an AA mixture infusion during general anesthesia by decreasing muscle protein synthesis through the insulin-stimulated phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin complex 1 signaling pathway followed by metabolic heat production.
Collapse
Affiliation(s)
- Masahiro Kanazawa
- Division of Anesthesia, Subaru Health Insurance Society Ota Memorial Hospital, 455-1, Oshima-cho, Ota, Gunma 373-8585, Japan.
| | - Mariko Watanabe
- Department of Anesthesiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan
| | - Toshiyasu Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan
| |
Collapse
|
8
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Sahebekhtiari N, Fernandez-Guerra P, Nochi Z, Carlsen J, Bross P, Palmfeldt J. Deficiency of the mitochondrial sulfide regulator ETHE1 disturbs cell growth, glutathione level and causes proteome alterations outside mitochondria. Biochim Biophys Acta Mol Basis Dis 2018; 1865:126-135. [PMID: 30391543 DOI: 10.1016/j.bbadis.2018.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/14/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells. Cell growth initiation of the EE patient cells was impaired, whereas cell cycle regulation was not. Furthermore, Seahorse metabolic analyzes revealed decreased extracellular acidification, i. e. decreased lactate formation from glycolysis, in the EE patient cells. TMT-based large-scale proteomics was subsequently performed to broadly elucidate cellular consequences of the ETHE1 deficiency. More than 130 proteins were differentially regulated, of which the majority were non-mitochondrial. The proteomics data revealed a link between ETHE1-deficiency and down-regulation of several ribosomal proteins and LIM domain proteins important for cellular maintenance, and up-regulation of cell surface glycoproteins. Furthermore, several proteins of endoplasmic reticulum (ER) were perturbed including proteins influencing disulfide bond formation (e.g. protein disulfide isomerases and peroxiredoxin 4) and calcium-regulated proteins. The results indicate that decreased level of reduced GSH and alterations in proteins of ribosomes, ER and of cell adhesion lie behind the disrupted cell growth of the EE patient cells.
Collapse
Affiliation(s)
- Navid Sahebekhtiari
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
10
|
Kuwahata M, Kobayashi Y, Wada Y, Aoi W, Kido Y. Dietary cystine is important to maintain plasma mercaptalbumin levels in rats fed low-protein diets. Nutr Res 2018; 56:79-89. [DOI: 10.1016/j.nutres.2018.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
|
11
|
Ararso Z, Ma C, Qi Y, Feng M, Han B, Hu H, Meng L, Li J. Proteome Comparisons between Hemolymph of Two Honeybee Strains (Apis mellifera ligustica) Reveal Divergent Molecular Basis in Driving Hemolymph Function and High Royal Jelly Secretion. J Proteome Res 2017; 17:402-419. [DOI: 10.1021/acs.jproteome.7b00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zewdu Ararso
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Ma
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuping Qi
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Glick NR, Fischer MH. Potential Benefits of Ameliorating Metabolic and Nutritional Abnormalities in People With Profound Developmental Disabilities. Nutr Metab Insights 2017; 10:1178638817716457. [PMID: 35185339 PMCID: PMC8855413 DOI: 10.1177/1178638817716457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Background: People with profound developmental disabilities have some of the most severe neurological impairments seen in society, have accelerated mortality due to huge medical challenges, and yet are often excluded from scientific studies. They actually have at least 2 layers of conditions: (1) the original disability and (2) multiple under-recognized and underexplored metabolic and nutritional imbalances involving minerals (calcium, zinc, and selenium), amino acids (taurine, tryptophan), fatty acids (linoleic acid, docosahexaenoic acid, arachidonic acid, adrenic acid, Mead acid, plasmalogens), carnitine, hormones (insulinlike growth factor 1), measures of oxidative stress, and likely other substances and systems. Summary: This review provides the first list of metabolic and nutritional abnormalities commonly found in people with profound developmental disabilities and, based on the quality of life effects of similar abnormalities in neurotypical people, indicates the potential effects of these abnormalities in this population which often cannot communicate symptoms. Key messages: We propose that improved understanding and management of these disturbed mechanisms would enhance the quality of life of people with profound developmental disabilities. Such insights may also apply to people with other conditions associated with disability, including some diseases requiring stem cell implantation and living in microgravity.
Collapse
Affiliation(s)
- Norris R Glick
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Milton H Fischer
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Gobet C, Naef F. Ribosome profiling and dynamic regulation of translation in mammals. Curr Opin Genet Dev 2017; 43:120-127. [PMID: 28363112 DOI: 10.1016/j.gde.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Protein synthesis is an energy-demanding cellular process. Consequently, a well-timed, fine-tuned and plastic regulation of translation is needed to adjust and maintain cell states under dynamically changing environments. Genome-wide monitoring of translation was recently facilitated by ribosome profiling, which uncovered key features of translation regulation. In this review, we summarize recent ribosome profiling studies in mammals providing novel insight in dynamic translation regulation, notably related to circadian rhythms, diurnal feeding/fasting cycles, cell cycle progression, stress responses, and tRNA landscapes. In particular, recent results show that regulating translation initiation and elongation represent important mechanisms used in mammalian cells to rapidly modulate protein expression in dynamically changing environments.
Collapse
Affiliation(s)
- Cédric Gobet
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Switzerland.
| |
Collapse
|
14
|
Roussel G, Stevens V, Cottin S, McArdle HJ. The effect of amino acid deprivation on the transfer of iron through Caco-2 cell monolayers. J Trace Elem Med Biol 2017; 40:82-90. [PMID: 28159226 DOI: 10.1016/j.jtemb.2016.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/31/2016] [Indexed: 11/25/2022]
Abstract
Iron (Fe) metabolism is modified by many nutritional factors. Amino acids (AA) play a central role in various biological processes, such as protein synthesis and energy supply. However, the influence of AA status on iron metabolism has not been investigated. Here, we test whether AA alters iron metabolism in an intestinal cell model. Both Fe uptake and transfer across the cell monolayer were significantly increased by non-essential AA deficiency (both p<0.001) while only Fe transfer was increased by essential AA deficiency (p<0.0001). Both essential and non-essential AA deficiency decreased DMT1 (±IRE) exon1A mRNA expression (respectively p=0.0007 and p=0.006) and increased expression of ferritin heavy chain. DMT1+IRE (also expressing exon1A or 1B) mRNA levels were decreased by essential AA deficiency (p=0.012). The mRNA levels of total DMT1 were also decreased by essential, but not non-essential, AA deficiency (p=0.006). Hepcidin levels were increased significantly by non-essential amino acid deprivation (p=0.047). Protein levels of ferroportin and/or ferritin heavy chain were not altered by AA deficiency, suggesting that they had no effect on Fe efflux or storage in the cell, though iron content of ferritin could be increased. Our data demonstrate, for the first time, that AA status affects iron transport and the expression of genes related to iron metabolism in Caco-2 cells, although the changes observed are not sufficient to explain the alteration in iron transport. We hypothesise that the effect on Fe transfer is mediated through an increased movement across the cell layer, rather than transfer across the cell membranes.
Collapse
Affiliation(s)
- Guenievre Roussel
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | - Valerie Stevens
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | - Sarah Cottin
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | - Harry J McArdle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
15
|
Yuan W, Guo S, Gao J, Zhong M, Yan G, Wu W, Chao Y, Jiang Y. General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in Saccharomyces cerevisiae. J Biol Chem 2017; 292:2660-2669. [PMID: 28057755 DOI: 10.1074/jbc.m116.772194] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, two conserved protein kinases, Gcn2 and TOR complex 1 (TORC1), couple amino acid conditions to protein translation. Gcn2 functions as an amino acid sensor and is activated by uncharged tRNAs that accumulate when intracellular amino acids are limited. Activated Gcn2 phosphorylates and inhibits eukaryotic initiation factor-2α (eIF2α), resulting in repression of general protein synthesis. Like Gcn2, TORC1 is also involved in sensing amino acid conditions. However, the underlying mechanism remains unclear. In the present study, we show that TORC1 is a direct target of Gcn2 kinase in the yeast Saccharomyces cerevisiae In response to amino acid starvation, Gcn2 binds to TORC1 and phosphorylates Kog1, the unique regulatory subunit of TORC1, resulting in down-regulation of TORC1 kinase activity. In the absence of Gcn2, TORC1 signaling activity increases and becomes unresponsive to amino acid starvation. Our findings demonstrate that TORC1 is an effector of Gcn2 in amino acid signaling, hence defining a novel mechanism by which TORC1 senses amino acid starvation.
Collapse
Affiliation(s)
- Wenjie Yuan
- From the School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Shuguang Guo
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Jiaoqi Gao
- From the School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Mingming Zhong
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Gonghong Yan
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Wangmeng Wu
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Yapeng Chao
- the State Key Laboratories of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Jiang
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| |
Collapse
|
16
|
Wang X, Pan T. Stress Response and Adaptation Mediated by Amino Acid Misincorporation during Protein Synthesis. Adv Nutr 2016; 7:773S-9S. [PMID: 27422514 PMCID: PMC4942860 DOI: 10.3945/an.115.010991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Translation of genetic information into functional proteins is critical for all cellular life. Accurate protein synthesis relies on proper aminoacylation of transfer RNAs (tRNAs) and decoding of mRNAs by the ribosome with the use of aminoacyl-tRNAs. Mistranslation can lead to pathologic consequences. All cells contain elaborate quality control mechanisms in translation, although translational fidelity may be regulated by various factors such as nutrient limitation or reactive oxygen species. Translation fidelity is maintained via the accuracy of tRNA aminoacylation by the aminoacyl-tRNA synthetases and matching of the mRNA codon with the tRNA anticodon by the ribosome. Stringent substrate discrimination and proofreading are critical in aminoacylating tRNAs with their cognate amino acid to maintain high accuracy of translation. Although the composition of the cellular proteome generally adheres to the genetic code, accumulating evidence indicates that cells can also deliberately mistranslate; they synthesize mutant proteins that deviate from the genetic code in response to stress or environmental changes. Mistranslation with tRNA charged with noncognate amino acids can expand the proteome to enhance stress response and help adaptation. Here, we review current knowledge on mistranslation through tRNA misacylation and describe advances in our understanding of translational control in the regulation of stress response and human diseases.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
17
|
Dodds SG, Livi CB, Parihar M, Hsu HK, Benavides AD, Morris J, Javors M, Strong R, Christy B, Hasty P, Sharp ZD. Adaptations to chronic rapamycin in mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:31688. [PMID: 27237224 PMCID: PMC4884683 DOI: 10.3402/pba.v6.31688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022]
Abstract
Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive 'pseudo-anabolic' state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences.
Collapse
Affiliation(s)
- Sherry G Dodds
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Carolina B Livi
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Agilent Technologies, Inc., Santa Clara, CA, USA
| | - Manish Parihar
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Hang-Kai Hsu
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- KCRB 2018, City of Hope, Duarte, CA, USA
| | - Adriana D Benavides
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Infectious Disease Research Division, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jay Morris
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Randy Strong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Barbara Christy
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Coagulation and Blood Research Group, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| | - Zelton Dave Sharp
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| |
Collapse
|
18
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Sahebekhtiari N, Nielsen CB, Johannsen M, Palmfeldt J. Untargeted Metabolomics Analysis Reveals a Link between ETHE1-Mediated Disruptive Redox State and Altered Metabolic Regulation. J Proteome Res 2016; 15:1630-8. [DOI: 10.1021/acs.jproteome.6b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navid Sahebekhtiari
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Camilla Bak Nielsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Mogens Johannsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
20
|
Farup J, Rahbek SK, Storm AC, Klitgaard S, Jørgensen H, Bibby BM, Serena A, Vissing K. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans. SPRINGERPLUS 2016; 5:382. [PMID: 27065230 PMCID: PMC4814394 DOI: 10.1186/s40064-016-1995-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
Abstract
Whey protein is generally found to be faster digested and to promote faster and higher increases in plasma amino acid concentrations during the immediate ~60 min following protein ingestion compared to casein. The aim of the present study was to compare three different whey protein hydrolysates with varying degrees of hydrolysis (DH, % cleaved peptide bonds) to evaluate if the degree of whey protein hydrolysis influences the rate of amino acid plasma appearance in humans. A casein protein was included as reference. The three differentially hydrolysed whey proteins investigated were: High degree of hydrolysis (DH, DH = 48 %), Medium DH (DH = 27 %), and Low DH (DH = 23 %). The casein protein was intact. Additionally, since manufacturing of protein products may render some amino acids unavailable for utilisation in the body the digestibility and the biological value of all four protein fractions were evaluated in a rat study. A two-compartment model for the description of the postprandial plasma amino acid kinetics was applied to investigate the rate of postprandial total amino acid plasma appearance of the four protein products. The plasma amino acid appearance rates of the three whey protein hydrolysates (WPH) were all significantly higher than for the casein protein, however, the degree of hydrolysis of the WPH products did not influence plasma total amino acid appearance rate (estimates of DH and 95 % confidence intervals [CI] (mol L−1 min−1): High DH 0.0585 [0.0454, 0.0754], Medium DH 0.0594 [0.0495, 0.0768], Low DH 0.0560 [0.0429, 0.0732], Casein 0.0194 [0.0129, 0.0291]). The four protein products were all highly digestible, while the biological value decreased with increasing degree of hydrolysis. In conclusion, the current study does not provide evidence that the degree of whey protein hydrolysis is a strong determinant for plasma amino acid appearance rate within the studied range of hydrolysis and protein dose.
Collapse
Affiliation(s)
- Jean Farup
- Section for Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus, Denmark
| | - Stine Klejs Rahbek
- Section for Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus, Denmark
| | - Adam C Storm
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | | | - Henry Jørgensen
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | - Bo M Bibby
- Department of Biostatistics, Aarhus University, Aarhus, Denmark
| | - Anja Serena
- Arla Foods Ingredients Group P/S, Aarhus, Denmark
| | - Kristian Vissing
- Section for Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus, Denmark
| |
Collapse
|
21
|
Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:269-84. [DOI: 10.1016/j.bbalip.2016.01.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/30/2022]
|
22
|
Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxf) 2016; 216:15-41. [PMID: 26010896 PMCID: PMC4843955 DOI: 10.1111/apha.12532] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Skeletal muscles comprise a substantial portion of whole body mass and are integral for locomotion and metabolic health. Increasing age is associated with declines in both muscle mass and function (e.g. strength‐related performance, power) with declines in muscle function quantitatively outweighing those in muscle volume. The mechanisms behind these declines are multi‐faceted involving both intrinsic age‐related metabolic dysregulation and environmental influences such as nutritional and physical activity. Ageing is associated with a degree of ‘anabolic resistance’ to these key environmental inputs, which likely accelerates the intrinsic processes driving ageing. On this basis, strategies to sensitize and/or promote anabolic responses to nutrition and physical activity are likely to be imperative in alleviating the progression and trajectory of sarcopenia. Both resistance‐ and aerobic‐type exercises are likely to confer functional and health benefits in older age, and a clutch of research suggests that enhancement of anabolic responsiveness to exercise and/or nutrition may be achieved by optimizing modifications of muscle‐loading paradigms (workload, volume, blood flow restriction) or nutritional support (e.g. essential amino acid/leucine) patterns. Nonetheless, more work is needed in which a more holistic view in ageing studies is taken into account. This should include improved characterization of older study recruits, that is physical activity/nutritional behaviours, to limit confounding variables influencing whether findings are attributable to age, or other environmental influences. Nonetheless, on balance, ageing is associated with declines in muscle mass and function and a partially related decline in aerobic capacity. There is also good evidence that metabolic flexibility is impaired in older age.
Collapse
Affiliation(s)
- M. S. Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - D. J. Wilkinson
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - B. E. Phillips
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - J. Perez-Schindler
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - A. Philp
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - K. Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - P. J. Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| |
Collapse
|
23
|
Ferguson A, Wang L, Altman RB, Terry DS, Juette MF, Burnett BJ, Alejo JL, Dass RA, Parks MM, Vincent CT, Blanchard SC. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Mol Cell 2015; 60:475-86. [PMID: 26593721 PMCID: PMC4660248 DOI: 10.1016/j.molcel.2015.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation.
Collapse
Affiliation(s)
- Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin J Burnett
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jose L Alejo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology and Physiology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Reduction in amino-acid-induced anti-hypothermic effects during general anesthesia in ovariectomized rats with progesterone replacement. J Anesth 2015; 30:123-31. [PMID: 26373953 DOI: 10.1007/s00540-015-2075-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of the present study was to determine whether the ovarian hormones, estrogen and progesterone, had different influences on amino-acid-induced anti-hypothermic effects during general anesthesia. METHODS Ovariectomized Sprague-Dawley female rats were divided into four groups: those administered 17β-estradiol plus saline or an amino acid mixture (E2-Sal and E2-AA, respectively) and progesterone plus saline or an amino acid mixture (P-Sal and P-AA, respectively). Five weeks after ovariectomy, rats were given either E2 or P and then administered either Sal or AA solution for 180 min during anesthesia with sevoflurane. Rectal temperatures were measured. RESULTS Rectal temperatures were significantly higher in the E2-AA group than in the E2-Sal group 165 and 180 min after initiating the infusion of the test solutions. However, no significant differences were observed between the P-treated groups. The phosphorylation of 4E-BP1 and S6K1 was significantly greater in the E2-AA group than in the E2-Sal group (P < 0.05, P < 0.001, respectively). In contrast, the phosphorylation of 4E-BP1 was significantly lower in the P-AA group than in the P-Sal group (P < 0.001). CONCLUSIONS These results suggest that progesterone reduces amino-acid-induced anti-hypothermic effects during general anesthesia.
Collapse
|
25
|
Abstract
Based on own translational research of the biochemical and hormonal effects of cow's milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Neonates with feeding difficulties can be fed by orogastric tube, using either continuous or bolus delivery. This review reports on recent findings that bolus is advantageous compared to continuous feeding in supporting optimal protein anabolism. RECENT FINDINGS Whether bolus or continuous feeding is more beneficial has been controversial, largely due to limitations inherent in clinical studies, such as the presence of confounding variables and the inability to use invasive approaches. Recent studies using the piglet as a model of the human neonate showed that, compared to continuous feeding, bolus feeding enhances protein synthesis and promotes greater protein deposition. The increase in protein synthesis occurs in muscles of varying fiber type and in visceral tissues whereas muscle protein degradation is largely insensitive to feeding pattern. This higher protein synthesis rate is enabled by the rapid and profound increases in circulating amino acids and insulin that occur following a bolus feed, which activate the intracellular signaling pathways leading to mRNA translation. SUMMARY Recent findings indicate that bolus feeding enhances protein synthesis more than continuous feeding and promotes greater protein anabolism. The difference in response is attributable to the pulsatile pattern of amino acid-induced and insulin-induced translation initiation induced only by bolus feeding.
Collapse
Affiliation(s)
- Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
27
|
Abstract
The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR) pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes) decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease) in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.
Collapse
Affiliation(s)
- Sabarish Nagarajan
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Savraj S Grewal
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
28
|
Rahbek SK, Farup J, Møller AB, Vendelbo MH, Holm L, Jessen N, Vissing K. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids 2014; 46:2377-92. [PMID: 25005782 DOI: 10.1007/s00726-014-1792-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
Abstract
Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .
Collapse
Affiliation(s)
- Stine Klejs Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, Aarhus C, 8000, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids 2014; 47:2065-88. [PMID: 24965527 DOI: 10.1007/s00726-014-1775-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
Abstract
Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sovan Sarkar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
30
|
Keeping the eIF2 alpha kinase Gcn2 in check. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1948-68. [PMID: 24732012 DOI: 10.1016/j.bbamcr.2014.04.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.
Collapse
|