1
|
Akbay B, Omarova Z, Trofimov A, Sailike B, Karapina O, Molnár F, Tokay T. Double-Edge Effects of Leucine on Cancer Cells. Biomolecules 2024; 14:1401. [PMID: 39595578 PMCID: PMC11591885 DOI: 10.3390/biom14111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Leucine is an essential amino acid that cannot be produced endogenously in the human body and therefore needs to be obtained from dietary sources. Leucine plays a pivotal role in stimulating muscle protein synthesis, along with isoleucine and valine, as the group of branched-chain amino acids, making them one of the most popular dietary supplements for athletes and gym-goers. The individual effects of leucine, however, have not been fully clarified, as most of the studies so far have focused on the grouped effects of branched-chain amino acids. In recent years, leucine and its metabolites have been shown to stimulate muscle protein synthesis mainly via the mammalian target of the rapamycin complex 1 signaling pathway, thereby improving muscle atrophy in cancer cachexia. Interestingly, cancer research suggests that leucine may have either anti-cancer or pro-tumorigenic effects. In the current manuscript, we aim to review leucine's roles in muscle protein synthesis, tumor suppression, and tumor progression, specifically summarizing the molecular mechanisms of leucine's action. The role of leucine is controversial in hepatocellular carcinoma, whereas its pro-tumorigenic effects have been demonstrated in breast and pancreatic cancers. In summary, leucine being used as nutritional supplement for athletes needs more attention, as its pro-oncogenic effects may have been identified by recent studies. Anti-cancer or pro-tumorigenic effects of leucine in various cancers should be further investigated to achieve clear conclusions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.A.); (Z.O.); (A.T.); (B.S.); (O.K.); (F.M.)
| |
Collapse
|
2
|
Posey EA, Davis TA. Review: Nutritional regulation of muscle growth in neonatal swine. Animal 2023; 17 Suppl 3:100831. [PMID: 37263816 PMCID: PMC10621894 DOI: 10.1016/j.animal.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/03/2023] Open
Abstract
Despite advances in the nutritional support of low birth weight and early-weaned piglets, most experience reduced extrauterine growth performance. To further optimize nutritional support and develop targeted intervention strategies, the mechanisms that regulate the anabolic response to nutrition must be fully understood. Knowledge gained in these studies represents a valuable intersection of agriculture and biomedical research, as low birth weight and early-weaned piglets face many of the same morbidities as preterm and low birth weight infants, including extrauterine growth faltering and reduced lean growth. While the reasons for poor growth performance are multifaceted, recent studies have increased our understanding of the role of nutrition in the regulation of skeletal muscle growth in the piglet. The purpose of this review is to summarize the published literature surrounding advances in the current understanding of the anabolic signaling that occurs after a meal and how this response is developmentally regulated in the neonatal pig. It will focus on the regulation of protein synthesis, and especially the upstream and downstream effectors surrounding the master protein kinase, mechanistic target of rapamycin complex 1 (mTORC1) that controls translation initiation. It also will examine the regulatory pathways associated with the postprandial anabolic agents, insulin and specific amino acids, that are upstream of mTORC1 and lead to its activation. Lastly, the integration of upstream signaling cascades by mTORC1 leading to the activation of translation initiation factors that regulate protein synthesis will be discussed. This review concludes that anabolic signaling cascades are stimulated by both insulin and amino acids, especially leucine, through separate pathways upstream of mTORC1, and that these stimulatory pathways result in mTORC1 activation and subsequent activation of downstream effectors that regulate translation initiation Additionally, it is concluded that this anabolic response is unique to the skeletal muscle of the neonate, resulting from increased sensitivity to the rise in both insulin and amino acid after a meal. However, this response is dampened in skeletal muscle of the low birth weight pig, indicative of anabolic resistance. Elucidation of the pathways and regulatory mechanisms surrounding protein synthesis and lean growth allow for the development of potential targeted therapeutics and intervention strategies both in livestock production and neonatal care.
Collapse
Affiliation(s)
- E A Posey
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - T A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Regulation of skeletal muscle protein synthesis in the preterm pig by intermittent leucine pulses during continuous parenteral feeding. JPEN J Parenter Enteral Nutr 2023; 47:276-286. [PMID: 36128996 PMCID: PMC10621874 DOI: 10.1002/jpen.2450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Extrauterine growth restriction is a common complication of preterm birth. Leucine (Leu) is an agonist for the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway that regulates translation initiation and protein synthesis in skeletal muscle. Previously, we showed that intermittent intravenous pulses of Leu to neonatal pigs born at term receiving continuous enteral nutrition increases muscle protein synthesis and lean mass accretion. Our objective was to determine the impact of intermittent intravenous pulses of Leu on muscle protein anabolism in preterm neonatal pigs administered continuous parenteral nutrition. METHODS Following preterm delivery (on day 105 of 115 gestation), pigs were fitted with umbilical artery and jugular vein catheters and provided continuous parenteral nutrition. Four days after birth, pigs were assigned to receive intermittent Leu (1600 µmol kg-1 h-1 ; n = 8) or alanine (1600 µmol kg-1 h-1 ; n = 8) parenteral pulses every 4 h for 28 h. Anabolic signaling and fractional protein synthesis were determined in skeletal muscle. RESULTS Leu concentration in the longissimus dorsi and gastrocnemius muscles increased in the leucine (LEU) group compared with the alanine (ALA) group (P < 0.0001). Despite the Leu-induced disruption of the Sestrin2·GATOR2 complex, which inhibits mTORC1 activation, in these muscles (P < 0.01), the abundance of mTOR·RagA and mTOR·RagC was not different. Accordingly, mTORC1-dependent activation of 4EBP1, S6K1, eIF4E·eIF4G, and protein synthesis were not different in any muscle between the LEU and ALA groups. CONCLUSION Intermittent pulses of Leu do not enhance muscle protein anabolism in preterm pigs supplied continuous parenteral nutrition.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hanh V. Nguyen
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shaji K. Chacko
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Caitlin Vonderohe
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Yan X, Si H, Zhu Y, Li S, Han Y, Liu H, Du R, Pope PB, Qiu Q, Li Z. Integrated multi-omics of the gastrointestinal microbiome and ruminant host reveals metabolic adaptation underlying early life development. MICROBIOME 2022; 10:222. [PMID: 36503572 PMCID: PMC9743514 DOI: 10.1186/s40168-022-01396-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/15/2022] [Indexed: 06/07/2023]
Abstract
BACKGROUND The gastrointestinal tract (GIT) microbiome of ruminants and its metabolic repercussions vastly influence host metabolism and growth. However, a complete understanding of the bidirectional interactions that occur across the host-microbiome axis remains elusive, particularly during the critical development stages at early life. Here, we present an integrative multi-omics approach that simultaneously resolved the taxonomic and functional attributes of microbiota from five GIT regions as well as the metabolic features of the liver, muscle, urine, and serum in sika deer (Cervus nippon) across three key early life stages. RESULTS Within the host, analysis of metabolites over time in serum, urine, and muscle (longissimus lumborum) showed that changes in the fatty acid profile were concurrent with gains in body weight. Additional host transcriptomic and metabolomic analysis revealed that fatty acid β-oxidation and metabolism of tryptophan and branched chain amino acids play important roles in regulating hepatic metabolism. Across the varying regions of the GIT, we demonstrated that a complex and variable community of bacteria, viruses, and archaea colonized the GIT soon after birth, whereas microbial succession was driven by the cooperative networks of hub populations. Furthermore, GIT volatile fatty acid concentrations were marked by increased microbial metabolic pathway abundances linked to mannose (rumen) and amino acids (colon) metabolism. Significant functional shifts were also revealed across varying GIT tissues, which were dominated by host fatty acid metabolism associated with reactive oxygen species in the rumen epithelium, and the intensive immune response in both small and large intestine. Finally, we reveal a possible contributing role of necroptosis and apoptosis in enhancing ileum and colon epithelium development, respectively. CONCLUSIONS Our findings provide a comprehensive view for the involved mechanisms in the context of GIT microbiome and ruminant metabolic growth at early life. Video Abstract.
Collapse
Affiliation(s)
- Xiaoting Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hanlu Liu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China.
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China.
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Zhou J, Tu J, Wang L, Yang L, Yang G, Zhao S, Zeng X, Qiao S. Free Amino Acid-Enriched Diets Containing Rapidly but Not Slowly Digested Carbohydrate Promote Amino Acid Absorption from Intestine and Net Fluxes across Skeletal Muscle of Pigs. J Nutr 2022; 152:2471-2482. [PMID: 36774113 DOI: 10.1093/jn/nxac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The approach to matching appropriate carbohydrates alongside free amino acids to achieve optimal muscle growth remains unclear. OBJECTIVES We investigated whether the consumption of a diet containing rapidly digested carbohydrate and free amino acids can enhance intestinal absorption and muscular uptake of amino acids in pigs. METHOD Twelve barrows (28 kg; 11 wk old) with catheters installed in the portal vein, mesenteric vein, femoral artery, and femoral vein were randomly assigned to consume 1 of 2 free amino acid-enriched diets (3.34%) containing rapidly [waxy corn starch (WCS)] or slowly [pea starch (PS)] digested carbohydrate for 27 d. Blood was collected to determine the fluxes of plasma glucose and amino acids across the portal vein and the hindlimb muscle. Dietary in vitro carbohydrate digestive rates were also determined. Data were analyzed using repeated-measures (time × group) ANOVA. RESULTS Carbohydrate in vitro cumulative digestibility at 30 and 240 min was 69.00% and 95.25% for WCS and 23.25% and 81.15% for PS, respectively. The animal experiment presented WCS increased individual amino acids (lysine, 0.67 compared with 0.53 mmol/min; threonine, 0.40 compared with 0.29 mmol/min; isoleucine, 0.33 compared with 0.22 mmol/min; glutamate, 0.51 compared with 0.35 mmol/min; and proline, 0.51 compared with 0.27 mmol/min), essential amino acid (EAA; 3.26 compared with 2.65 mmol/min), and branched-chain amino acid (BCAA; 0.86 compared with 0.65 mmol/min) fluxes across the portal vein during 8 h postprandial, as well as individual amino acids (isoleucine, 0.08 compared with 0.02 mmol/min; leucine, 0.06 compared with 0.02 mmol/min; and glutamine, 0.44 compared with 0.25 mmol/min), EAA (0.50 compared with 0.21 mmol/min), and BCAA (0.17 compared with 0.06 mmol/min) net fluxes across the hindlimb muscle during 8 h postprandial compared with PS (P < 0.05). CONCLUSIONS A diet containing rapidly digested carbohydrate and free amino acids can promote intestinal absorption and net fluxes across hindlimb muscle of amino acids in pigs.
Collapse
Affiliation(s)
- Junyan Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Shengjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China.
| |
Collapse
|
6
|
Rezaei R, Wu G. Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells. Amino Acids 2022; 54:1491-1504. [DOI: 10.1007/s00726-022-03203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
|
7
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
8
|
Park TJ, Park SY, Lee HJ, Abd El-Aty A, Jeong JH, Jung TW. α-ketoisocaproic acid promotes ER stress through impairment of autophagy, thereby provoking lipid accumulation and insulin resistance in murine preadipocytes. Biochem Biophys Res Commun 2022; 603:109-115. [DOI: 10.1016/j.bbrc.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/03/2023]
|
9
|
Reiners JN, Steele MA, Vonnahme KA, Maddock Carlin KR, Swanson KC. Effects of Supplemental Leucine on Growth, Nutrient Use, and Muscle and Visceral Tissue Mass in Holstein Bull Calves Fed Milk Replacer. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.817173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of leucine supplementation on body weight (BW), tissue mass, nutrient digestibility, the concentration of serum amino acids (AAs) and metabolites, and protein abundance of elongation initiation factor 4E (eIF4E) in skeletal muscle, 23 Holstein bull calves (43. 3 ± 1.16 kg; 11.3 ± 0.57 days of age) fed milk replacer at 2.5% of body weight (BW; dry matter basis) were used in a randomized complete block design. Leucine was supplemented at 0, 0.4, 0.6, or 0.8 g Leu/kg BW per day for 28 d. Data were analyzed using the MIXED procedure of SAS. Leucine supplementation did not affect calf BW (P = 0.73), and digestibility of nitrogen (P = 0.21), organic matter (P = 0.28), and dry matter (P = 0.28). Masses proportional to BW of the pancreas (P = 0.04), omasum (P < 0.01), and spleen (P = 0.01) were quadratically affected by treatment where tissue mass decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. Semitendinosus mass proportional to BW tended (P = 0.07) to be quadratically affected, as tissue mass increased at 0.4 g Leu/kg BW, and decreased at 0.6 and 0.8 g Leu/kg BW. Serum Leu concentration increased linearly (P = 0.002; day × time × treatment) across days and after feedings with increased supplemental Leu. Increasing supplemental Leu linearly decreased serum Ala (P < 0.01), Arg (P = 0.04), Ile (P = 0.02), Met (P < 0.01), and Pro (P = 0.05) concentrations, and quadratically affected serum Glu (P = 0.04) and Lys (P = 0.03) concentrations where serum Glu and Lys concentrations were decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. There was no effect of treatment on protein abundance of eIF4E in semitendinosus or longissimus dorsi. These data indicate that supplemental Leu did not influence ADG and nitrogen retention in calves fed milk replacer. However, changes in serum AA concentrations and tissue masses proportional to BW suggest that supplementation of Leu at lower levels could increase the use of AA for non-visceral tissue growth.
Collapse
|
10
|
Semi-Rational Design of Proteus mirabilis l-Amino Acid Deaminase for Expanding Its Substrate Specificity in α-Keto Acid Synthesis from l-Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
l-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxidative deamination of l-amino acids into α-keto acids, which are widely used in the pharmaceutical, food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is limited, and most substrates are concentrated on several bulky or basic l-amino acids. In this study, we employed a LAAD from Proteus mirabilis (PmiLAAD) and broadened its substrate specificity using a semi-rational design strategy. Molecular docking and alanine scanning identified F96, Q278, and E417 as key residues around the substrate-binding pocket of PmiLAAD. Site-directed saturation mutagenesis identified E417 as the key site for substrate specificity expansion. Expansion of the substrate channel with mutations of E417 (E417L, E417A) improved activity toward the bulky substrate l-Trp, and mutation of E417 to basic amino acids (E417K, E417H, E417R) enhanced the universal activity toward various l-amino acid substrates. The variant PmiLAADE417K showed remarkable catalytic activity improvement on seven substrates (l-Ala, l-Asp, l-Ile, l-Leu, l-Phe, l-Trp, and l-Val). The catalytic efficiency improvement obtained by E417 mutation may be attributed to the expansion of the entrance channel and its electrostatic interactions. These PmiLAAD variants with a broadened substrate spectrum can extend the application potential of LAADs.
Collapse
|
11
|
Dietary amylose:amylopectin ratio influences the expression of amino acid transporters and enzyme activities for amino acid metabolism in the gastrointestinal tract of goats. Br J Nutr 2021; 127:1121-1131. [PMID: 34121640 PMCID: PMC8980728 DOI: 10.1017/s0007114521002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9·00 ± 1·12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0·05). The plasma valine (linear, P = 0·03), leucine (linear, P = 0·04) and total AA content (linear, P = 0·03) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0·01), solute carrier family 3 member 2 (linear, P = 0·02) and solute carrier family 38 member 9 (linear, P = 0·02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0·04), branched-chain amino acid transferase 1 (linear, P = 0·02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0·01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0·001), phosphorylated 4E-binding protein 1 (P < 0·001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0·001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.
Collapse
|
12
|
Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Rep 2021; 32:107980. [PMID: 32755574 PMCID: PMC7408494 DOI: 10.1016/j.celrep.2020.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.
Collapse
|
13
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- *Correspondence: Giacomo Garibotto
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
15
|
Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis. Proc Nutr Soc 2020; 80:106-117. [PMID: 33023679 DOI: 10.1017/s0029665120007879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2-3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this 'muscle full' phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.
Collapse
|
16
|
Manjarín R, Boutry-Regard C, Suryawan A, Canovas A, Piccolo BD, Maj M, Abo-Ismail M, Nguyen HV, Fiorotto ML, Davis TA. Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids 2020; 52:1319-1335. [PMID: 32974749 DOI: 10.1007/s00726-020-02894-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 μmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, β-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA.
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA.
| | - Claire Boutry-Regard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Agus Suryawan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Angela Canovas
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, U.S. Department of Agriculture/Agricultural Research Service, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Magdalena Maj
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mohammed Abo-Ismail
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA
| | - Hanh V Nguyen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Teresa A Davis
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| |
Collapse
|
17
|
Zeitz JO, Käding SC, Niewalda IR, Most E, Dorigam JCDP, Eder K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult Sci 2020; 98:6772-6786. [PMID: 31250025 PMCID: PMC8913973 DOI: 10.3382/ps/pez396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
This study investigated the hypothesis that dietary supplementation of leucine (Leu) above actual recommendations activates protein synthesis and inhibits protein degradation pathways on the molecular level and supports higher muscle growth in broilers. Day-old male Cobb-500 broilers (n = 180) were allotted to 3 groups and phase-fed 3 different corn-wheat-soybean meal-based basal diets during periods 1 to 10, 11 to 21, and 22 to 35 D. The control group (L0) received the basal diet which met the broiler's requirements of nutrients and amino acids for maintenance and growth. Groups L1 and L2 received basal diets supplemented with Leu to exceed recommendations by 35 and 60%, respectively, and isoleucine (Ile) and valine (Val) were supplemented to keep Leu: Ile and Leu: Val ratios fixed. Samples of liver and breast muscle and pancreas were collected on days 10, 21, and 35. The gene expression and abundance of total and phosphorylated proteins involved in the mammalian target of rapamycin pathway of protein synthesis, in the ubiquitin-proteasome pathway and autophagy-lysosomal pathway of protein degradation, in the general control nonderepressible 2/eukaryotic translation initiation factor 2A pathway involved in the inhibition of protein synthesis, and in the myostatin-Smad2/3 pathway involved in myogenesis were evaluated in the muscle, as well as expression of genes involved in the growth hormone axis. Growth performance, feed intake, the feed conversion ratio, and carcass weights did not differ between the 3 groups (P > 0.05). Plasma concentrations of Leu, Ile, and Val and of their keto acids, and the activity of the branched-chain α-keto acid dehydrogenase in the pancreas increased dose dependently with increasing dietary Leu concentrations. In the breast muscle, relative mRNA abundances of genes and phosphorylation of selected proteins involved in all investigated pathways were largely uninfluenced by dietary Leu supplementation (P > 0.05). In summary, these data indicate that excess dietary Leu concentrations do not influence protein synthesis or degradation pathways, and subsequently do not increase muscle growth in broilers at fixed ratios to Ile and Val.
Collapse
Affiliation(s)
- Johanna O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Stella-Christin Käding
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Ines R Niewalda
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| |
Collapse
|
18
|
Yu K, Matzapetakis M, Horvatić A, Terré M, Bach A, Kuleš J, Yeste N, Gómez N, Arroyo L, Rodríguez-Tomàs E, Peña R, Guillemin N, de Almeida AM, Eckersall PD, Bassols A. Metabolome and proteome changes in skeletal muscle and blood of pre-weaning calves fed leucine and threonine supplemented diets. J Proteomics 2020; 216:103677. [PMID: 32028040 DOI: 10.1016/j.jprot.2020.103677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 01/07/2023]
Abstract
In pre-weaning calves, both leucine and threonine play important roles in growth and muscle metabolism. In this study, metabolomics, proteomics and clinical chemistry were used to assess the effects of leucine and threonine supplementation added to milk replacer on 14 newborn Holstein male calves: 7 were fed a control diet (Ctrl) and 7 were fed the Ctrl diet supplemented with 0.3% leucine and 0.3% threonine (LT) from 5.6 days of age to 53.6 days. At this time, blood and semitendinosus muscle biopsies were collected for analysis. Integrated metabolomics and proteomics showed that branched-chain amino acids (BCAA) degradation and mitochondrial oxidative metabolism (citrate cycle and respiratory chain) were the main activated pathways in muscle because of the supplementation. BCAA derivatives and metabolites related to lipid mobilization showed the major changes. The deleterious effects of activated oxidative phosphorylation were balanced by the upregulation of antioxidant proteins. An increase in protein synthesis was indicated by elevated aminoacyl-tRNA biosynthesis and increased S6 ribosomal protein phosphorylation in skeletal muscle. In conclusion, LT group showed greater BCAA availability and mitochondrial oxidative activity; as the muscle cells undergo greater aerobic metabolism, antioxidant defenses were activated to compensate for possible cell damage. Data are available via ProteomeXchange (PXD016098). SIGNIFICANCE: Leucine and threonine are essential amino acids for the pre-weaning calf, being of high importance for growth. In this study, we found that leucine and threonine supplementation of milk replacer to feed pre-weaning calves led to differences in the proteome, metabolome and clinical chemistry analytes in skeletal muscle and plasma, albeit no differences in productive performance were recorded. This study extends our understanding on the metabolism in dairy calves and helps optimizing their nutritional status.
Collapse
Affiliation(s)
- Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Manolis Matzapetakis
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anita Horvatić
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Marta Terré
- Departament of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries Caldes de Montbui, 08140 Barcelona, Spain
| | - Alex Bach
- Departament of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries Caldes de Montbui, 08140 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josipa Kuleš
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Néstor Gómez
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | - Raquel Peña
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Nicolas Guillemin
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - André M de Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Peter David Eckersall
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
19
|
Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol (1985) 2020; 128:286-295. [PMID: 31944890 DOI: 10.1152/japplphysiol.00332.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leucine (Leu) and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent protein synthesis in the skeletal muscle of neonatal pigs. This study aimed to determine whether HMB and Leu utilize common nutrient-sensing mechanisms to activate mTORC1. In study 1, neonatal pigs were fed one of five diets for 24 h: low protein (LP), high protein (HP), or LP supplemented with 4 (LP+HMB4), 40 (LP+HMB40), or 80 (LP+HMB80) μmol HMB·kg body wt-1·day-1. In study 2, neonatal pigs were fed for 24 h: LP, LP supplemented with Leu (LP+Leu), or HP diets delivering 9, 18, and 18 mmol Leu·kg body wt-1·day-1, respectively. The upstream signaling molecules that regulate mTORC1 activity were analyzed. mTOR phosphorylation on Ser2448 and Ser2481 was greater in LP+HMB40, LP+HMB80, and LP+Leu than in LP and greater in HP than in HMB-supplemented groups (P < 0.05), whereas HP and LP+Leu were similar. Rheb-mTOR complex formation was lower in LP than in HP (P < 0.05), with no enhancement by HMB or Leu supplementation. The Sestrin2-GATOR2 complex was more abundant in LP than in HP and was reduced by Leu (P < 0.05) but not HMB supplementation. RagA-mTOR and RagC-mTOR complexes were higher in LP+Leu and HP than in LP and HMB groups (P < 0.05). There were no treatment differences in RagB-SH3BP4, Vps34-LRS, and RagD-LRS complex abundances. Phosphorylation of Erk1/2 and TSC2, but not AMPK, was lower in LP than HP (P < 0.05) and unaffected by HMB or Leu supplementation. Our results demonstrate that HMB stimulates mTORC1 activation in neonatal muscle independent of the leucine-sensing pathway mediated by Sestrin2 and the Rag proteins.NEW & NOTEWORTHY Dietary supplementation with either leucine or its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulates protein synthesis in skeletal muscle of the neonatal pig. Our results demonstrate that both leucine and HMB stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) phosphorylation in neonatal muscle. This leucine-stimulated process involves dissociation of the Sestrin2-GATOR2 complex and increased binding of Rag A/C to mTOR. However, HMB's activation of mTORC1 is independent of this leucine-sensing pathway.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marko Rudar
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Dhanani ZN, Mann G, Adegoke OAJ. Depletion of branched-chain aminotransferase 2 (BCAT2) enzyme impairs myoblast survival and myotube formation. Physiol Rep 2019; 7:e14299. [PMID: 31833233 PMCID: PMC6908738 DOI: 10.14814/phy2.14299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Much is known about the positive effects of branched-chain amino acids (BCAA) in regulating muscle protein metabolism. Comparatively much less is known about the effects of these amino acids and their metabolites in regulating myotube formation. Using cultured myoblasts, we showed that although leucine is required for myotube formation, this requirement is easily met by α-ketoisocaproic acid, the ketoacid of leucine. We then demonstrated increases in the expression of the first two enzymes in the catabolism of the three BCAA, branched-chain amino transferase (BCAT2) and branched-chain α-ketoacid dehydrogenase (BCKD), with ~3× increase in BCKD protein expression (p < .05) during differentiation. Furthermore, depletion of BCAT2 abolished myoblast differentiation, as indicated by reduction in the levels of myosin heavy chain-1, troponin and myogenin. Supplementation of incubation medium with branched-chain α-ketoacids or related metabolites derivable from BCAT2 functions did not rescue the defects. However, co-depletion of BCKD kinase partially rescued the defects. Collectively, our data indicate a requirement for BCAA catabolism during myotube formation and that this requirement for BCAT2 likely goes beyond the need for this enzyme to generate the α-ketoacids of the BCAA.
Collapse
Affiliation(s)
- Zameer N. Dhanani
- School of Kinesiology and Health ScienceMuscle Health Research CentreYork UniversityTorontoONCanada
| | - Gagandeep Mann
- School of Kinesiology and Health ScienceMuscle Health Research CentreYork UniversityTorontoONCanada
| | | |
Collapse
|
21
|
Paddon-Jones D, Layman DK. Branched-chain ketoacid ingestion: an alternative to efficiently increase skeletal muscle protein synthesis. Am J Clin Nutr 2019; 110:799-800. [PMID: 31504096 DOI: 10.1093/ajcn/nqz190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA
| | - Donald K Layman
- Department of Food Science & Human Nutrition, University of Illinois, Urbana Champaign, IL, USA
| |
Collapse
|
22
|
Fuchs CJ, Hermans WJH, Holwerda AM, Smeets JSJ, Senden JM, van Kranenburg J, Gijsen AP, Wodzig WKHW, Schierbeek H, Verdijk LB, van Loon LJC. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial. Am J Clin Nutr 2019; 110:862-872. [PMID: 31250889 PMCID: PMC6766442 DOI: 10.1093/ajcn/nqz120] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein ingestion increases muscle protein synthesis rates. However, limited data are currently available on the effects of branched-chain amino acid (BCAA) and branched-chain ketoacid (BCKA) ingestion on postprandial muscle protein synthesis rates. OBJECTIVE The aim of this study was to compare the impact of ingesting 6 g BCAA, 6 g BCKA, and 30 g milk protein (MILK) on the postprandial rise in circulating amino acid concentrations and subsequent myofibrillar protein synthesis rates in older males. METHODS In a parallel design, 45 older males (age: 71 ± 1 y; BMI: 25.4 ± 0.8 kg/m2) were randomly assigned to ingest a drink containing 6 g BCAA, 6 g BCKA, or 30 g MILK. Basal and postprandial myofibrillar protein synthesis rates were assessed by primed continuous l-[ring-13C6]phenylalanine infusions with the collection of blood samples and muscle biopsies. RESULTS Plasma BCAA concentrations increased following test drink ingestion in all groups, with greater increases in the BCAA and MILK groups compared with the BCKA group (P < 0.05). Plasma BCKA concentrations increased following test drink ingestion in all groups, with greater increases in the BCKA group compared with the BCAA and MILK groups (P < 0.05). Ingestion of MILK, BCAA, and BCKA significantly increased early myofibrillar protein synthesis rates (0-2 h) above basal rates (from 0.020 ± 0.002%/h to 0.042 ± 0.004%/h, 0.022 ± 0.002%/h to 0.044 ± 0.004%/h, and 0.023 ± 0.003%/h to 0.044 ± 0.004%/h, respectively; P < 0.001), with no differences between groups (P > 0.05). Myofibrillar protein synthesis rates during the late postprandial phase (2-5 h) remained elevated in the MILK group (0.039 ± 0.004%/h; P < 0.001), but returned to baseline values following BCAA and BCKA ingestion (0.024 ± 0.005%/h and 0.024 ± 0.005%/h, respectively; P > 0.05). CONCLUSIONS Ingestion of 6 g BCAA, 6 g BCKA, and 30 g MILK increases myofibrillar protein synthesis rates during the early postprandial phase (0-2 h) in vivo in healthy older males. The postprandial increase following the ingestion of 6 g BCAA and BCKA is short-lived, with higher myofibrillar protein synthesis rates only being maintained following the ingestion of an equivalent amount of intact milk protein. This trial was registered at Nederlands Trial Register (www.trialregister.nl) as NTR6047.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Janneau van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Will K H W Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Henk Schierbeek
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
23
|
Zeitz JO, Käding SC, Niewalda IR, Machander V, de Paula Dorigam JC, Eder K. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch Anim Nutr 2019; 73:75-87. [PMID: 30821190 DOI: 10.1080/1745039x.2019.1583519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study investigated the hypothesis that dietary concentrations of leucine (Leu) in excess of the breeder´s recommendations activates protein synthesis and decreases protein degradation in muscle of broilers. Day-old male Ross 308 broilers (n = 450) were phase-fed corn-soybean meal-based diets during starter (d 1-10), grower (d 11-22), and finisher (d 23-34) period. The basal diets fed to the control group (L0) met the broilers' requirements for nutrients and amino acids, and contained Leu, Leu:isoleucine (Ile) and Leu:valine (Val) ratios, close to those recommended by the breeder (Leu:Ile: 100:54, 100:52, 100:51; Leu:Val 100:64, 100:61, 100:58; in starter, grower and finisher diet, resp.). Basal diets were supplemented with Leu to exceed the breeder's recommendations by 35% (group L35) and 60% (group L60). Growth performance during 34 d, and carcass weights, and breast and thigh muscle weights on d 34 were similar among groups. Hepatic and muscle mRNA levels of genes involved in the somatotropic axis [growth hormone receptor, insulin-like growth factor (IGF)-1, IGF binding protein 2, IGF receptor] on d 34 were not influenced by Leu. In the breast muscle, relative mRNA abundances of genes involved in the mammalian target of rapamycin (mTOR) pathway of protein synthesis (mTOR, ribosomal p70 S6 kinase) and the ubiquitin-proteasome pathway of protein degradation (F-box only protein 32, Forkhead box protein O1, Muscle RING-finger protein-1) on d 34 were largely similar among groups. Likewise, relative phosphorylation and thus activation of mTOR and ribosomal protein S6 involved in the mTOR pathway, and of eukaryotic translation initiation factor 2A (eIF2a) involved in the general control nonderepressible 2 (GCN2)/eIF2a pathway of protein synthesis inhibition, were not influenced. These data indicate that dietary Leu concentrations exceeding the broiler´s requirements up to 60% neither influence protein synthesis nor degradation pathways nor muscle growth in growing broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Stella-Christin Käding
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Ines R Niewalda
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | | | | | - Klaus Eder
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| |
Collapse
|
24
|
Ospina-Rojas IC, Murakami AE, do Amaral Duarte CR, Pozza PC, Rossi RM, Gasparino E. Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments were performed to study the interaction between the standardized ileal digestible (SID) leucine (Leu) and valine (Val) levels on the mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway (experiment I) and determine the requirement of these amino acids in low-protein diets, and their effects on performance, serum parameters and muscle fiber diameters of broilers (experiment II) from day 1 to day 21 post hatch. Broiler chickens were distributed in a completely randomized design in a 3 × 3 and 5 × 5 factorial arrangement for a total of 9 and 25 treatments in experiments I and II, respectively. There was no (P > 0.05) interaction between the SID Leu and Val levels on mRNA expression of mTOR, S6 kinase 1 (S6K1), 4E-binding protein-1 (4EBP1), eukaryotic elongation factor 2 (eEF2), and insulin-like growth factor-1 (IGF-1) genes in pectoralis major muscle. Leucine supplementation increased (P < 0.05) mRNA expression of mTOR and S6K1 genes in muscle tissue, whereas Val supplementation did not affect (P > 0.05) mRNA expression of the genes investigated. Interaction was observed (P < 0.05) between dietary Leu and Val levels on feed intake and gain:feed. Leucine supplementation may stimulate mRNA expression of mTOR and S6K1 genes in pectoralis major muscle of broilers from day 1 to day 21 post hatch. The SID Leu and Val levels required for the optimization of feed intake, weight gain, and gain:feed in low-crude protein diets for broiler chickens from day 1 to 21 post hatch were estimated at 1.29% and 0.96%, 1.28% and 0.92%, and 1.27% and 0.91%, respectively; however, these requirements may be greater to maximize muscle fiber growth.
Collapse
Affiliation(s)
- Iván Camilo Ospina-Rojas
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Alice Eiko Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Cristiane Regina do Amaral Duarte
- Department of Biological Sciences, Universidade do Estado de Mato Grosso, Av. Brasil, nº 50W, Tangará da Serra, MT 78300-000, Brazil
| | - Paulo Cesar Pozza
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Robson Marcelo Rossi
- Department of Statistics, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco E90, Maringá, PR 87020-900, Brazil
| | - Eliane Gasparino
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| |
Collapse
|
25
|
Zhong Y, Song B, Zheng C, Li F, Kong X, Duan Y, Deng J. α-Ketoisocaproate and β-hydroxy-β-methyl butyrate regulate fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:846-857. [PMID: 30775808 DOI: 10.1111/jpn.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aims to investigate the effects and roles of excess leucine (Leu) versus its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. METHODS AND RESULTS Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed one of the four diets (basal diet, L-Leu, KIC-Ca and HMB-Ca) for 45 days. Results indicated that dietary treatments did not affect the intramuscular fat (IMF) content (p > 0.05), but differently influenced the fatty acid composition of longissimus dorsi muscle (LM) and soleus muscle (SM). In particular, the proportion of N3 PUFA specifically in LM was significantly decreased in the Leu group and increased in both KIC and HMB group relative to the basal diet group (p < 0.05). Furthermore, pigs fed KIC-supplemented diets exhibited decreased expression of FATP-1, ACC, ATGL, C/EBPα, PPARγ and SREBP-1c in LM and increased expression of FATP-1, FAT/CD36, ATGL and M-CPT-1 in SM relative to the basal diet control (p < 0.05). CONCLUSIONS These findings indicated that doubling dietary Leu content decreased the percentage of N3 PUFA mainly in glycolytic skeletal muscle, whereas KIC and HMB improved muscular fatty acid composition and altered lipid metabolism in skeletal muscle of growing pigs. The mechanism of action of KIC might be related to the TFs, and the mechanism of action of HMB might be associated with the AMPK-mTOR signalling pathway.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Duan Y, Li F, Song B, Zheng C, Zhong Y, Xu K, Kong X, Yin Y, Wang W, Shu G. β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low-protein diets. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
27
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
28
|
Duan YH, Zeng LM, Li FN, Kong XF, Xu K, Guo QP, Wang WL, Zhang LY. β-hydroxy-β-methyl butyrate promotes leucine metabolism and improves muscle fibre composition in growing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 102:1328-1339. [PMID: 30009416 DOI: 10.1111/jpn.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate the effects of excess leucine (Leu) vs. its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on Leu metabolism, muscle fibre composition and muscle growth in growing pigs. Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed 1 of 4 diets for 45 days: basal diet, basal diet + 1.25% L-Leu, basal diet + 1.25% KIC-Ca, basal diet + 0.62% HMB-Ca. Results indicated that relative to the basal diet and HMB groups, Leu and KIC groups exhibited increased Leu concentrations and decreased concentrations of isoleucine, valine and EAAs in selected muscle (p < 0.05) and had lower mRNA levels of MyHC I and higher expression of MyHC IIx/IIb (p < 0.05), and there was no significant difference between the basal and HMB-supplemented groups. Moreover, the mRNA expression levels of AMPKα and UCP3 were higher but the myostatin mRNA levels were lower in the soleus muscle of the HMB group than those from other groups (p < 0.05). These findings demonstrated that doubling dietary Leu content exerted growth-depressing effects in growing pigs; dietary KIC supplementation induced muscular branched-chain amino acid imbalance and promoted muscle toward a more glycolytic phenotype; while dietary HMB supplementation promoted the generation of more oxidative muscle types and increased muscle growth specially in oxidative skeletal muscle, and these effects of HMB might be associated with the AMPKα-Sirt1-PGC-1α axis and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui H Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Liming M Zeng
- Science College of Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fengnan N Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng F Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping P Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong L Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha Hunan, China
| | - Lingyu Y Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2018; 23:molecules23010147. [PMID: 29324714 PMCID: PMC6017427 DOI: 10.3390/molecules23010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Branched-chain keto acids (BCKAs) are derivatives from the first step in the metabolism of branched-chain amino acids (BCAAs) and can provide important information on animal health and disease. Here, a simple, reliable and effective method was developed for the determination of three BCKAs (α-ketoisocaproate, α-keto-β-methylvalerate and α-ketoisovalerate) in serum and muscle samples using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS). The samples were extracted using methanol and separated on a 1.8 μm Eclipse Plus C18 column within 10 min. The mobile phase was 10 mmol L−1 ammonium acetate aqueous solution and acetonitrile. The results showed that recoveries for the three BCKAs ranged from 78.4% to 114.3% with relative standard deviation (RSD) less than 9.7%. The limit of quantitation (LOQ) were 0.06~0.23 μmol L−1 and 0.09~0.27 nmol g−1 for serum and muscle samples, respectively. The proposed method can be applied to the determination of three BCKAs in animal serum and muscle samples.
Collapse
|
30
|
Song Y, Li J, Shin HD, Liu L, Du G, Chen J. Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine. PLoS One 2017; 12:e0179229. [PMID: 28662040 PMCID: PMC5491005 DOI: 10.1371/journal.pone.0179229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 11/19/2022] Open
Abstract
α-Ketoisocaproate (KIC) is used widely in the pharmaceutical and nutraceutical industries. In previous studies, we achieved a one-step biosynthesis of KIC from l-leucine, using an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase (l-AAD) from Proteus vulgaris. Herein, we report the fine-tuning of l-AAD gene expression in E. coli BL21 (DE3) at the transcriptional and translational levels to improve the KIC titer. By optimizing the plasmid origin with different copy numbers, modulating messenger RNA structure downstream of the initiation codon, and designing the sequences at the ribosome binding site, we increased biocatalyst activity to 31.77%, 24.89%, and 30.20%, respectively, above that achieved with BL21/pet28a-lad. The highest KIC titers reached 76.47 g·L-1, 80.29 g·L-1, and 81.41 g·L-1, respectively. Additionally, the integration of these three engineering strategies achieved an even higher KIC production of 86.55 g·L-1 and a higher l-leucine conversion rate of 94.25%. The enzyme-engineering strategies proposed herein may be generally applicable to the construction of other biocatalysts.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, United States of America
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Rudar M, Zhu CL, de Lange CFM. Effect of supplemental dietary leucine and immune system stimulation on whole-body nitrogen utilization in starter pigs. J Anim Sci 2017; 94:2366-77. [PMID: 27285913 DOI: 10.2527/jas.2015-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The increase in circulating pro-inflammatory cytokines following an immune challenge (e.g., with bacterial lipopolysaccharide [LPS]) causes a disruption in normal AA metabolism and increases visceral protein synthesis at the expense of muscle protein synthesis. The objective of this study was to determine the effect of supplemental dietary Leu on the dynamics of whole body nitrogen (N) retention in starter pigs before and after immune system stimulation (ISS) induced by LPS. A total of 28 starter pigs (14.46 ± 0.73 kg BW) were assigned to isoenergetic and isonitrogenous diets formulated to supply essential AA 10% above estimated requirements for maximum whole-body protein deposition (PD) and to contain increasing amounts of Leu: CON (1.36% SID Leu); LEU-M (2.04% SID Leu); and LEU-H (2.72% SID Leu). Pigs were housed in metabolic crates, scale-fed every 4 h based on BW, and adjusted to dietary treatments for 5 d. The 108-h N-balance experiment was divided into two periods: prechallenge (before LPS challenge; six 12-h collections) and challenge (after LPS challenge; three 12-h collections) periods. In both periods, blood was collected to determine plasma AA and urea N concentrations. At the start of the challenge period, one-half of the pigs fed CON and all pigs fed LEU-M and LEU-H were challenged with LPS (ISS+; 30 µg/kg injected intramuscularly); the remaining pigs fed CON were injected with saline (ISS-). Whole-body N retention was determined during subsequent 12-h collections. Plasma free Leu concentration increased linearly with increasing Leu content in the diet before LPS was administered (CON, 124 µmol/L; LEU-M, 185 µmol/L; LEU-H, 227 µmol/L; < 0.01). During the prechallenge period, N retention was lower in pigs fed LEU-M ( < 0.01) and there was no difference between pigs fed CON and LEU-H (7.91, 7.18, and 7.71 g/12 h for CON, LEU-M, and LEU-H, respectively). During the challenge period, N retention in pigs fed CON was higher in ISS- than ISS+ (5.37 vs. 3.83 g/12 h; < 0.01) but was not affected by diet in ISS+ pigs (3.83, 3.21, and 3.45 g/12 h for CON, LEU-M, and LEU-H, respectively; > 0.10). In healthy pigs, feeding a high excess of dietary Leu induced an anabolic response to compensate for reduced N retention that occurred in pigs fed an intermediate excess of dietary Leu. There was no effect of supplemental Leu on N retention in pigs after an LPS challenge.
Collapse
|
32
|
Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs. Br J Nutr 2017; 117:911-922. [PMID: 28446262 DOI: 10.1017/s0007114517000757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.
Collapse
|
33
|
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. "Nutraceuticals" in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 2017; 312:E282-E299. [PMID: 28143855 PMCID: PMC5406990 DOI: 10.1152/ajpendo.00230.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Collapse
Affiliation(s)
- Colleen S Deane
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Faculty of Health and Social Science, Bournemouth University, Bournemouth, United Kingdom; and
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel J Wilkinson
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom;
| |
Collapse
|
34
|
Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 2017; 8:10. [PMID: 28127425 PMCID: PMC5260006 DOI: 10.1186/s40104-016-0139-z] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China.,College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science & Technology University, No. 9 Donghua Road, Fengyang, 233100 Anhui Province People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-ResistanceNutrition,Ministry of Education, Sichuan AgriculturalUniversity, Ya'an, Sichuan China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| |
Collapse
|
35
|
Zheng L, Wei H, He P, Zhao S, Xiang Q, Pang J, Peng J. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model. Nutrients 2016; 9:nu9010017. [PMID: 28036018 PMCID: PMC5295061 DOI: 10.3390/nu9010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in piglets. The effect of BCAA supplementation on muscle protein synthesis is associated with the increase in protein degradation and KIC production in the fed state.
Collapse
Affiliation(s)
- Liufeng Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China.
| | - Shengjun Zhao
- Department of Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Quanhang Xiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaman Pang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
36
|
Moghei M, Tavajohi-Fini P, Beatty B, Adegoke OAJ. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner. Am J Physiol Cell Physiol 2016; 311:C518-27. [PMID: 27488662 DOI: 10.1152/ajpcell.00062.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Abstract
Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (-34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Mahshid Moghei
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Pegah Tavajohi-Fini
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Brendan Beatty
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A J Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv Nutr 2016; 7:828S-38S. [PMID: 27422520 PMCID: PMC4942869 DOI: 10.3945/an.115.011650] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies.
Collapse
Affiliation(s)
- W Kyle Mitchell
- Department of Surgery, Royal Derby Hospital, Derby, United Kingdom; and
| | - Daniel J Wilkinson
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jonathan N Lund
- Department of Surgery, Royal Derby Hospital, Derby, United Kingdom; and,,Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Philip J Atherton
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
38
|
Kao M, Columbus DA, Suryawan A, Steinhoff-Wagner J, Hernandez-Garcia A, Nguyen HV, Fiorotto ML, Davis TA. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E1072-84. [PMID: 27143558 PMCID: PMC4935142 DOI: 10.1152/ajpendo.00520.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.
Collapse
Affiliation(s)
- Michelle Kao
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Boutry C, El-Kadi SW, Suryawan A, Steinhoff-Wagner J, Stoll B, Orellana RA, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E699-E713. [PMID: 26884386 PMCID: PMC4835946 DOI: 10.1152/ajpendo.00479.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 μmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Samer W El-Kadi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Renán A Orellana
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
40
|
Girón MD, Vílchez JD, Salto R, Manzano M, Sevillano N, Campos N, Argilés JM, Rueda R, López-Pedrosa JM. Conversion of leucine to β-hydroxy-β-methylbutyrate by α-keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. J Cachexia Sarcopenia Muscle 2016; 7:68-78. [PMID: 27065075 PMCID: PMC4799859 DOI: 10.1002/jcsm.12032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND L-Leu and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L-Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L-Leu and HMB in myotubes grown in the absence of any catabolic stimuli. METHODS Studies were conducted in vitro using rat L6 myotubes under normal growth conditions (non-involving L-Leu-deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined. RESULTS Only HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein-1, and eIF4E. HMB was significantly more effective than L-Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L-Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α-keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α-keto isocaproate into HMB. In these transfected cells, L-Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α-keto isocaproate dioxygenase. CONCLUSION Our results suggest that HMB is an active L-Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure.
Collapse
Affiliation(s)
- María D Girón
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | | | - Natalia Sevillano
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | | | - Josep M Argilés
- Cancer Research Group, Department de Bioquimica I Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona Spain
| | | | | |
Collapse
|
41
|
Manjarín R, Columbus DA, Suryawan A, Nguyen HV, Hernandez-García AD, Hoang NM, Fiorotto ML, Davis T. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs. Amino Acids 2016; 48:257-267. [PMID: 26334346 PMCID: PMC4713246 DOI: 10.1007/s00726-015-2078-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022]
Abstract
Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel A. Columbus
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Agus Suryawan
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hanh V. Nguyen
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adriana D. Hernandez-García
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nguyet-Minh Hoang
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marta L. Fiorotto
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresa Davis
- U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS), Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
42
|
Ehling S, Reddy TM. Direct Analysis of Leucine and Its Metabolites β-Hydroxy-β-methylbutyric Acid, α-Ketoisocaproic Acid, and α-Hydroxyisocaproic Acid in Human Breast Milk by Liquid Chromatography-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7567-7573. [PMID: 26271627 DOI: 10.1021/acs.jafc.5b02563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A direct, quantitative, and confirmatory method based on stable isotope dilution liquid chromatography-mass spectrometry was developed and validated for the analysis of leucine and metabolites β-hydroxy-β-methylbutyric acid (HMB), α-ketoisocaproic acid (KIC), and α-hydroxyisocaproic acid (HICA) in human breast milk. Chromatographic resolution was achieved between isobaric leucine and isoleucine. Accuracy and intermediate precision were 89-117% and <10% relative standard deviation (RSD) across three validation runs. Limits of quantitation for HMB, KIC, HICA, and leucine in human breast milk were 20 μg/L, 20 μg/L, 10 μg/L, and 1 mg/L. Measured concentrations of HMB, KIC, HICA, and free leucine in human breast milk from six donors at various stages of lactation were 42-164 μg/L, < 20-1057 μg/L, < 10 μg/L, and 2.1-88.5 mg/L. HMB and KIC were confirmed in human breast milk by orthogonal hydrophilic interaction chromatography (HILIC). This work provides a tool for further study of human breast milk composition and its effect on protein turnover in developing infants.
Collapse
Affiliation(s)
- Stefan Ehling
- Abbott Laboratories , 3300 Stelzer Road, Columbus, Ohio 43219, United States
| | - Todime M Reddy
- Abbott Laboratories , 3300 Stelzer Road, Columbus, Ohio 43219, United States
| |
Collapse
|
43
|
The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2015; 48:41-51. [DOI: 10.1007/s00726-015-2067-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/29/2015] [Indexed: 01/30/2023]
|
44
|
Song Y, Li J, Shin HD, Du G, Liu L, Chen J. One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci Rep 2015; 5:12614. [PMID: 26217895 PMCID: PMC4517468 DOI: 10.1038/srep12614] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, temperature 35 °C, pH 7.5, and reaction time 20 h. Under the above conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the α-ketoisocaproate titer. When 13.1 g/L leucine was added at 2-h intervals (from 0 to 22 h, 12 addition times), the α-ketoisocaproate titer reached 69.1 g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of α-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineeirng, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
45
|
Wang X, Wei H, Cao J, Li Z, He P. Metabolomics analysis of muscle from piglets fed low protein diets supplemented with branched chain amino acids using HPLC-high-resolution MS. Electrophoresis 2015; 36:2250-2258. [DOI: 10.1002/elps.201500007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/15/2015] [Accepted: 03/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural University; Beijing P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology; Huazhong Agricultural University; Wuhan P. R. China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural University; Beijing P. R. China
| |
Collapse
|
46
|
Gordon BS, Williamson DL, Lang CH, Jefferson LS, Kimball SR. Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1. J Nutr 2015; 145:708-13. [PMID: 25716553 PMCID: PMC4381770 DOI: 10.3945/jn.114.207621] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/29/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. OBJECTIVE The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. METHODS Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. RESULTS In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. CONCLUSIONS The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed deprivation and that a reduction in its expression is necessary for maximal stimulation of protein synthesis in response to refeeding.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| |
Collapse
|
47
|
Columbus DA, Fiorotto ML, Davis TA. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015; 47:259-70. [PMID: 25408462 PMCID: PMC4304911 DOI: 10.1007/s00726-014-1866-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Approximately 10% of infants born in the United States are of low birth weight. Growth failure during the neonatal period is a common occurrence in low birth weight infants due to their inability to tolerate full feeds, concerns about advancing protein supply, and high nutrient requirements for growth. An improved understanding of the nutritional regulation of growth during this critical period of postnatal growth is vital for the development of strategies to improve lean gain. Past studies with animal models have demonstrated that muscle protein synthesis is increased substantially following a meal and that this increase is due to the postprandial rise in amino acids as well as insulin. Both amino acids and insulin act independently to stimulate protein synthesis in a mammalian target of rapamycin-dependent manner. Further studies have elucidated that leucine, in particular, and its metabolites, α-ketoisocaproic acid and β-hydroxy-β-methylbutyrate, have unique anabolic properties. Supplementation with leucine, provided either parenterally or enterally, has been shown to enhance muscle protein synthesis in neonatal pigs, making it an ideal candidate for stimulating growth of low birth weight infants.
Collapse
Affiliation(s)
- Daniel A Columbus
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Marta L Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Teresa A Davis
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Neonates with feeding difficulties can be fed by orogastric tube, using either continuous or bolus delivery. This review reports on recent findings that bolus is advantageous compared to continuous feeding in supporting optimal protein anabolism. RECENT FINDINGS Whether bolus or continuous feeding is more beneficial has been controversial, largely due to limitations inherent in clinical studies, such as the presence of confounding variables and the inability to use invasive approaches. Recent studies using the piglet as a model of the human neonate showed that, compared to continuous feeding, bolus feeding enhances protein synthesis and promotes greater protein deposition. The increase in protein synthesis occurs in muscles of varying fiber type and in visceral tissues whereas muscle protein degradation is largely insensitive to feeding pattern. This higher protein synthesis rate is enabled by the rapid and profound increases in circulating amino acids and insulin that occur following a bolus feed, which activate the intracellular signaling pathways leading to mRNA translation. SUMMARY Recent findings indicate that bolus feeding enhances protein synthesis more than continuous feeding and promotes greater protein anabolism. The difference in response is attributable to the pulsatile pattern of amino acid-induced and insulin-induced translation initiation induced only by bolus feeding.
Collapse
Affiliation(s)
- Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
49
|
Vogt M, Haas S, Polen T, van Ooyen J, Bott M. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 2014; 8:351-60. [PMID: 25488800 PMCID: PMC4353348 DOI: 10.1111/1751-7915.12237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l−1) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l−1 h−1. Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Michael Vogt
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | | | |
Collapse
|
50
|
Xu B, Sowa N, Cardenas ME, Gerton JL. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. Hum Mol Genet 2014; 24:1540-55. [PMID: 25378554 PMCID: PMC4351377 DOI: 10.1093/hmg/ddu565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nenja Sowa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA, Medical Faculty, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA, Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA,
| |
Collapse
|