1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Melgar-Locatelli S, de Ceglia M, Mañas-Padilla MC, Rodriguez-Pérez C, Castilla-Ortega E, Castro-Zavala A, Rivera P. Nutrition and adult neurogenesis in the hippocampus: Does what you eat help you remember? Front Neurosci 2023; 17:1147269. [PMID: 36908779 PMCID: PMC9995971 DOI: 10.3389/fnins.2023.1147269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Neurogenesis is a complex process by which neural progenitor cells (NPCs)/neural stem cells (NSCs) proliferate and differentiate into new neurons and other brain cells. In adulthood, the hippocampus is one of the areas with more neurogenesis activity, which is involved in the modulation of both emotional and cognitive hippocampal functions. This complex process is affected by many intrinsic and extrinsic factors, including nutrition. In this regard, preclinical studies performed in rats and mice demonstrate that high fats and/or sugars diets have a negative effect on adult hippocampal neurogenesis (AHN). In contrast, diets enriched with bioactive compounds, such as polyunsaturated fatty acids and polyphenols, as well as intermittent fasting or caloric restriction, can induce AHN. Interestingly, there is also growing evidence demonstrating that offspring AHN can be affected by maternal nutrition in the perinatal period. Therefore, nutritional interventions from early stages and throughout life are a promising perspective to alleviate neurodegenerative diseases by stimulating neurogenesis. The underlying mechanisms by which nutrients and dietary factors affect AHN are still being studied. Interestingly, recent evidence suggests that additional peripheral mediators may be involved. In this sense, the microbiota-gut-brain axis mediates bidirectional communication between the gut and the brain and could act as a link between nutritional factors and AHN. The aim of this mini-review is to summarize, the most recent findings related to the influence of nutrition and diet in the modulation of AHN. The importance of maternal nutrition in the AHN of the offspring and the role of the microbiota-gut-brain axis in the nutrition-neurogenesis relationship have also been included.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Celia Rodriguez-Pérez
- Departamento de Nutrición y Bromatología, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.,Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| |
Collapse
|
3
|
Metabolic Syndrome, Cognitive Impairment and the Role of Diet: A Narrative Review. Nutrients 2022; 14:nu14020333. [PMID: 35057514 PMCID: PMC8780484 DOI: 10.3390/nu14020333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Background: This narrative review presents the association between metabolic syndrome (MetS), along with its components, and cognition-related disorders, as well as the potential reversal role of diet against cognitive impairment by modulating MetS. Methods: An electronic research in Medline (Pubmed) and Scopus was conducted. Results: MetS and cognitive decline share common cardiometabolic pathways as MetS components can trigger cognitive impairment. On the other side, the risk factors for both MetS and cognitive impairment can be reduced by optimizing the nutritional intake. Clinical manifestations such as dyslipidemia, hypertension, diabetes and increased central body adiposity are nutrition-related risk factors present during the prodromal period before cognitive impairment. The Mediterranean dietary pattern stands among the most discussed predominantly plant-based diets in relation to cardiometabolic disorders that may prevent dementia, Alzheimer’s disease and other cognition-related disorders. In addition, accumulating evidence suggests that the consumption of specific dietary food groups as a part of the overall diet can improve cognitive outcomes, maybe due to their involvement in cardiometabolic paths. Conclusions: Early MetS detection may be helpful to prevent or delay cognitive decline. Moreover, this review highlights the importance of healthy nutritional habits to reverse such conditions and the urgency of early lifestyle interventions.
Collapse
|
4
|
Vitamin B 12-folic acid supplementation regulates neuronal immediate early gene expression and improves hippocampal dendritic arborization and memory in old male mice. Neurochem Int 2021; 150:105181. [PMID: 34509560 DOI: 10.1016/j.neuint.2021.105181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023]
Abstract
As the relationship among diet, brain aging and memory is complex, it provides ample opportunity for research in multiple directions including behaviour, epigenetics and neuroplasticity. Nutritional deficiencies together with genetic and environmental factors are the major cause of many age-associated pathologies including memory loss. A compromised vitamin B12-folate status in older people is highly prevalent worldwide. Researchers have established a close association between the adequate level of B12-folate and the maintenance of cognitive brain functions. One of the main reasons for age-associated memory loss is downregulation of neuronal immediate early genes (nIEGs). Therefore, we hypothesize here that vitamin B12-folic acid supplementation in old mice can improve memory by altering the expression status of nIEGs. To check this, 72-week-old male Swiss albino mice were orally administered with 2 μg of vitamin B12 and 22 μg of folic acid/mouse/day for eight weeks. Such supplementation improved recognition memory in old and altered the expression of nIEGs. The expression of nIEGs was further found to be regulated by changes in DNA methylation at their promoter regions and CREB phosphorylation (pCREB). In addition, Golgi-Cox staining showed significant improvement in dendritic length, number of branching points and spine density of hippocampal CA1 pyramidal neurons by B12-folic acid supplementation. Taken together, these findings suggest that vitamin B12-folic acid supplementation regulates nIEGs expression and improves dendritic arborization of hippocampal neurons and memory in old male mice.
Collapse
|
5
|
Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int J Mol Sci 2021; 22:5026. [PMID: 34068525 PMCID: PMC8126018 DOI: 10.3390/ijms22095026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Consuming a balanced, nutritious diet is important for maintaining health, especially as individuals age. Several studies suggest that consuming a diet rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and fish may reduce age-related cognitive decline and the risk of developing various neurodegenerative diseases. Numerous studies have been published over the last decade focusing on nutrition and how this impacts health. The main objective of the current article is to review the data linking the role of diet and nutrition with aging and age-related cognitive decline. Specifically, we discuss the roles of micronutrients and macronutrients and provide an overview of how the gut microbiota-gut-brain axis and nutrition impact brain function in general and cognitive processes in particular during aging. We propose that dietary interventions designed to optimize the levels of macro and micronutrients and maximize the functioning of the microbiota-gut-brain axis can be of therapeutic value for improving cognitive functioning, particularly during aging.
Collapse
Affiliation(s)
- Thayza Martins Melzer
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Luana Meller Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, SC, Brazil;
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
6
|
Abstract
The biosynthesis of B12, involving up to 30 different enzyme-mediated steps, only occurs in bacteria. Thus, most eukaryotes require an external source of B12, and yet the vitamin appears to have only two functions in eukaryotes: as a cofactor for the enzymes methionine synthase and methylmalonylCoA mutase. These two functions are crucial for normal health in humans, and in particular, the formation of methionine is essential for providing methyl groups for over 100 methylation processes. Interference with the methionine synthase reaction not only depletes the body of methyl groups but also leads to the accumulation of homocysteine, a risk factor for many diseases. The syndrome pernicious anemia, characterized by lack of intrinsic factor, leads to a severe, sometimes fatal form of B12 deficiency. However, there is no sharp cutoff for B12 deficiency; rather, there is a continuous inverse relationship between serum B12 and a variety of undesirable outcomes, including neural tube defects, stroke, and dementia. The brain is particularly vulnerable; in children, inadequate B12 stunts brain and intellectual development. Suboptimal B12 status (serum B12<300pmol/L) is very common, occurring in 30%-60% of the population, in particular in pregnant women and in less-developed countries. Thus, many tens of millions of people in the world may suffer harm from having a poor B12 status. Public health steps are urgently needed to correct this inadequacy.
Collapse
Affiliation(s)
- A David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Helga Refsum
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Flitton M, Macdonald IA, Knight HM. Vitamin intake is associated with improved visuospatial and verbal semantic memory in middle-aged individuals. Nutr Neurosci 2017; 22:401-408. [PMID: 29098943 DOI: 10.1080/1028415x.2017.1395550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Factors maintaining cognitive health are still largely unknown. In particular, the cognitive benefits associated with vitamin intake and vitamin supplementation are disputed. We investigated self-reported vitamin intake and serum vitamin levels with performance in cognitive factors sensitive to dementia progression in two large middle-aged general population cohorts. METHODS Survey data were used to assess regular vitamin intake in 4400 NCDS 1958 and 1177 TwinsUK cohort members, and serum homocysteine and B vitamin levels were measured in 675 individuals from the TwinsUK study. Principal component analysis was applied to cognitive test performance from both cohorts resulting in two dementia-sensitive cognitive factors reflecting visuospatial associative memory and verbal semantic memory. RESULTS In both cohorts, individuals who reported regular intake of vitamins, particularly B vitamins, showed significantly better performance in visuospatial associative memory and verbal semantic memory (P < 0.001). A significant association was also found between homocysteine levels, vitamin serum concentration and visuospatial associative memory performance which indicated that individuals with high B vitamin and homocysteine levels showed better visuospatial associative memory performance than individuals with low vitamin B levels (P < 0.05). DISCUSSION The findings demonstrate that early dementia-sensitive cognitive changes can be identified in middle-aged asymptomatic individuals and that regular vitamin intake is associated with improved cognitive performance. These findings reinforce the potential cognitive benefits of regular vitamin intake, which should be considered as an economically viable therapeutic strategy for maintaining cognitive health.
Collapse
Affiliation(s)
- Miles Flitton
- a School of Life Sciences , University of Nottingham , Nottingham NG7 2UH , UK
| | - Ian A Macdonald
- a School of Life Sciences , University of Nottingham , Nottingham NG7 2UH , UK
| | - Helen M Knight
- a School of Life Sciences , University of Nottingham , Nottingham NG7 2UH , UK
| |
Collapse
|
8
|
Poulose SM, Miller MG, Scott T, Shukitt-Hale B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv Nutr 2017; 8:804-811. [PMID: 29141966 PMCID: PMC5683005 DOI: 10.3945/an.117.016261] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Marshall G Miller
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Tammy Scott
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Barbara Shukitt-Hale
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| |
Collapse
|