1
|
Palmer DJ, Cuthbert AR, Sullivan TR, Pretorius RA, Garssen J, Rueter K, Jenmalm MC, Keelan JA, Silva D, Prescott SL. Effects of pregnancy and lactation prebiotics supplementation on infant allergic disease: A randomized controlled trial. J Allergy Clin Immunol 2024:S0091-6749(24)00859-5. [PMID: 39173718 DOI: 10.1016/j.jaci.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ingestion of prebiotics during pregnancy and lactation may have immunomodulatory benefits for the developing fetal and infant immune system and provide a potential dietary strategy to reduce the risk of allergic diseases. OBJECTIVE We sought to determine whether maternal supplementation with dietary prebiotics reduces the risk of allergic outcomes in infants with hereditary risk. METHODS We undertook a double-blind randomized controlled trial in which pregnant women were allocated to consume prebiotics (14.2 g daily of galacto-oligosaccharides and fructo-oligosaccharides in the ratio 9:1) or placebo (8.7 g daily of maltodextrin) powder from less than 21 weeks' gestation until 6 months postnatal during lactation. Eligible women had infants with a first-degree relative with a history of medically diagnosed allergic disease. The primary outcome was medically diagnosed infant eczema by age 1 year, and secondary outcomes included allergen sensitization, food allergy, and recurrent wheeze by age 1 year. RESULTS A total of 652 women were randomized between June 2016 and November 2021 (329 in the prebiotics group and 323 in the placebo group). There was no significant difference between groups in the percentage of infants with medically diagnosed eczema by age 1 year (prebiotics 31.5% [103 of 327 infants] vs placebo 32.6% [105 of 322 infants]; adjusted relative risk, 0.98; 95% CI, 0.77-1.23; P = .84). Secondary outcomes and safety measures also did not significantly differ between groups. CONCLUSIONS We found little evidence that maternal prebiotics supplementation during pregnancy and lactation reduces the risk of medically diagnosed infant eczema by age 1 year in infants who are at hereditary risk of allergic disease.
Collapse
Affiliation(s)
- Debra J Palmer
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia; School of Medicine, The University of Western Australia, Crawley, Australia.
| | - Alana R Cuthbert
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas R Sullivan
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, Australia; School of Public Health, The University of Adelaide, Adelaide, Australia
| | - Rachelle A Pretorius
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia; School of Medicine, The University of Western Australia, Crawley, Australia
| | - Johan Garssen
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Kristina Rueter
- School of Medicine, The University of Western Australia, Crawley, Australia; Department of Immunology and Dermatology, Perth Children's Hospital, Nedlands, Australia
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Jeffrey A Keelan
- School of Medicine, The University of Western Australia, Crawley, Australia; School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
| | - Desiree Silva
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia; School of Medicine, The University of Western Australia, Crawley, Australia; Joondalup Health Campus, Joondalup, Australia; Edith Cowan University, Perth, Australia
| | - Susan L Prescott
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia; School of Medicine, The University of Western Australia, Crawley, Australia; Department of Immunology and Dermatology, Perth Children's Hospital, Nedlands, Australia; Nova Institute for Health, Baltimore, Md
| |
Collapse
|
2
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
3
|
Shen Y, Song M, Wu S, Zhao H, Zhang Y. Plant-Based Dietary Fibers and Polysaccharides as Modulators of Gut Microbiota in Intestinal and Lung Inflammation: Current State and Challenges. Nutrients 2023; 15:3321. [PMID: 37571257 PMCID: PMC10420973 DOI: 10.3390/nu15153321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Recent research has underscored the significant role of gut microbiota in managing various diseases, including intestinal and lung inflammation. It is now well established that diet plays a crucial role in shaping the composition of the microbiota, leading to changes in metabolite production. Consequently, dietary interventions have emerged as promising preventive and therapeutic approaches for managing these diseases. Plant-based dietary fibers, particularly polysaccharides and oligosaccharides, have attracted attention as potential therapeutic agents for modulating gut microbiota and alleviating intestinal and lung inflammation. This comprehensive review aims to provide an in-depth overview of the current state of research in this field, emphasizing the challenges and limitations associated with the use of plant-based dietary fibers and polysaccharides in managing intestinal and lung inflammation. By shedding light on existing issues and limitations, this review seeks to stimulate further research and development in this promising area of therapeutic intervention.
Collapse
Affiliation(s)
- Yu Shen
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Mingming Song
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Shihao Wu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi 154007, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| |
Collapse
|
4
|
Lê A, Selle A, Aubert P, Durand T, Brosseau C, Bordron P, Delage E, Chaffron S, Petitfils C, Cenac N, Neunlist M, Bodinier M, Rolli-Derkinderen M. Maternal prebiotic supplementation impacts colitis development in offspring mice. Front Nutr 2023; 9:988529. [PMID: 36687706 PMCID: PMC9849907 DOI: 10.3389/fnut.2022.988529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background and aims Maternal diet plays a key role in preventing or contributing to the development of chronic diseases, such as obesity, allergy, and brain disorders. Supplementation of maternal diet with prebiotics has been shown to reduce the risk of food allergies and affect the intestinal permeability in offspring later in life. However, its role in modulating the development of other intestinal disorders, such as colitis, remains unknown. Therefore, we investigated the effects of prebiotic supplementation in pregnant mice on the occurrence of colitis in their offspring. Materials and methods Offspring from mothers, who were administered prebiotic galacto-oligosaccharides and inulin during gestation or fed a control diet, were subjected to three cycles of dextran sulphate sodium (DSS) treatment to induce chronic colitis, and their intestinal function and disease activity were evaluated. Colonic remodelling, gut microbiota composition, and lipidomic and transcriptomic profiles were also assessed. Results DSS-treated offspring from prebiotic-fed mothers presented a higher disease score, increased weight loss, and increased faecal humidity than those from standard diet-fed mothers. DSS-treated offspring from prebiotic-fed mothers also showed increased number of colonic mucosal lymphocytes and macrophages than the control group, associated with the increased colonic concentrations of resolvin D5, protectin DX, and 14-hydroxydocosahexaenoic acid, and modulation of colonic gene expression. In addition, maternal prebiotic supplementation induced an overabundance of eight bacterial families and a decrease in the butyrate caecal concentration in DSS-treated offspring. Conclusion Maternal prebiotic exposure modified the microbiota composition and function, lipid content, and transcriptome of the colon of the offspring. These modifications did not protect against colitis, but rather sensitised the mice to colitis development.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France
| | - Amandine Selle
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Nantes, France
| | - Philippe Aubert
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France
| | - Tony Durand
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France
| | - Carole Brosseau
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Nantes, France
| | - Philippe Bordron
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France
| | - Erwan Delage
- UMR 6004, LS2N, Nantes Université, Ecole Centrale Nantes, CNRS, Nantes, France
| | - Samuel Chaffron
- UMR 6004, LS2N, Nantes Université, Ecole Centrale Nantes, CNRS, Nantes, France
| | - Camille Petitfils
- UMR 1220, Institut de Recherche en Santé Digestive, Toulouse, France
| | - Nicolas Cenac
- UMR 1220, Institut de Recherche en Santé Digestive, Toulouse, France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Nantes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, Institut National Pour la Santé et la Recherche Médicale, Nantes Université, Nantes, France,*Correspondence: Malvyne Rolli-Derkinderen,
| |
Collapse
|
5
|
Rousseaux A, Brosseau C, Bodinier M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023; 15:nu15020269. [PMID: 36678140 PMCID: PMC9863037 DOI: 10.3390/nu15020269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Prebiotics, probiotics and synbiotics are known to have major beneficial effects on human health due to their ability to modify the composition and the function of the gut mucosa, the gut microbiota and the immune system. These components largely function in a healthy population throughout different periods of life to confer homeostasis. Indeed, they can modulate the composition of the gut microbiota by increasing bacteria strands that are beneficial for health, such as Firmicute and Bifidobacteria, and decreasing harmful bacteria, such as Enteroccocus. Their immunomodulation properties have been extensively studied in different innate cells (dendritic cells, macrophages, monocytes) and adaptive cells (Th, Treg, B cells). They can confer a protolerogenic environment but also modulate pro-inflammatory responses. Due to all these beneficial effects, these compounds have been investigated to prevent or to treat different diseases, such as cancer, diabetes, allergies, autoimmune diseases, etc. Regarding the literature, the effects of these components on dendritic cells, monocytes and T cells have been studied and presented in a number of reviews, but their impact on B-cell response has been less widely discussed. CONCLUSIONS For the first time, we propose here a review of the literature on the immunomodulation of B-lymphocytes response by prebiotics, probiotics and synbiotics, both in healthy conditions and in pathologies. DISCUSSION Promising studies have been performed in animal models, highlighting the potential of prebiotics, probiotics and synbiotics intake to treat or to prevent diseases associated with B-cell immunomodulation, but this needs to be validated in humans with a full characterization of B-cell subsets and not only the humoral response.
Collapse
|
6
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Polinski KJ, Bell GA, Trinh MH, Sundaram R, Mendola P, Robinson SL, Bell EM, Adeyeye T, Lin TC, Yeung EH. Maternal obesity, gestational weight gain, and offspring asthma and atopy. Ann Allergy Asthma Immunol 2022; 129:199-204.e3. [PMID: 35552010 PMCID: PMC9329274 DOI: 10.1016/j.anai.2022.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Maternal obesity may affect offspring asthma and atopic disease risk by altering fetal immune system development. However, few studies evaluate gestational weight gain (GWG). OBJECTIVE To evaluate relationships between maternal body mass index (BMI), GWG, and persistent wheeze, eczema, allergy, and asthma risk in offspring through middle childhood. METHODS A total of 5939 children from Upstate KIDS, a population-based longitudinal cohort of children born in upstate New York (2008-2019) were included in the analysis. Persistent wheeze or asthma, eczema, and allergy were maternally reported at multiple study time points throughout early and middle childhood. Poisson regression models with robust SEs were used to estimate adjusted risk ratios (aRRs) and 95% confidence intervals (CIs) for offspring atopic outcomes by maternal prepregnancy BMI and GWG. RESULTS Prepregnancy BMI was associated with increased risk of persistent wheeze by 3 years of age even after adjustments for maternal atopy (class I obesity: aRR, 1.58; 95% CI, 1.13-2.20; class II or III obesity: aRR, 1.69; 95% CI, 1.22-2.35). Associations with reported asthma in middle childhood did not reach statistical significance. Furthermore, no associations were found between prepregnancy BMI and atopic outcomes in either early or middle childhood. GWG was not associated with higher risk of early childhood persistent wheeze or middle childhood asthma. CONCLUSION Maternal prepregnancy BMI was associated with increased risk of offspring wheeze, whereas excessive GWG was generally not associated with childhood asthma or atopy.
Collapse
Affiliation(s)
- Kristen J Polinski
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Griffith A Bell
- Ariadne Labs, Boston, Massachusetts; Departments of Health Policy and Management and of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Mai-Han Trinh
- Departments of Health Policy and Management and of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Rajeshwari Sundaram
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, University at Buffalo, State University of New York, Buffalo, New York
| | - Sonia L Robinson
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York
| | - Temilayo Adeyeye
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York
| | | | - Edwina H Yeung
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Study Protocol for a Randomised Controlled Trial Investigating the Effects of Maternal Prebiotic Fibre Dietary Supplementation from Mid-Pregnancy to Six Months’ Post-Partum on Child Allergic Disease Outcomes. Nutrients 2022; 14:nu14132753. [PMID: 35807933 PMCID: PMC9268759 DOI: 10.3390/nu14132753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Infant allergy is the most common early manifestation of an increasing propensity for inflammation and immune dysregulation in modern environments. Refined low-fibre diets are a major risk for inflammatory diseases through adverse effects on the composition and function of gut microbiota. This has focused attention on the potential of prebiotic dietary fibres to favourably change gut microbiota, for local and systemic anti-inflammatory effects. In pregnancy, the immunomodulatory effects of prebiotics may also have benefits for the developing fetal immune system, and provide a potential dietary strategy to reduce the risk of allergic disease. Here, we present the study protocol for a double-blinded, randomised controlled trial investigating the effects of maternal prebiotics supplementation on child allergic disease outcomes. Eligible pregnant women have infants with a first-degree relative with a history of medically diagnosed allergic disease. Consented women are randomised to consume either prebiotics (galacto-oligosaccharides and fructo-oligosaccharides) or placebo (maltodextrin) powder daily from 18–20 weeks’ gestation to six months’ post-partum. The target sample size is 652 women. The primary outcome is infant medically diagnosed eczema; secondary outcomes include allergen sensitisation, food allergies and recurrent wheeze. Breast milk, stool and blood samples are collected at multiple timepoints for further analysis.
Collapse
|
9
|
Selle A, Brosseau C, Dijk W, Duval A, Bouchaud G, Rousseaux A, Bruneau A, Cherbuy C, Mariadassou M, Cariou V, Barbarot S, Bodinier M. Prebiotic Supplementation During Gestation Induces a Tolerogenic Environment and a Protective Microbiota in Offspring Mitigating Food Allergy. Front Immunol 2022; 12:745535. [PMID: 35069524 PMCID: PMC8769244 DOI: 10.3389/fimmu.2021.745535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Food allergy is associated with alterations in the gut microbiota, epithelial barrier, and immune tolerance. These dysfunctions are observed within the first months of life, indicating that early intervention is crucial for disease prevention. Preventive nutritional strategies with prebiotics are an attractive option, as prebiotics such as galacto-oligosaccharides and inulin can promote tolerance, epithelial barrier reinforcement, and gut microbiota modulation. Nonetheless, the ideal period for intervention remains unknown. Here, we investigated whether galacto-oligosaccharide/inulin supplementation during gestation could protect offspring from wheat allergy development in BALB/cJRj mice. We demonstrated that gestational prebiotic supplementation promoted the presence of beneficial strains in the fecal microbiota of dams during gestation and partially during mid-lactation. This specific microbiota was transferred to their offspring and maintained to adulthood. The presence of B and T regulatory immune cell subsets was also increased in the lymph nodes of offspring born from supplemented mothers, suggestive of a more tolerogenic immune environment. Indeed, antenatal prebiotic supplementation reduced the development of wheat allergy symptoms in offspring. Our study thus demonstrates that prebiotic supplementation during pregnancy induces, in the offspring, a tolerogenic environment and a microbial imprint that mitigates food allergy development.
Collapse
Affiliation(s)
- Amandine Selle
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Carole Brosseau
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Wieneke Dijk
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Angéline Duval
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Grégory Bouchaud
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Anais Rousseaux
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Aurélia Bruneau
- Micalis Institute, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- MaIAGE, UR1404, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Jouy-en-Josas, France
| | - Véronique Cariou
- StatSC, École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Nantes, France
| | - Sebastien Barbarot
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France.,Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UMR1280 PhAN, Nantes, France
| | - Marie Bodinier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| |
Collapse
|
10
|
Seyed Toutounchi N, Braber S, van’t Land B, Thijssen S, Garssen J, Kraneveld AD, Folkerts G, Hogenkamp A. Exposure to Deoxynivalenol During Pregnancy and Lactation Enhances Food Allergy and Reduces Vaccine Responsiveness in the Offspring in a Mouse Model. Front Immunol 2021; 12:797152. [PMID: 34975906 PMCID: PMC8718709 DOI: 10.3389/fimmu.2021.797152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Deoxynivalenol (DON), a highly prevalent contaminant of grain-based products, is known to induce reproductive- and immunotoxicities. Considering the importance of immune development in early life, the present study investigated the effects of perinatal DON exposure on allergy development and vaccine responsiveness in the offspring. Pregnant mice received control or DON-contaminated diets (12.5 mg/kg diet) during pregnancy and lactation. After weaning, female offspring were sensitized to ovalbumin (OVA) by oral administration of OVA with cholera toxin (CT). Male offspring were injected with Influvac vaccine. OVA-specific acute allergic skin response (ASR) in females and vaccine-specific delayed-type hypersensitivity (DTH) in males were measured upon intradermal antigen challenge. Immune cell populations in spleen and antigen-specific plasma immunoglobulins were analyzed. In female CT+OVA-sensitized offspring of DON-exposed mothers ASR and OVA-specific plasma immunoglobulins were significantly higher, compared to the female offspring of control mothers. In vaccinated male offspring of DON-exposed mothers DTH and vaccine-specific antibody levels were significantly lower, compared to the male offspring of control mothers. In both models a significant reduction in regulatory T cells, Tbet+ Th1 cells and Th1-related cytokine production of the offspring of DON-exposed mothers was observed. In conclusion, early life dietary exposure to DON can adversely influence immune development in the offspring. Consequently, the immune system of the offspring may be skewed towards an imbalanced state, resulting in an increased allergic immune response to food allergens and a decreased immune response to vaccination against influenza virus in these models.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Belinda van’t Land
- Danone Nutricia Research, Utrecht, Netherlands
- Center of Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021; 22:ijms22094377. [PMID: 33922158 PMCID: PMC8122716 DOI: 10.3390/ijms22094377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.
Collapse
|
12
|
Mennini M, Tambucci R, Riccardi C, Rea F, De Angelis P, Fiocchi A, Assa'ad A. Eosinophilic Esophagitis and Microbiota: State of the Art. Front Immunol 2021; 12:595762. [PMID: 33679739 PMCID: PMC7933523 DOI: 10.3389/fimmu.2021.595762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food-triggered, immune-mediated disease of the oesophagus, clinically characterized by symptoms referred to oesophagal dysfunction, and histologically defined by an eosinophil productive inflammation of the oesophagal mucosa, among other cell types. The involvement of an adaptive Th2-type response to food antigens in EoE was known since 2000; several cytokines and chemokines promote food-specific responses, during which local production of IgE, but also IgG4 derived from plasma cells in lamina propria of oesophagal mucosa might play an important role. Evidence pointing towards a possible role for the innate immunity in EoE has arisen recently. Together, this evidence gives rise to a potential role that the innate immune system in general, and also the microbial pattern recognition receptors (PRRs) might play in EoE pathogenesis. Among PRRs, Toll-like receptors (TLRs) are type-I transmembrane receptors expressed both on epithelial and lamina propria cells with the capacity to distinguish between pathogen and commensal microbes. As TLRs in the different intestinal epithelia represent the primary mechanism of epithelial recognition of bacteria, this evidence underlines that oesophagal TLR-dependent signaling pathways in EoE support the potential implication of microbiota and the innate immune system in the pathogenesis of this disease. The oesophagal mucosa hosts a resident microbiota, although in a smaller population as compared with other districts of the gastrointestinal tract. Few studies have focused on the composition of the microbiota of the normal oesophagus alone. Still, additional information has come from studies investigating the oesophagal microbiota in disease and including healthy patients as controls. Our review aims to describe all the evidence on the oesophagal and intestinal microbiota in patients with EoE to identify the specific features of dysbiosis in this condition.
Collapse
Affiliation(s)
- Maurizio Mennini
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Carla Riccardi
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Rea
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Amal Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
14
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
15
|
Stinson LF, Gay MCL, Koleva PT, Eggesbø M, Johnson CC, Wegienka G, du Toit E, Shimojo N, Munblit D, Campbell DE, Prescott SL, Geddes DT, Kozyrskyj AL. Human Milk From Atopic Mothers Has Lower Levels of Short Chain Fatty Acids. Front Immunol 2020; 11:1427. [PMID: 32903327 PMCID: PMC7396598 DOI: 10.3389/fimmu.2020.01427] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SFCAs) are microbial metabolites produced in the gut upon fermentation of dietary fiber. These metabolites interact with the host immune system and can elicit epigenetic effects. There is evidence to suggest that SCFAs may play a role in the developmental programming of immune disorders and obesity, though evidence in humans remains sparse. Here we have quantified human milk (HM) SCFA levels in an international cohort of atopic and non-atopic mothers (n = 109). Our results demonstrate that human milk contains detectable levels of the SCFAs acetate, butyrate, and formate. Samples from atopic mothers had significantly lower concentrations of acetate and butyrate than those of non-atopic mothers. HM SCFA levels in atopic and non-atopic women also varied based on maternal country of residence (Australia, Japan, Norway, South Africa, USA). Reduced exposure to HM SCFA in early life may program atopy or overweight risk in breastfed infants.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Melvin C L Gay
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Petya T Koleva
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Merete Eggesbø
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine C Johnson
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Ganesa Wegienka
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Elloise du Toit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Naoki Shimojo
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, Chiba University, Chiba, Japan
| | - Daniel Munblit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Dianne E Campbell
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Allergy and Immunology, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Susan L Prescott
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Donna T Geddes
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Anita L Kozyrskyj
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Nakajima A, Habu S, Kasai M, Okumura K, Ishikawa D, Shibuya T, Kobayashi O, Osada T, Ohkusa T, Watanabe S, Nagahara A. Impact of maternal dietary gut microbial metabolites on an offspring's systemic immune response in mouse models. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:33-38. [PMID: 32328398 PMCID: PMC7162694 DOI: 10.12938/bmfh.19-013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiota has a great impact on the host immune systems. Recent evidence suggests that the maternal gut microbiota affects the immune systems of offspring. Metabolites produced by
the gut microbiota play crucial roles in the immune system. Previous studies have also revealed that metabolites such as short-chain fatty acids (SCFAs) and the aryl hydrocarbon receptor
(AhR) ligands are involved in host health and diseases. Great progress has been made in understanding the roles of diet-derived SCFAs in the offspring’s immune system. The findings to date
raise the possibility that maternal dietary soluble fiber intake may play a role in the development of the offspring’s systemic immune response. In this review, we summarize the present
knowledge and discuss future therapeutic possibilities for using dietary soluble fiber intake against inflammatory diseases.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sonoko Habu
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masataka Kasai
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Osamu Kobayashi
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Williams LM, Scott HA, Wood LG. Soluble fibre as a treatment for inflammation in asthma. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Prebiotics: Mechanisms and Preventive Effects in Allergy. Nutrients 2019; 11:nu11081841. [PMID: 31398959 PMCID: PMC6722770 DOI: 10.3390/nu11081841] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases now affect over 30% of individuals in many communities, particularly young children, underscoring the need for effective prevention strategies in early life. These allergic conditions have been linked to environmental and lifestyle changes driving the dysfunction of three interdependent biological systems: microbiota, epithelial barrier and immune system. While this is multifactorial, dietary changes are of particular interest in the altered establishment and maturation of the microbiome, including the associated profile of metabolites that modulate immune development and barrier function. Prebiotics are non-digestible food ingredients that beneficially influence the health of the host by 1) acting as a fermentable substrate for some specific commensal host bacteria leading to the release of short-chain fatty acids in the gut intestinal tract influencing many molecular and cellular processes; 2) acting directly on several compartments and specifically on different patterns of cells (epithelial and immune cells). Nutrients with prebiotic properties are therefore of central interest in allergy prevention for their potential to promote a more tolerogenic environment through these multiple pathways. Both observational studies and experimental models lend further credence to this hypothesis. In this review, we describe both the mechanisms and the therapeutic evidence from preclinical and clinical studies exploring the role of prebiotics in allergy prevention.
Collapse
|
19
|
Pretorius RA, Bodinier M, Prescott SL, Palmer DJ. Maternal Fiber Dietary Intakes during Pregnancy and Infant Allergic Disease. Nutrients 2019; 11:nu11081767. [PMID: 31374861 PMCID: PMC6722741 DOI: 10.3390/nu11081767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal diet during pregnancy plays a likely role in infant immune development through both direct nutrient specific immunomodulatory effects and by modulating the composition and metabolic activity of the maternal gut microbiome. Dietary fibers, as major substrates for microbial fermentation, are of interest in this context. This is the first study to examine maternal intakes of different fiber sub-types and subsequent infant allergic disease. In an observational study of 639 mother–infant pairs (all infants had a family history of allergic disease) we examined maternal intakes of total fiber, soluble fiber, insoluble fiber, resistant starch, and prebiotic fiber, by a semi-quantitative food frequency questionnaire at 36–40 weeks’ gestation. Infants attended an allergy clinical assessment at 12 months of age, including skin prick testing to common allergens. Higher maternal dietary intakes of resistant starch were associated with reduced doctor diagnosed infant wheeze, adjusted odds ratio (aOR) 0.68 (95% CI 0.49, 0.95, p = 0.02). However, in contrast, higher maternal intakes of resistant starch were associated with higher risk of parent reported eczema aOR 1.27 (95% CI 1.09, 1.49, p < 0.01) and doctor diagnosed eczema aOR 1.19 (95% CI 1.01, 1.41, p = 0.04). In conclusion, maternal resistant starch consumption was differentially associated with infant phenotypes, with reduced risk of infant wheeze, but increased risk of eczema.
Collapse
Affiliation(s)
- Rachelle A Pretorius
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Marie Bodinier
- INRA Pays de la Loire, UR 1268 Biopolymers Interactions Assemblies, rue de la géraudière, BP 71627, Cedex 3, 44316 Nantes, France
| | - Susan L Prescott
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands 6009, Western Australia, Australia
| | - Debra J Palmer
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands 6009, Western Australia, Australia.
| |
Collapse
|
20
|
Polyphenol Effects on Splenic Cytokine Response in Post-Weaning Contactin 1-Overexpressing Transgenic Mice. Molecules 2019; 24:molecules24122205. [PMID: 31212848 PMCID: PMC6631041 DOI: 10.3390/molecules24122205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Background: In mice, postnatal immune development has previously been investigated, and evidence of a delayed maturation of the adaptive immune response has been detected. Methods: In this study, the effects of red grape polyphenol oral administration on the murine immune response were explored using pregnant mice (TAG/F3 transgenic and wild type (wt) mice) as the animal model. The study was performed during pregnancy as well as during lactation until postnatal day 8. Suckling pups from polyphenol-administered dams as well as day 30 post-weaning pups (dietary-administered with polyphenols) were used. Polyphenol effects were evaluated, measuring splenic cytokine secretion. Results: Phorbol myristate acetate-activated splenocytes underwent the highest cytokine production at day 30 in both wt and TAG/F3 mice. In the latter, release of interferon (IFN)-γ and tumor necrosis factor (TNF)-α was found to be higher than in the wt counterpart. In this context, polyphenols exerted modulating activities on day 30 TAG/F3 mice, inducing release of interleukin (IL)-10 in hetero mice while abrogating release of IL-2, IFN-γ, TNF-α, IL-6, and IL-4 in homo and hetero mice. Conclusion: Polyphenols are able to prevent the development of an inflammatory/allergic profile in postnatal TAG/F3 mice.
Collapse
|
21
|
Cabridain C, Aubert H, Kaeffer B, Badon V, Boivin M, Dochez V, Winer N, Faurel-Paul E, Planche L, Riochet D, Maruani A, Perrotin F, Droitcourt C, Lassel L, Tching-Sin M, Rogers NK, Bodinier M, Barbarot S. Effectiveness of an antenatal maternal supplementation with prebiotics for preventing atopic dermatitis in high-risk children (the PREGRALL study): protocol for a randomised controlled trial. BMJ Open 2019; 9:e024974. [PMID: 31005913 PMCID: PMC6500253 DOI: 10.1136/bmjopen-2018-024974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory disease affecting 10%-15% of children in Europe. There is a need for new primary preventive therapeutic strategies in at-risk populations. Recent research has indicated that atopic diseases are associated with a disrupted gut microbial 'balance' in early life raising the possibility that interventions which yield optimal patterns of microflora could improve host's health. Prebiotics, sugars with immunomodulatory properties that stimulate the diversity of the digestive microbiota, are ideal candidates for such research. So far, most clinical trials have focused on improving infant gut colonisation postnatally. However, prenatal life is a crucial period during which different tolerance mechanisms are put in place. We aim to determine whether antenatal prebiotics supplementation prevents AD in high-risk children. METHODS AND ANALYSIS This is a randomised, multicentre, double-blind, trial to evaluate the effectiveness of antenatal prebiotic maternal supplementation (galacto-oligosaccharide/inulin) in pregnant women versus placebo on the occurrence of AD at 1 year of age in at-risk children (defined as having a maternal history of atopic disease). Participating women will be randomised to daily ingestion of a prebiotics or placebo (maltodextrin) from 20 weeks' gestation until delivery. The primary outcome is the prevalence of AD at 1 year of age, using the version of the UK Working Party Diagnostic Criteria optimised for preventive studies. Key secondary endpoints are AD severity, quality of life and prebiotics tolerance. The target sample size is 376 women (188 patients per group) which will provide 80% power to detect a 33% reduction of the risk of AD in the verum group (α=0.05). The primary analysis will be based on the intention-to-treat principle. ETHICS AND DISSEMINATION Results will be presented in peer-reviewed journals and at international conferences. Ethics approval for the study was obtained from the institutional ethical review board of 'Comité de Protection des Personnes Sud Ouest-Outre-Mer III' of the University Hospital Centre of Bordeaux (2017/13). TRIAL REGISTRATION NUMBER NCT03183440; Pre-results.
Collapse
Affiliation(s)
| | - Hélène Aubert
- Department of Dermatology, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Bertrand Kaeffer
- UMR PhAN, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Virginie Badon
- CIC FEA, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Marion Boivin
- CIC FEA, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Vincent Dochez
- CIC FEA, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
- Obstetrics and Gynecology Department, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Norbert Winer
- CIC FEA, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
- Obstetrics and Gynecology Department, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Elodie Faurel-Paul
- Department of Clinical Research, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Lucie Planche
- Platform Methodology and Biostatistics, Centre Hospitalier Departemental Vendee, La Roche-sur-Yon, Pays de la Loire, France
| | - David Riochet
- HUGOPEREN, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Annabel Maruani
- Department of Dermatology, Centre Hospitalier Regional Universitaire de Tours, Tours, Centre, France
- Clinical Investigation Center-INSERM 1415, Centre Hospitalier Regional Universitaire de Tours, Tours, Centre, France
| | - Franck Perrotin
- Department of Obstetrics, Gynecology and Fetal Medicine, Centre Hospitalier Regional Universitaire de Tours, Tours, France
- Maternité Olympe de Gouges, Hopital Bretonneau, Tours, Centre, France
| | - Catherine Droitcourt
- Department of Dermatology, Centre Hospitalier Universitaire de Rennes, Rennes, Bretagne, France
- EA 7449 REPERES Pharmacoepidemiology and Health Services Research, Universite de Rennes 1, Rennes, Bretagne, France
| | - Linda Lassel
- Obstetrics and Gynecology Department, Centre Hospitalier Universitaire de Rennes, Rennes, Bretagne, France
| | - Martine Tching-Sin
- Department of Pharmacy, Centre Hospitalier Universitaire de Nantes, Nantes, UK
| | - Natasha K Rogers
- Centre of Evidence Based Dermatology, University of Nottingham School of Medicine, Nottingham, UK
| | - Marie Bodinier
- BIA UR1268, INRA Centre Angers-Nantes, Nantes, Pays de la Loire, France
| | - Sebastien Barbarot
- Department of Dermatology, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| |
Collapse
|
22
|
Strategies to reduce non-communicable diseases in the offspring: negative and positive in utero programming. J Dev Orig Health Dis 2018; 9:642-652. [PMID: 30111388 DOI: 10.1017/s2040174418000569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs) are a major problem as they are the leading cause of death and represent a substantial economic cost. The 'Developmental Origins of Health and Disease Hypothesis' proposes that adverse stimuli at different life stages can increase the predisposition to these diseases. In fact, adverse in utero programming is a major origin of these diseases due to the high malleability of embryonic development. This review provides a comprehensive analysis of the scientific literature on in utero programming and NCDs highlighting potential medical strategies to prevent these diseases based upon this programming. We fully address the concept and mechanisms involved in this programming (anatomical disruptions, epigenetic modifications and microbiota alterations). We also examine the negative role of in utero programming on the increased predisposition of NCDs in the offspring, which introduces the passive medical approach that consists of avoiding adverse stimuli including an unhealthy diet and environmental chemicals. Finally, we extensively discuss active medical approaches that target the causes of NCDs and have the potential to significantly and rapidly reduce the incidence of NCDs. These approaches can be classified as direct in utero programming modifications and personalized lifestyle pregnancy programs; they could potentially provide transgenerational NCDs protection. Active strategies against NCDs constitute a promising tool for the reduction in NCDs.
Collapse
|
23
|
Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain. Biomed Pharmacother 2018; 104:751-762. [PMID: 29807225 DOI: 10.1016/j.biopha.2018.05.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/29/2022] Open
Abstract
Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders.
Collapse
|
24
|
The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep 2018; 38:BSR20171234. [PMID: 29208770 PMCID: PMC5897743 DOI: 10.1042/bsr20171234] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is considered a global epidemic. Specifically, obesity during pregnancy programs an increased risk of the offspring developing metabolic disorders in addition to the adverse effects on the mother per se Large numbers of human and animal studies have demonstrated that the gut microbiota plays a pivotal role in obesity and metabolic diseases. Similarly, maternal obesity during pregnancy is associated with alterations in the composition and diversity of the intestine microbial community. Recently, the microbiota in the placenta, amniotic fluid, and meconium in healthy gestations has been investigated, and the results supported the "in utero colonization hypothesis" and challenged the traditional "sterile womb" that has been acknowledged worldwide for more than a century. Thus, the offspring microbiota, which is crucial for the immune and metabolic function and further health in the offspring, might be established prior to birth. As a detrimental intrauterine environment, maternal obesity influences the microbial colonization and increases the risk of metabolic diseases in offspring. This review discusses the role of the microbiota in the impact of maternal obesity during pregnancy on offspring metabolism and further analyzes related probiotic or prebiotic interventions to prevent and treat obesity and metabolic diseases.
Collapse
|
25
|
Pretorius R, Prescott SL, Palmer DJ. Taking a prebiotic approach to early immunomodulation for allergy prevention. Expert Rev Clin Immunol 2017; 14:43-51. [DOI: 10.1080/1744666x.2018.1411191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Susan L. Prescott
- School of Medicine, University of Western Australia, Crawley, Australia
- Origins Project, Telethon Kids Institute, University of Western Australia, Subiaco, Australia
- The in-FLAME Global Network, Worldwide Universities Network (WUN), West New York, NJ, USA
| | - Debra J. Palmer
- School of Medicine, University of Western Australia, Crawley, Australia
- Origins Project, Telethon Kids Institute, University of Western Australia, Subiaco, Australia
- The in-FLAME Global Network, Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
26
|
Ki HH, Hwang SW, Lee JH, Kim YH, Kim DK, Lee YM. A dichloromethane fraction of Triticum aestivum sprouts reduces allergic immune response through inhibiting Th2 differentiation in ovalbumin‑immunized mice. Mol Med Rep 2017; 16:3535-3541. [PMID: 28713973 DOI: 10.3892/mmr.2017.7020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
Triticum aestivum sprouts are small shoots that germinate from seeds and are consumed as a dietary supplement. The present study aimed to determine whether a dichloromethane fraction isolated from Triticum aestivum sprouts (TDF) suppressed the allergic immune response in ovalbumin (OVA)‑sensitized mice. In vivo experiments were performed by administering TDF or vehicle to mice during the sensitization and this was immediately followed by an intradermal injection of OVA into the ears. Splenocytes isolated from OVA‑sensitized mice were pre‑treated with TDF and re‑challenged with OVA for ex vivo evaluation. Results demonstrated that TDF suppressed the inflammatory response in ear tissues and levels of total immunoglobulin (Ig)E and OVA‑specific IgE in serum. TDF inhibited the production of interleukin (IL)‑4 and expression of GATA‑binding protein‑3 (GATA‑3) transcription factor which regulates the differentiation of naïve T helper (Th) cells into Th2 cells in OVA‑stimulated splenocytes. TDF inhibited Th1‑associated cytokine interferon‑γ and IL‑12 production and downregulated the expression of Th1 specific transcription factor T‑box 21 in OVA‑stimulated splenocytes. Overall, these results indicated that TDF attenuates OVA‑induced allergic immune response by suppressing the production of Th2 specific cytokine IL‑4, through inhibiting transcription factor GATA‑3, and suggests that TDF may exhibit the potential to regulate the immune response in allergic diseases.
Collapse
Affiliation(s)
- Hyeon-Hui Ki
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute for Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute for Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
27
|
Gray LEK, O'Hely M, Ranganathan S, Sly PD, Vuillermin P. The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma. Front Immunol 2017; 8:365. [PMID: 28408909 PMCID: PMC5374203 DOI: 10.3389/fimmu.2017.00365] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
This review focuses on the current evidence that maternal dietary and gut bacterial exposures during pregnancy influence the developing fetal immune system and subsequent offspring asthma. Part 1 addresses exposure to a farm environment, antibiotics, and prebiotic and probiotic supplementation that together indicate the importance of bacterial experience in immune programming and offspring asthma. Part 2 outlines proposed mechanisms to explain these associations including bacterial exposure of the fetoplacental unit; immunoglobulin-related transplacental transport of gut bacterial components; cytokine signaling producing fetomaternal immune alignment; and immune programming via metabolites produced by gut bacteria. Part 3 focuses on the interplay between diet, gut bacteria, and bacterial metabolites. Maternal diet influences fecal bacterial composition, with dietary microbiota-accessible carbohydrates (MACs) selecting short-chain fatty acid (SCFA)-producing bacteria. Current evidence from mouse models indicates an association between increased maternal dietary MACs, SCFA exposure during pregnancy, and reduced offspring asthma that is, at least in part, mediated by the induction of regulatory T lymphocytes in the fetal lung. Part 4 discusses considerations for future studies investigating maternal diet-by-microbiome determinants of offspring asthma including the challenge of measuring dietary MAC intake; limitations of the existing measures of the gut microbiome composition and metabolic activity; measures of SCFA exposure; and the complexities of childhood respiratory health assessment.
Collapse
Affiliation(s)
- Lawrence E K Gray
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
| | - Martin O'Hely
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Respiratory Diseases, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarath Ranganathan
- Respiratory Diseases, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Peter David Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Peter Vuillermin
- Barwon Infant Study, School of Medicine, Deakin University, Geelong, VIC, Australia.,Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
28
|
Soh JY, Chiang WC, Huang CH, Woo CK, Ibrahim I, Heng K, Pramanick A, Lee BW. An unusual cause of food-induced anaphylaxis in mothers. World Allergy Organ J 2017; 10:3. [PMID: 28232856 PMCID: PMC5301318 DOI: 10.1186/s40413-016-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) are prebiotics added to commercial milk formula of infants and mothers. In recent years, cases of allergy related to GOS in atopic children have been reported in the South East Asian region. CASE PRESENTATIONS We describe a series of pregnant (n = 4) and lactating mothers (n = 2) who developed anaphylactic reactions after consumption of maternal milk formula containing GOS. All six subjects had pre-existing atopy and a positive skin prick test to GOS and 5/5 of the subjects who were tested had positive basophil activation tests to GOS. All of the mothers and their babies had normal neonatal outcomes after the reactions. CONCLUSIONS The supplementation of GOS into milk and beverages in the Asian region should take into account the rare chance of allergenicity of GOS in the atopic population.
Collapse
Affiliation(s)
- J Y Soh
- Department of Paediatrics, National University Hospital, Tower Block Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - W C Chiang
- Department of Paediatrics, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - C H Huang
- Department of Paediatrics, National University Hospital, Tower Block Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - C K Woo
- Department of Medicine, Gleneagles Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - I Ibrahim
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore ; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K Heng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ; Emergency Department, Tan Tock Seng Hospital, Singapore, Singapore
| | - A Pramanick
- Department of Obstetrics and Gynaecology, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - B W Lee
- Department of Paediatrics, National University Hospital, Tower Block Level 12, 1E Kent Ridge Road, Singapore, 119228 Singapore ; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Holvoet S, Doucet-Ladevèze R, Perrot M, Barretto C, Nutten S, Blanchard C. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis. Allergy 2016; 71:1753-1761. [PMID: 27259693 DOI: 10.1111/all.12951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a severe inflammatory disease of the esophagus which is characterized histologically by an eosinophilic infiltration into the esophageal tissue. The efficacy of probiotics in the context of atopic diseases has been well investigated but, to date, there has been no study which has evaluated probiotic effects on EoE inflammation. This study sought to identify a probiotic which improves esophageal inflammation in experimental EoE. METHODS Two candidate probiotics, Lactococcus lactis NCC 2287 and Bifidobacterium lactis NCC 2818, were tested in a murine model of EoE elicited by epicutaneous sensitization with Aspergillus fumigatus protein extract. Administration of bacterial strains in drinking water was used, respectively, as a preventive or treatment measure, or continuously throughout the study. Inflammatory parameters were assessed in the esophagus, skin, and lungs after allergen challenge. RESULTS In this EoE model, supplementation with L. lactis NCC 2287 significantly decreased esophageal and bronchoalveolar eosinophilia but only when given as a therapeutic treatment. No significant effect on eosinophilia was observed when NCC 2287 was given as a preventive or a continuous intervention. NCC 2287 supplementation had no significant effect on immunoglobulin levels, skin symptom scores, or on transepidermal water loss. Supplementation with another probiotic, B. lactis NCC 2818, had no significant effect on esophageal eosinophilia. CONCLUSION We identified a L. lactis strain, able to attenuate esophageal eosinophilic inflammation in a preclinical model of EoE. This effect is strain specific and depends on the timing and duration of bacterial supplementation. Confirmation of these observations in human clinical trials is warranted.
Collapse
Affiliation(s)
- S. Holvoet
- Nutrition and Health Research; Allergy Group; Nestle Research Center; Lausanne Switzerland
| | - R. Doucet-Ladevèze
- Nutrition and Health Research; Allergy Group; Nestle Research Center; Lausanne Switzerland
| | - M. Perrot
- Data Science Group; Nestle Research Center; Lausanne Switzerland
| | - C. Barretto
- Data Science Group; Nestle Research Center; Lausanne Switzerland
| | - S. Nutten
- Nutrition and Health Research; Allergy Group; Nestle Research Center; Lausanne Switzerland
| | - C. Blanchard
- Nutrition and Health Research; Allergy Group; Nestle Research Center; Lausanne Switzerland
| |
Collapse
|
30
|
Collins S, Reid G. Distant Site Effects of Ingested Prebiotics. Nutrients 2016; 8:E523. [PMID: 27571098 PMCID: PMC5037510 DOI: 10.3390/nu8090523] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.
Collapse
Affiliation(s)
- Stephanie Collins
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, 268 Grosvenor St., London, ON N6A 4V2, Canada.
| |
Collapse
|
31
|
Kim SY, Sim S, Park B, Kim JH, Choi HG. High-Fat and Low-Carbohydrate Diets Are Associated with Allergic Rhinitis But Not Asthma or Atopic Dermatitis in Children. PLoS One 2016; 11:e0150202. [PMID: 26919190 PMCID: PMC4769275 DOI: 10.1371/journal.pone.0150202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/10/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Numerous studies have suggested that nutritional intake is related to allergic diseases. Although conflicting results exist, fat intake is often associated with allergic diseases. We investigated the relationship between allergic diseases and nutritional intake after adjusting for various demographic and socioeconomic factors in a large, representative sample of Korean children. METHODS A total of 3,040 participants, aged 4 to 13 years old, were enrolled in the present study from the Korean National Health and Nutrition Examination Survey (KNHANES), 2010-2012. Nutritional intake data, including total calories, protein, fat, carbohydrate, vitamin A, vitamin C, thiamine, riboflavin, and niacin, were retrieved from the survey using the complete 24-hour recall method. The associations between each nutritional factor and allergic rhinitis/asthma/atopic dermatitis were analyzed using simple and multiple logistic regression analyses with complex sampling. Age, sex, body mass index (BMI), number of household members, income level, and region of residence were adjusted for as covariates. RESULTS Of the participants, 22.1%, 6.0%, and 15.5% suffered from allergic rhinitis, asthma, and atopic dermatitis, respectively. Allergic rhinitis was significantly correlated with high-fat and low-carbohydrate diets. The adjusted odds ratio (AOR) was 1.25 (95% CIs = 1.06-1.46, P = 0.007) for fat intake, denoting a 10% increase. Carbohydrate intake (10% increase) was negatively related to allergic rhinitis with an AOR of 0.84 (95% CIs = 0.74-0.95, P = 0.004). No other significant relationships were found between the retrieved nutritional factors and either asthma or atopic dermatitis. CONCLUSION Allergic rhinitis was related to high-fat and low-carbohydrate diets. Although the underlying mechanisms and causal relationships remain elusive, the present study provides reliable evidence regarding the associations between nutritional factors and allergic rhinitis by considering numerous factors within a large and representative population.
Collapse
MESH Headings
- Adolescent
- Asthma/epidemiology
- Asthma/etiology
- Body Mass Index
- Causality
- Child
- Child, Preschool
- Cross-Sectional Studies
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/etiology
- Diet, Carbohydrate-Restricted/adverse effects
- Diet, High-Fat/adverse effects
- Dietary Proteins
- Energy Intake
- Female
- Humans
- Male
- Nutritive Value
- Republic of Korea/epidemiology
- Rhinitis, Allergic, Perennial/epidemiology
- Rhinitis, Allergic, Perennial/etiology
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/etiology
- Socioeconomic Factors
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seoul, Korea
| | - Songyong Sim
- Department of Statistics, Hallym University, Chuncheon, Korea
| | - Bumjung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jin-Hwan Kim
- Department of Otolaryngology–Head and Neck Surgery, Hallym University Sacred Heart Hospital, Seoul, Korea
| | - Hyo Geun Choi
- Department of Statistics, Hallym University, Chuncheon, Korea
| |
Collapse
|
32
|
Bouchaud G, Castan L, Chesné J, Braza F, Aubert P, Neunlist M, Magnan A, Bodinier M. Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice. Allergy 2016; 71:68-76. [PMID: 26424001 DOI: 10.1111/all.12777] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Food allergies affect 4-8% of children and are constantly on the rise, thus making allergies a timely issue. Most importantly, prevention strategies are nonexistent, and current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies, particularly during infancy, could consist of modulating maternal immunity and microbiota using nondigestible food ingredients, such as prebiotics. For this purpose, we studied the preventive effects of prebiotics in Balb/c mothers during pregnancy and breastfeeding on food allergy development in offspring mice. METHODS After weaning, the offspring from mothers that were exposed to GOS/inulin mixture or fed a control diet were intraperitoneally sensitized to wheat proteins to induce a systemic allergic response and orally exposed to the same allergen. Immunological, physiological, and microbial parameters were analyzed. RESULTS GOS/inulin mixture diet modified the microbiota of mothers and their offspring. Offspring from mothers that received GOS/inulin prebiotics were protected against food allergies and displayed lower clinical scores, specifically of IgE and histamine levels, compared to offspring from mothers fed a control diet. Moreover, GOS/inulin supplementation for the mother resulted in stronger intestinal permeability in the offspring. Enhancement of the regulatory response to allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response were observed in mice from GOS/inulin mixture-exposed mothers. CONCLUSION The treatment of pregnant and lactating mice with nondigestible GOS/inulin prebiotics promotes a long-term protective effect against food allergies in the offspring.
Collapse
Affiliation(s)
| | - L. Castan
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- Université de Nantes; Nantes France
| | - J. Chesné
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
| | - F. Braza
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
| | - P. Aubert
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | - M. Neunlist
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | - A. Magnan
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- Université de Nantes; Nantes France
- l'institut du thorax; Service de Pneumologie; CHU de Nantes; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | | |
Collapse
|
33
|
Bendtsen KM, Fisker L, Hansen AK, Hansen CHF, Nielsen DS. The influence of the young microbiome on inflammatory diseases--Lessons from animal studies. ACTA ACUST UNITED AC 2015; 105:278-95. [PMID: 26663871 DOI: 10.1002/bdrc.21116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases are on the rise in the Westernized world. This rise has been correlated to a range of environmental factors, such as birth mode, rural versus urban living conditions, and use of antibiotics. Such environmental factors also influence early life gut microbiota (GM) colonization and maturation--and there is growing evidence that the negative effects of these factors on human health are mediated via GM alterations. Colonization of the gut initiates priming of the immune system from birth, driving tolerance towards non-harmful microorganisms and dietary antigens and proper reactions towards invading pathogens. This early colonization is crucial for the establishment of a healthy GM, and throughout life the balanced interaction of GM and immune system is a key element in maintaining health. An immune system out of balance increases the risk for later life inflammatory diseases. Animal models are indispensable in the studies of GM influence on disease mechanisms and progression, and focus points include studies of GM modification during pregnancy and perinatal life. Here, we present an overview of animal studies which have contributed to our understanding of GM functions in early life and how alterations affect risk and expression of certain inflammatory diseases with juvenile onset, including interventions, such as birth mode, antibiotics, and probiotics.
Collapse
Affiliation(s)
- Katja M Bendtsen
- Department of Veterinary Disease Biology, Faculty of Health, University of Copenhagen, Denmark
| | - Line Fisker
- Department of Veterinary Disease Biology, Faculty of Health, University of Copenhagen, Denmark
| | - Axel K Hansen
- Department of Veterinary Disease Biology, Faculty of Health, University of Copenhagen, Denmark
| | - Camilla H F Hansen
- Department of Veterinary Disease Biology, Faculty of Health, University of Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
34
|
Krishna G, Divyashri G, Prapulla SG, Muralidhara. A Combination Supplement of Fructo- and Xylo-Oligosaccharides Significantly Abrogates Oxidative Impairments and Neurotoxicity in Maternal/Fetal Milieu Following Gestational Exposure to Acrylamide in Rat. Neurochem Res 2015; 40:1904-18. [DOI: 10.1007/s11064-015-1687-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/26/2022]
|
35
|
Hogenkamp A, Knippels LMJ, Garssen J, van Esch BCAM. Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring. J Nutr 2015; 145:996-1002. [PMID: 25833889 DOI: 10.3945/jn.115.210401] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/11/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The maternal environment and early life exposure affect immune development in offspring. OBJECTIVE We investigated whether development of food allergy in offspring is affected by supplementing pregnant or lactating sensitized or nonsensitized mice with a mixture of nondigestible oligosaccharides. METHODS Dams were sensitized intragastrically with ovalbumin before mating, with use of cholera toxin (CT) as an adjuvant. Nonsensitized dams received CT only. Dams were fed a control diet or a diet supplemented with short-chain galacto oligosaccharides (scGOSs), long-chain fructo oligosaccharides (lcFOSs), and pectin-derived acidic oligosaccharides (pAOSs) in a ratio of 9:1:2 at a dose of 2% during pregnancy or lactation, resulting in 7 experimental groups. After weaning, offspring were fed a control diet and ovalbumin-CT sensitized. Acute allergic skin responses (ASRs), shock symptoms, body temperature, and specific plasma immunoglobulins were measured upon intradermal ovalbumin challenge. Th2/Th1- and regulatory T cells were analyzed with use of quantitative polymerase chain reaction and flow cytometric analysis in spleen, mesenteric lymph nodes, and blood. RESULTS Supplementing sensitized pregnant or lactating dams with scGOS/lcFOS/pAOS resulted in lower ASRs in the offspring [offspring of sensitized female mice fed experimental diet during pregnancy (S-Preg): 48 ± 2.1 μm; offspring of sensitized female mice fed experimental diet during lactation (S-Lact): 60 ± 6.2 μm] compared with the sensitized control group (119 ± 13.9 μm). In the S-Lact group, this coincided with an absence of shock symptoms compared with the offspring of sensitized female mice fed control food during pregnancy and lactation (S-Con) and S-Preg groups, and lower ovalbumin-IgG1 [S-Con: 3.8 ± 0.1 arbitrary units (AUs); S-Preg: 3.3 ± 0.1 AUs; S-Lact: 2.4 ± 0.1 AUs] and higher ovalbumin-IgG2a concentrations (S-Con: 1.1 ± 0.1 AUs; S-Preg: 0.8 ± 0.1 AUs; S-Lact: 2.0 ± 0.1 AUs). Supplementing nonsensitized pregnant or lactating dams with scGOS/lcFOS/pAOS resulted in lower plasma ovalbumin-IgE [offspring of nonsensitized female mice fed experimental diet during pregnancy (NS-Preg): 1.6 ± 0.4 AUs; offspring of nonsensitized female mice fed experimental diet during lactation (NS-Lact): 0.3 ± 0.1 AUs vs. offspring of nonsensitized female mice fed control food during pregnancy and lactation (NS-Con): 3.1 ± 0.6 AUs] and ovalbumin-IgG1 (NS-Lact: 2.3 ± 0.3 AUs vs. NS-Con: 3.4 ± 0.3 AUs) concentrations in offspring. Ovalbumin-IgG2a plasma concentrations were higher in offspring of scGOS/lcFOS/pAOS-supplemented dams (NS-Preg: 1.1 ± 0.1 AUs; NS-Lact: 1.1 ± 0.1 AUs) than in those of unsupplemented, nonsensitized controls (0.4 ± 0.0 AUs). CONCLUSIONS These data show impaired sensitization in offspring of scGOS/lcFOS/pAOS-supplemented mice. A number of the analyzed variables are differentially affected by whether supplementation occurs during pregnancy or lactation, and the outcome of dietary supplementation is affected by whether the mother has been sensitized to ovalbumin and CT.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Leon M J Knippels
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| | - Betty C A M van Esch
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|