1
|
Salem MB, Elzallat M, Mostafa Mohammed D, Hammam OA, Tamim A Abdel-Wareth M, Hassan M. Helix pomatia mucin alleviates DSS-induced colitis in mice: Unraveling the cross talk between microbiota and intestinal chemokine. Heliyon 2024; 10:e37362. [PMID: 39296159 PMCID: PMC11407997 DOI: 10.1016/j.heliyon.2024.e37362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Gut microbiota imbalance and alterations in the chemokine-chemokine receptor interactions are pivotal in the initiation and advancement of ulcerative colitis (UC). The current UC treatments are prolonged, exhibit high recurrence rates, and may lead to colorectal cancer. So, this study explores the efficacy of Helix pomatia (H. pomatia) mucin in preventing DSS-induced UC. This research focuses on investigating the underlying mechanisms, such as oxidative stress, inflammation, and alterations in gut microbiota and chemokine-chemokine receptor interactions, to understand the anti-inflammatory and antioxidant characteristics of the mucin. Using 4 % DSS in drinking water, UC was induced in C57BL/6 mice. For seven days, mice were given oral doses of either H. pomatia mucin or sulfasalazine. The study assessed changes in oxidative stress, gut microbiota, and histopathology, along with expression of IL-6, CXCR4, CCR7, CXCL9, and CXCL10. The H. pomatia mucin exhibited unique contents, including high glycolic acid (200 ± 2.08 mg/L), collagen (88 ± 2.52 mg/L), allantoin (20 ± 2 mg/L), and concentrated vitamins and minerals. Treatment with H. pomatia mucin in high dose demonstrated reduction in DAI, an increase in fecal Firmicutes, and elevated expression of colonic CCR7, CXCL9, and CXCL10, accompanied by enhanced CXCR4 (75 %) and diminished IL-6 (1.33 %) immunostaining. It also alleviated oxidative stress, reduced fecal Bacteroidetes, and mitigated inflammation, indicating its potential efficacy against DSS-induced UC. In conclusion, H. pomatia mucin is a promising candidate that could be an effective adjuvant in the management and prophylaxis of UC.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
2
|
Śliwiński W, Gawlik-Kotelnicka O. Circulating B vitamins metabolites in depressive disorders - connections with the microbiota-gut-brain axis. Behav Brain Res 2024; 472:115145. [PMID: 38992845 DOI: 10.1016/j.bbr.2024.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE In this review, we aim to summarize recent information about the association of B vitamins with immune-metabolic aspects of depression and their connection with the gut-brain axis. VIEWS B vitamins may alter depressive symptoms by many various mechanisms such as reducing oxidative stress, inflammation, gut permeability, controlling epigenetics, modifying the microbiome, and stimulating it to produce many beneficial substances such as short-chain fatty acids or neurotransmitters: norepinephrine, dopamine, serotonin, gamma-aminobutyric acid, and acetylcholine. CONCLUSIONS Specifically, vitamins B1 (thiamine), B6 (pyridoxine), B9 (folate), and B12 (cyanocobalamin), B2 (riboflavin) have been observed to affect depression. Given probiotic's capability to produce vitamins from the B group, and modify intestinal function, inflammation, or metabolic dysfunction, their supplementation might be a possible treatment method for the immunometabolic form of depression. Thus, the intake of certain probiotic bacterial strains simultaneously with controlling the required daily intake of B vitamins may positively affect the course of depression. Circulating B vitamins metabolite levels, especially B9, B12, and B6 may also be biomarkers of depression. Further investigation is needed to find stronger evidence on this topic.
Collapse
Affiliation(s)
- Wiktor Śliwiński
- Faculty of Medicine, Medical University of Lodz, Lodz 92-216, Poland.
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz 92-216, Poland.
| |
Collapse
|
3
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
4
|
Liu H, Liu X, Liu H, Tang J, He W, Xu T, Cheng B, Shi B, Han J. Bacillus siamensis Improves the Immune Status and Intestinal Health of Weaned Piglets by Improving Their Intestinal Microbiota. Microorganisms 2024; 12:1012. [PMID: 38792841 PMCID: PMC11124100 DOI: 10.3390/microorganisms12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies on the early interference of gut microbiota by Bacillus siamensis (B. siamensis) in weaned piglets are rarely reported, and the present trial is a preliminary study. This experiment was conducted to investigate the effects of B. siamensis supplementation on the growth performance, serum biochemistry, immune response, fecal short-chain fatty acids and microbiota of weaned piglets. Sixty weaned piglets were randomly divided into a control group (CON) and a B. siamensis group (BS), which were fed a basal diet and the basal diet supplemented with 5 × 1010 CFU B. siamensis per kg, respectively. Each group had 3 replicates and 10 piglets per replicate. The trial lasted for 28 days. The results showed that B. siamensis significantly increased the serum growth hormone (GH) and insulin-like growth factor (IGF) in piglets. Compared with the CON group, the levels of serum immunoglobulin and inflammatory factors in the BS group were significantly improved. In addition, the serum concentrations of zonulin and endotoxin (ET) in the BS group were lower. The dietary addition of B. siamensis significantly increased fecal short-chain fatty acid (SCFA) levels in piglets. Notably, B. siamensis improved the microbial composition by increasing beneficial genera, including Weissella, Lachnospiraceae_NK4A136_group and Bifidobacterium, and decreasing pathogenic genera, including Pantoea, Fusobacterium and Gemella, in piglet feces. Correlation analysis showed that the benefits of dietary B. siamensis supplementation were closely related to its improved microbial composition. In summary, the addition of B. siamensis can improve the immunity function, inflammatory response, gut permeability and SCFA levels of weaned piglets, which may be achieved through the improvement of their microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jiaqi Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Tianqi Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jianchun Han
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| |
Collapse
|
5
|
Sindi AS, Stinson LF, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Rea A, Trevenen ML, Geddes DT, Payne MS. Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota. J Appl Microbiol 2024; 135:lxae024. [PMID: 38323424 DOI: 10.1093/jambio/lxae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, SA 5000, Australia
- Discipline of Paediatrics, The University of Adelaide, North Adelaide, SA 5006, Australia
- Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
- CSIRO, Adelaide, SA 5000, Australia
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
| |
Collapse
|
6
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
7
|
Bedani R, Cucick ACC, Albuquerque MACD, LeBlanc JG, Saad SMI. B-Group Vitamins as Potential Prebiotic Candidates: Their Effects on the Human Gut Microbiome. J Nutr 2024; 154:341-353. [PMID: 38176457 DOI: 10.1016/j.tjnut.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
In recent years, thousands of studies have demonstrated the importance of the gut microbiome for human health and its relationship with certain diseases. The search for new gut microbiome modulators has thus become an objective to beneficially alter the gut microbiome composition and/or metabolic activity, which may modify intestinal physiology. Growing evidence has shown that B-group vitamins might be considered as potential candidates as gut microbiome modulators. However, the relationship between the B-group vitamins and the gut microbiome remains largely unexplored. Studies have suggested that non-absorbed B-group vitamins administered orally can reach the distal intestine or even the colon where these vitamins may have potential health benefits for the host. Clinical trials supporting this effect are still limited. In this review, we discuss evidence regarding the modulatory effects of B-group vitamins on the gut microbiome with a focus on their potential role as prebiotic candidates.
Collapse
Affiliation(s)
- Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Albuquerque Cavalcanti de Albuquerque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Shao Y, Yu Y, Pang S, Ge L, Shi H. Soybean Isoflavones Ameliorates Lactation Performance in Postpartum Mice by Alleviating Oxidative Stress and Regulating Gut Microflora. Mol Nutr Food Res 2024; 68:e2300184. [PMID: 38175853 DOI: 10.1002/mnfr.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 01/06/2024]
Abstract
Postpartum dysgalactiae syndrome (PPDS) is one of the key issues affecting breastfeeding, usually occurring as breast swelling, a low milk yield, and at length a stop of breast milk secretion. Therefore, there is a need to investigate the effectiveness of Traditional Chinese Medicine (TCM) diet therapy in treating or preventing PPDS. This study aims to analyze the effect of soybean isoflavone (SIF), a natural estrogen found in plants, on postpartum lactation performance in mice and to evaluate its potential as a treatment for PPDS. Adult female BALB/c mice at 8 weeks of age (25 ± 3 g) are randomly divided into four groups fed with different levels of SIF and a normal diet for 14 days. SIF (0, 50, 100, 200 mg kg-1 BW) is provided via intra-gastric route to the experimental mice. Using a high-throughput sequencing of microbial diversity and mammary gland metabolites, it is found that SIF-treated mice potentially show an improved milk performance via enhanced antioxidant capacity and altered gut microbiota. SIF from plant sources at a high dosage promotes the lactation in normal postpartum mice.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shilong Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
9
|
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 2024; 21:35-45. [PMID: 38097774 DOI: 10.1038/s41575-023-00864-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Collapse
Affiliation(s)
- Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liza Konnikova
- Department of Paediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
10
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
11
|
Weerasuriya W, Saunders JE, Markel L, Ho TTB, Xu K, Lemas DJ, Groer MW, Louis-Jacques AF. Maternal gut microbiota in the postpartum Period: A Systematic review. Eur J Obstet Gynecol Reprod Biol 2023; 285:130-147. [PMID: 37116306 PMCID: PMC10320739 DOI: 10.1016/j.ejogrb.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated the importance of the gut microbiota during pregnancy, and there is emerging literature on the postpartum maternal gut microbiota. The primary objective of this paper was to synthesize the literature on the postpartum gut microbiome composition and diversity measured in stool samples from healthy mothers of predominantly term infants. The secondary objectives were (1) to identify biological and environmental factors that influence postpartum maternal gut microbiota and (2) to assess health conditions and clinical intermediate measures associated with postpartum gut microbiota changes in all mothers. Electronic searches were conducted November 9, 2020 and updated July 25, 2021 without publication time limits on PubMed, Embase, CINHAL, Scopus, Cochrane Library, BioArchives, and OpenGrey.eu. Primary research on maternal gut microbiota in the postpartum (up to one year after childbirth) were eligible. Postpartum gut microbiota comparisons to pregnancy or non-pregnancy gut microbiota were of interest, therefore, studies examining these in addition to the postpartum were included. Studies were excluded if they were only conducted in animals, infants, pregnancy, or microbiome of other body locations (e.g., vaginal). Data extraction of microbial composition and diversity were completed and synthesized narratively. Studies were assessed for risk of bias. A total of 2512 articles were screened after deduplication and 27 were included in this review. Of the 27 included studies, 22 addressed the primary objective. Firmicutes was the predominant phylum in the early (<6 weeks) and late postpartum (6 weeks to 1 year). In early postpartum, Bacteroides was the predominant genus. Findings from longitudinal assessments of alpha and beta diversity from the early to the late postpartum varied. Nineteen of the 27 studies assessed biological and environmental factors influencing the postpartum gut microbial profile changes. Timing of delivery, probiotic supplementation, triclosan exposure, and certain diets influenced the postpartum gut microbiota. Regarding health conditions and intermediate clinical measures assessed in 8 studies; inflammatory bowel disease, postpartum depression, early-onset preeclampsia, gestational diabetes, excessive gestational weight gain, and anthropometric measures such as body mass index and waist-to-hip ratio were related to gut microbiota changes. There is limited data on the maternal postpartum gut microbiota and how it influences maternal health. We need to understand the postpartum maternal gut microbiome, establish how it differs from non-pregnancy and pregnancy states, and determine biological and environmental influencers. Future research of the gut microbiome's significance for the birthing parent in the postpartum could lead to a new understanding of how to improve maternal short and long-term health.
Collapse
Affiliation(s)
- Wasana Weerasuriya
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida (UF), Gainesville, FL, USA
| | - Julia E Saunders
- Morsani College of Medicine, University of South Florida (USF), Tampa, FL, USA
| | - Lilla Markel
- Morsani College of Medicine, University of South Florida (USF), Tampa, FL, USA
| | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, USF, Tampa, FL, USA
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, UF, Gainesville, FL, USA
| | - Dominick J Lemas
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida (UF), Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, UF, Gainesville, FL, USA
| | - Maureen W Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Adetola F Louis-Jacques
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida (UF), Gainesville, FL, USA.
| |
Collapse
|
12
|
Ji H, Tan D, Chen Y, Cheng Z, Zhao J, Lin M. Effects of different manganese sources on nutrient digestibility, fecal bacterial community, and mineral excretion of weaning dairy calves. Front Microbiol 2023; 14:1163468. [PMID: 37275150 PMCID: PMC10232960 DOI: 10.3389/fmicb.2023.1163468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mn, which is an essential trace mineral for all animals, has functions in skeletal system development, carbohydrate and lipid metabolism. The aim of this study was to clarify the effects of different manganese (Mn) sources in basal diets on nutrient apparent digestibility, fecal microbes, and mineral elements excretion before and after weaning. Methods A total of 15 Holstein heifer calves (6-week-old, 82.71 ± 1.35, mean ± standard error) were randomly designed into three groups (five each): no extra Mn supplemented (CON), 20 mg Mn/kg (dry matter basis) in the form of chelates of lysine and glutamic acid in a mixture of 1:1 (LGM), and 20 mg Mn/kg (dry matter basis) in the form of MnSO4. All calves were weaned at 8 weeks of age. The experiment lasted for 28 days (14 days before weaning and 14 days after weaning). Dry matter intake (DMI) was recorded daily. The animals were weighed by electronic walk-over, and body size indices were collected using tape on days -14, -1, and 14 of weaning. The feces of calves was collected to measure the apparent digestibility of nutrients (acid insoluble ash was an internal marker) and bacterial community on days -1, 1, 3, 7, and 14 of weaning. Fecal mineral concentration was determined by inductively coupled plasma emission spectroscopy on days -1, 1, 7, and 14 of weaning. Results The results showed that, compared with the CON group, adding LGM to diets containing 158.82 mg/kg Mn increased the apparent digestibility (P < 0.05). The Chao 1 and Shannon index of fecal bacteria decreased at day 1 in the LGM and MnSO4 groups and increased after weaning. The PCoA results indicated that the LGM group was distinctly separate from the CON and MnSO4 groups during the whole experimental period. Significant differences (P < 0.05) were observed in the relative abundance of two phyla (Proteobacteria and Spirochaetota) and eight genera (Alloprevotella, Prevotellaceae_UCG-001, Clostridia UCG 014, RF39, UCG-010, Pseudomonas, Ralstonia, and Treponema) in three groups. Moreover, the LGM group showed less excretion of Fe, P, and Mn than the MnSO4 group. Discussion In summary, 20 mg Mn/kg diet supplementation improved nutrient digestibility, changed the fecal microbial community, and reduced mineral excretion. Organic Mn supplementation in the diet had more advantages over the sulfate forms in weaning calves.
Collapse
Affiliation(s)
- Huimin Ji
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejin Tan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhua Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiqiang Cheng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Toresson L, Suchodolski JS, Spillmann T, Lopes BC, Shih J, Steiner JM, Pilla R. The Intestinal Microbiome in Dogs with Chronic Enteropathies and Cobalamin Deficiency or Normocobalaminemia-A Comparative Study. Animals (Basel) 2023; 13:ani13081378. [PMID: 37106941 PMCID: PMC10135184 DOI: 10.3390/ani13081378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cobalamin deficiency is a common sequela of chronic enteropathies (CE) in dogs. Studies comparing the intestinal microbiome of CE dogs with cobalamin deficiency to those that are normocobalaminemic are lacking. Therefore, our aim was to describe the fecal microbiome in a prospective, comparative study evaluating 29 dogs with CE and cobalamin deficiency, 18 dogs with CE and normocobalaminemia, and 10 healthy control dogs. Dogs with cobalamin deficiency were also analyzed after oral or parenteral cobalamin supplementation. Overall microbiome composition (beta diversity) at baseline was significantly different in CE dogs with cobalamin deficiency when compared to those with normocobalaminemia (p = 0.001, R = 0.257) and to healthy controls (p = 0.001, R = 0.363). Abundances of Firmicutes and Actinobacteria were significantly increased (q = 0.010 and 0.049), while those of Bacteroidetes and Fusobacteria were significantly decreased (q = 0.002 and 0.014) in CE dogs with cobalamin deficiency when compared to healthy controls. Overall microbiome composition in follow-up samples remained significantly different after 3 months in both dogs receiving parenteral (R = 0.420, p = 0.013) or oral cobalamin supplementation (R = 0.251, p = 0.007). Because cobalamin supplementation, in combination with appropriate therapy, failed to restore the microbiome composition in the dogs in our study, cobalamin is unlikely to be the cause of those microbiome changes but rather an indicator of differences in underlying pathophysiology that do not influence clinical severity but result in a significant aggravation of dysbiosis.
Collapse
Affiliation(s)
- Linda Toresson
- Evidensia Specialist Animal Hospital Helsingborg, 254 66 Helsingborg, Sweden
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Bruna C Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | - Johnathan Shih
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|
14
|
Wu J, Xu Y, Yang J, Yu X, Han Z, Guo L, Huang Y, Zhang Y. Quantification of 10 B vitamins in mouse colon by LC-MS/MS: Application on breast cancer mice treated with doxorubicin. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123714. [PMID: 37059011 DOI: 10.1016/j.jchromb.2023.123714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
B vitamins play important roles in various physiological processes, including cell metabolism and DNA synthesis. The intestine is critical for the absorption and utilization of B vitamins, but few analytical methods for detecting intestinal B vitamins are currently available. In this study, we developed a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 10 B vitamins in mouse colon tissue, including thiamin (B1), riboflavin (B2), nicotinic acid (B3), niacinamide (B3-AM), pantothenic acid (B5), pyridoxine (B6), pyridoxal 5'-phosphate (B6-5P), biotin (B7), folic acid (B9), and cyanocobalamin (B12). The method was thoroughly validated following the U.S. Food and Drug Administration (FDA) guidelines and yielded good results in terms of linearity (r2 > 0.9928), lower limit of quantification (40-600 ng/g), accuracy (88.9-119.80 %) and precision (relative standard deviation ≤ 19.71 %), recovery (87.95-113.79 %), matrix effect (91.26-113.78 %), and stability (85.65-114.05 %). Furthermore, we applied our method to profile B vitamins in the colons of mice with breast cancer after doxorubicin chemotherapy treatment, which revealed that the doxorubicin treatment led to significant colon damage and accumulation of several B vitamins including B1, B2 and B5. We also confirmed the capability of this method for quantifying B vitamins in other intestinal tissues like the ileum, jejunum, and duodenum. The newly developed method is simple, specific, and useful for targeted profiling of B vitamins in mouse colon, with a potential for future studies on the role of these micronutrients in healthy and diseased states.
Collapse
Affiliation(s)
- Jing Wu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiahong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhaodi Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Linling Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Huang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China.
| | - Yuxin Zhang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China.
| |
Collapse
|
15
|
Fecal Microbiota Composition as a Metagenomic Biomarker of Dietary Intake. Int J Mol Sci 2023; 24:ijms24054918. [PMID: 36902349 PMCID: PMC10003228 DOI: 10.3390/ijms24054918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota encompasses the set of microorganisms that colonize the gastrointestinal tract with mutual relationships that are key for host homeostasis. Increasing evidence supports cross intercommunication between the intestinal microbiome and the eubiosis-dysbiosis binomial, indicating a networking role of gut bacteria as potential metabolic health surrogate markers. The abundance and diversity of the fecal microbial community are already recognized to be associated with several disorders, such as obesity, cardiometabolic events, gastrointestinal alterations, and mental diseases, which suggests that intestinal microbes may be a valuable tool as causal or as consequence biomarkers. In this context, the fecal microbiota could also be used as an adequate and informative proxy of the nutritional composition of the food intake and about the adherence to dietary patterns, such as the Mediterranean or Western diets, by displaying specific fecal microbiome signatures. The aim of this review was to discuss the potential use of gut microbial composition as a putative biomarker of food intake and to screen the sensitivity value of fecal microbiota in the evaluation of dietary interventions as a reliable and precise alternative to subjective questionnaires.
Collapse
|
16
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:metabo13020250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Correspondence: ; Tel.: +81-80-1573-5815
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
17
|
Belyaeva IA, Bombardirova EP, Turti TV. New Strategies for Enhancement of Infant Milk Formulas Composition. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article covers the issues of remodeling breast milk’s protective properties during creating infant milk formulas. First of all, this concerns the conditions for normal intestinal microbiota development in growing organism. Its quantitative and qualitative features are the trigger of either sanogenetic, or pathological immune and metabolic reactions, and also determine gut-brain axis functioning. The protective significance of prebiotic composition diversity of mammalian milk and the inductive role of breast milk oligosaccharides are shown. The modern concept of synbiotics role in gastrointestinal tract and other systems functioning, as well as the use of modern synbiotics in the creation of infant formulas (available Russian formula included) are presented.
Collapse
Affiliation(s)
- I. A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - E. P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - T. V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
18
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:cancers14225577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
|
20
|
Zhan Q, Wang R, Thakur K, Feng JY, Zhu YY, Zhang JG, Wei ZJ. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit Rev Food Sci Nutr 2022; 64:4046-4058. [PMID: 36271691 DOI: 10.1080/10408398.2022.2138263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.
Collapse
Affiliation(s)
- Qi Zhan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Rui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
21
|
Zhang Z, Huang B, Wang Y, Zhan Y, Zhu M, Wang C. Dynamic alterations in the donkey fecal bacteria community and metabolome characteristics during gestation. Front Microbiol 2022; 13:927561. [PMID: 36060774 PMCID: PMC9434018 DOI: 10.3389/fmicb.2022.927561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In donkeys, the gestation period is a dynamic and precisely coordinated process involving systemic and local alterations. Both the gut microbiota and its link with blood metabolites are thought to play significant roles in maintaining maternal health and supporting fetal development during the gestation period. This study was conducted to evaluate gut microbiota changes and the correlation with plasma metabolites in Dezhou donkeys during the gestation period. The donkeys were divided into the four following groups according to their pregnancy stages: the non-pregnant (NP), early stage of pregnancy (P1), middle stage of pregnancy (P2), and late stage of pregnancy (P3) groups. A total of 24 (n = 6 per group) samples of donkey feces and plasma were collected. The results showed that the diversity (Shannon index) of fecal bacteria significantly increased throughout the gestation period. The phyla Spirochaetota and Fibrobacterota varied significantly according to the stages of pregnancy (p < 0.05). At the genus level, the abundance of Treponema in pregnant donkeys was greater than that in non-pregnant donkeys (p < 0.05), and the genus Streptococcus reached its maximum abundance in the P2 period (p < 0.05). The abundance of Ruminococcaceae_NK4A214_group and norank_f_norank_o_WCHB1-41 linearly increased with the progression of pregnancy (p < 0.05). In addition, the host plasma metabolome was altered significantly during the gestation period. Testolic acid, estradiol-17beta 3-sulfate, equol 7’-o-glucuronide, equol 4’-o-glucuronide, estrone, estrone 3-glucuronide, and estradiol were the most significant differential enriched metabolites, and they increased gradually as gestation progressed. The altered metabolites were mainly enriched in pathways matched to bile secretion, ABC transporters, amino acid metabolism, protein digestion and absorption, mineral absorption, fatty acid degradation, glycerophospholipid metabolism, and steroid hormone biosynthesis. We also found a significant correlation between the shifts in donkey fecal bacteria and changes in the host metabolism. In summary, this study provided systematic data on the fecal bacterial changes and host plasma metabolism of donkeys throughout pregnancy. The results indicated that host–bacteria interactions during the gestation period influence the host metabolism. These interactions benefit the pregnant donkeys by providing a sufficient supply of nutrients and energy for fetal growth and maternal health.
Collapse
|
22
|
Mogaka JN, Owuor PM, Odhiambo S, Waterman C, McGuire MK, Fuchs GJ, Attia SL. Investigating the Impact of Moringa oleifera Supplemented to Kenyan Breastfeeding Mothers on Maternal and Infant Health: A Cluster Randomized Single-Blinded Controlled Pilot Trial Protocol. JPGN REPORTS 2022; 3:e237. [PMID: 37168619 PMCID: PMC10158460 DOI: 10.1097/pg9.0000000000000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/22/2022] [Indexed: 05/13/2023]
Abstract
Undernutrition contributes to up to 45% of deaths globally in children <5 years, with an optimal time for intervention before 24 months of age. Breastmilk microbiome helps establish the infant intestinal microbiome and impacts infant intestinal and nutritional health. Inadequacies in breastmilk composition such as low vitamin A contribute to infant nutrient deficiencies. Changes in milk fatty acid composition (reduced saturated and increased unsaturated fatty acids) may reduce susceptibility to enteric infection and increase protective intestinal bacteria. Moringa oleifera leaves (moringa) provide high nutrient concentrations (including protein, iron, vitamin A) and increase milk production; this may enhance breastmilk quantity and quality and improve infant health. Objective To investigate the role of moringa supplementation to improve maternal and infant nutritional and intestinal health via changes in maternal milk quantity and quality. Methods Fifty mother-infant pairs exclusively breastfeeding will be enrolled in a single-blinded randomized controlled trial in Kombewa County Hospital and Chulaimbo SubCounty Hospital, Kisumu, Kenya. Intervention Dietary Supplementation of 20 g of Moringa oleifera leaf powder divided twice daily in corn porridge consumed daily for 3 months while control comparator will receive porridge daily for 3 months. Outcomes Change in infant growth and maternal milk output (primary); maternal and infant vitamin A and iron status, changes in infant and maternal intestinal health (secondary). Participating Centers Pamoja Community Based Organization, Kombewa Sub-County Hospital, and Chulaimbo Sub-County Hospital.
Collapse
Affiliation(s)
| | - Patrick Mbullo Owuor
- Pamoja Community Based Organization, Kisumu, Kenya
- Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois
| | | | - Carrie Waterman
- Institute of Global Nutrition, University of California, Davis, Davis, California
| | - Michelle K. McGuire
- College of Agricultural and Life Sciences, Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - George J. Fuchs
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Epidemiology and Department of Preventive Medicine and Environmental Health, University of Kentucky College of Public Health, Lexington, Kentucky
| | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
23
|
B Vitamins and Their Roles in Gut Health. Microorganisms 2022; 10:microorganisms10061168. [PMID: 35744686 PMCID: PMC9227236 DOI: 10.3390/microorganisms10061168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
B vitamins act as coenzymes in a myriad of cellular reactions. These include energy production, methyl donor generation, neurotransmitter synthesis, and immune functions. Due to the ubiquitous roles of these vitamins, their deficiencies significantly affect the host’s metabolism. Recently, novel roles of B vitamins in the homeostasis of gut microbial ecology and intestinal health continue to be unravelled. This review focuses on the functional roles and biosynthesis of B vitamins and how these vitamins influence the growth and proliferation of the gut microbiota. We have identified the gut bacteria that can produce vitamins, and their biosynthetic mechanisms are presented. The effects of B vitamin deficiencies on intestinal morphology, inflammation, and its effects on intestinal disorders are also discussed.
Collapse
|
24
|
Wang C, Wei S, Liu B, Wang F, Lu Z, Jin M, Wang Y. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 2022; 14:2057779. [PMID: 35506256 PMCID: PMC9090288 DOI: 10.1080/19490976.2022.2057779] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neonatal intestinal tract is immature and can be easily infected by pathogens causing inflammation. Maternal diet manipulation is a promising nutritional strategy to enhance the gut health of offspring. A fermented diet is a gut microbiota targeting diet containing live probiotics and their metabolites, which benefit the gut and overall health host. However, it remains unclear how a maternal fermented diet (MFD) affects neonatal intestinal inflammation. Here, in vivo and in vitro models together with multi-omics analysis were applied to investigate the impacts and the underlying mechanism through which an MFD prevents from gut inflammation in neonates. An MFD remarkably improved the performance of both sows and piglets and significantly altered the gut microbiome and milk metabolome of sows. In addition, the MFD significantly accelerated the maturation of the gut microbiota of neonates and increased the abundance of gut Lactobacillus and the microbial functions of amino acid-related enzymes and glucose metabolism on the weaning day. Notably, the MFD reduced susceptibility to colonic inflammation in offspring. The fecal microbiota of sows was then transplanted into mouse dams and it was found that the mouse dams and pups in the MFD group alleviated the LPS-induced decrease in gut Lactobacillus abundance and barrier injury. Milk L-glutamine (GLN) and gut Lactobacillus reuteri (LR) were found as two of the main MFD-induced sow effectors that contributed to the gut health of piglets. The properties of LR and GLN in modulating gut microbiota and alleviating colonic inflammation by inhibiting the phosphorylation of p38 and JNK and activation of Caspase 3 were further verified. These findings provide the first data revealing that an MFD drives neonate gut microbiota development and ameliorates the colonic inflammation by regulating the gut microbiota. This fundamental evidence might provide references for modulating maternal nutrition to enhance early-life gut health and prevent gut inflammation.
Collapse
Affiliation(s)
- Cheng Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Siyu Wei
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Bojing Liu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China,CONTACT Yizhen Wang National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou310058, PR China
| |
Collapse
|
25
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
26
|
Zhao Z, Ma Z, Wang H, Zhang C. Effects of trace minerals supply from rumen sustained release boluses on milk yields and components, rumen fermentation and the rumen bacteria in lactating yaks (Bos grunniens). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the Gastrointestinal Microbiome: A Systematic Review. Adv Nutr 2021; 13:S2161-8313(22)00075-8. [PMID: 34612492 PMCID: PMC8970816 DOI: 10.1093/advances/nmab123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin B-12 deficiency is a major public health problem affecting individuals across the lifespan, with known hematological, neurological, and obstetric consequences. Emerging evidence suggests that vitamin B-12 may have an important role in other aspects of human health, including the composition and function of the gastrointestinal (gut) microbiome. Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required for over a dozen enzymes in bacteria, compared to only two in humans. However, the impact of vitamin B-12 on the gut microbiome has not been established. This systematic review was conducted to examine the evidence that links vitamin B-12 and the gut microbiome. A structured search strategy was used to identify in vitro, animal, and human studies that assessed vitamin B-12 status, dietary intake, or supplementation, and the gut microbiome using culture-independent techniques. A total of 22 studies (3 in vitro, 8 animal, 11 human observational studies) were included. Nineteen studies reported vitamin B-12 intake, status, or supplementation was associated with gut microbiome outcomes, including beta-diversity, alpha-diversity, relative abundance of bacteria, functional capacity, or short chain fatty acid production. Evidence suggests vitamin B-12 may be associated with changes in bacterial abundance. While results from in vitro studies suggest vitamin B-12 may increase alpha-diversity and shift gut microbiome composition (beta-diversity), findings from animal studies and observational human studies were heterogeneous. Based on evidence from in vitro and animal studies, microbiome outcomes may differ by cobalamin form and co-intervention. To date, few prospective observational studies and no randomized trials have been conducted to examine the effects of vitamin B-12 on the human gut microbiome. The impact of vitamin B-12 on the gut microbiome needs to be elucidated to inform screening and public health interventions. Statement of significance: Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required by over a dozen enzymes in bacteria. However, to date, no systematic reviews have been conducted to evaluate the impact of vitamin B-12 on the gut microbiome, or its implications for human health.
Collapse
Affiliation(s)
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Allison M Fox
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA,Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
28
|
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021; 95:35-53. [PMID: 34798467 DOI: 10.1016/j.nutres.2021.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays important roles in the maintenance of host health and the pathogenesis of many diseases. Diet is a key modulator of the gut microbiome. There is increasing evidence that nutrients other than fermentable fiber affect the gut microbial composition. In this review, we discuss the effects of vitamins on the gut microbiome, and related gastrointestinal health, based on in vitro, animal and human studies. Some vitamins, when provided in large doses or when delivered to the large intestine, have been shown to beneficially modulate the gut microbiome by increasing the abundance of presumed commensals (vitamins A, B2, D, E, and beta-carotene), increasing or maintaining microbial diversity (vitamins A, B2, B3, C, K) and richness (vitamin D), increasing short chain fatty acid production (vitamin C), or increasing the abundance of short chain fatty acid producers (vitamins B2, E). Others, such as vitamins A and D, modulate the gut immune response or barrier function, thus, indirectly influencing gastrointestinal health or the microbiome. Future research is needed to explore these potential effects and to elucidate the underlying mechanisms and host health benefits.
Collapse
Affiliation(s)
- Van T Pham
- DSM Nutritional Products, Kaiseraugst, Switzerland.
| | - Susanne Dold
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Vizzari G, Morniroli D, Ceroni F, Verduci E, Consales A, Colombo L, Cerasani J, Mosca F, Giannì ML. Human Milk, More Than Simple Nourishment. CHILDREN (BASEL, SWITZERLAND) 2021; 8:863. [PMID: 34682128 PMCID: PMC8535116 DOI: 10.3390/children8100863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant's neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Vizzari
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Daniela Morniroli
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Federica Ceroni
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy;
- Department of Health Sciences, University of Milan, 20154 Milan, Italy
| | - Alessandra Consales
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Lorenzo Colombo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Jacopo Cerasani
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| |
Collapse
|
30
|
García-Durán C, Martínez-López R, Zapico I, Pérez E, Romeu E, Arroyo J, Hernáez ML, Pitarch A, Monteoliva L, Gil C. Distinct Human Gut Microbial Taxonomic Signatures Uncovered With Different Sample Processing and Microbial Cell Disruption Methods for Metaproteomic Analysis. Front Microbiol 2021; 12:618566. [PMID: 34290676 PMCID: PMC8287257 DOI: 10.3389/fmicb.2021.618566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
The use of metaproteomics for studying the human gut microbiota can shed light on the taxonomic profile and the functional role of the microbial community. Nevertheless, methods for extracting proteins from stool samples continue to evolve, in the pursuit of optimal protocols for moistening and dispersing the stool sample and for disrupting microbial cells, which are two critical steps for ensuring good protein recovery. Here, we evaluated different stool sample processing (SSP) and microbial cell disruption methods (CDMs). The combination of a longer disintegration period of the stool sample in a tube rotator with sonication increased the overall number of identified peptides and proteins. Proteobacteria, Bacteroidetes, Planctomycetes, and Euryarchaeota identification was favored by mechanical cell disruption with glass beads. In contrast, the relative abundance of Firmicutes, Actinobacteria, and Fusobacteria was improved when sonication was performed before bead beating. Tenericutes and Apicomplexa identification was enhanced by moistening the stool samples during processing and by disrupting cells with medium-sized glass beads combined with or without sonication. Human protein identifications were affected by sonication. To test the reproducibility of these gut metaproteomic analyses, we examined samples from six healthy individuals using a protocol that had shown a good taxonomic diversity and identification of proteins from Proteobacteria and humans. We also detected proteins involved in microbial functions relevant to the host and related mostly to specific taxa, such as B12 biosynthesis and short chain fatty acid (SCFA) production carried out mainly by members in the Prevotella genus and the Firmicutes phylum, respectively. The taxonomic and functional profiles obtained with the different protocols described in this work provides the researcher with valuable information when choosing the most adequate protocol for the study of certain pathologies under suspicion of being related to a specific taxon from the gut microbiota.
Collapse
Affiliation(s)
- Carmen García-Durán
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Martínez-López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés Zapico
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Pérez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Romeu
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Luisa Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Aida Pitarch
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
31
|
Pace RM, Williams JE, Robertson B, Lackey KA, Meehan CL, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kita DG, Kvist LJ, Otoo GE, Ruiz L, Rodríguez JM, Pareja RG, McGuire MA, Bode L, McGuire MK. Variation in Human Milk Composition Is Related to Differences in Milk and Infant Fecal Microbial Communities. Microorganisms 2021; 9:1153. [PMID: 34072117 PMCID: PMC8230061 DOI: 10.3390/microorganisms9061153] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Previously published data from our group and others demonstrate that human milk oligosaccharide (HMOs), as well as milk and infant fecal microbial profiles, vary by geography. However, little is known about the geographical variation of other milk-borne factors, such as lactose and protein, as well as the associations among these factors and microbial community structures in milk and infant feces. Here, we characterized and contrasted concentrations of milk-borne lactose, protein, and HMOs, and examined their associations with milk and infant fecal microbiomes in samples collected in 11 geographically diverse sites. Although geographical site was strongly associated with milk and infant fecal microbiomes, both sample types assorted into a smaller number of community state types based on shared microbial profiles. Similar to HMOs, concentrations of lactose and protein also varied by geography. Concentrations of HMOs, lactose, and protein were associated with differences in the microbial community structures of milk and infant feces and in the abundance of specific taxa. Taken together, these data suggest that the composition of human milk, even when produced by relatively healthy women, differs based on geographical boundaries and that concentrations of HMOs, lactose, and protein in milk are related to variation in milk and infant fecal microbial communities.
Collapse
Affiliation(s)
- Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA; (J.E.W.); (M.A.M.)
| | - Bianca Robertson
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, Univeristy of California San Diego, La Jolla, CA 92093, USA; (B.R.); (L.B.)
- Department of Pediatrics, Univeristy of California San Diego, La Jolla, CA 92093, USA
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA 99164, USA;
| | - William J. Price
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Daniel W. Sellen
- Department of Anthropology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | | | - Egidioh W. Kamundia
- Department of Human Nutrition, Egerton University, Nakuru 20115, Kenya; (E.W.K.-M.); (E.W.K.); (S.M.)
| | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru 20115, Kenya; (E.W.K.-M.); (E.W.K.); (S.M.)
| | - Sophie E. Moore
- Department of Women and Children’s Health, King’s College London, London WC2R 2LS, UK;
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara P.O. Box 273, Gambia;
| | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara P.O. Box 273, Gambia;
| | - Debela G. Kita
- Department of Anthropology, Hawassa University, Hawassa P.O. Box 27601, Ethiopia;
| | - Linda J. Kvist
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Gloria E. Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra 00233, Ghana;
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA; (J.E.W.); (M.A.M.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, Univeristy of California San Diego, La Jolla, CA 92093, USA; (B.R.); (L.B.)
- Department of Pediatrics, Univeristy of California San Diego, La Jolla, CA 92093, USA
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
32
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
33
|
Examining Heterogeneity of Food Fortification and Biofortification Business Models: Emerging Evidence for a Typology. Nutrients 2021; 13:nu13041233. [PMID: 33917974 PMCID: PMC8068339 DOI: 10.3390/nu13041233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/13/2023] Open
Abstract
Efforts to address Micronutrient deficiencies (MNDs) in lower-and middle-income countries (LMICs) have been gaining pace in recent years. Commodities such as staple foods (e.g., cereals, roots, and tubers) and condiments (e.g., salt) have been targeted as ‘vehicles’ for fortification and biofortification through numerous projects and initiatives. To date, there have been mixed experiences with delivery and coverage with very little documented on the range of business models applied in different geographies, business conditions and polities and this makes classification and measurement of success and failure difficult. This research aims to address this gap in knowledge through proposing a typology that clarifies similarities (internal heterogeneity) and differences (external heterogeneity) between models and that can allow all types to be defined by the combination of attributes. Building on a comprehensive literature review; NVivo was used to code initiatives from 34 key references (955 cases in total) which have been grouped into 17 categories. Using non-metric multidimensional scaling (NMDS) we find evidence of four business model groupings that typify fortification initiatives: (1) Large-scale private, unregulated, (2) Mixed-Scale, private, unregulated (3) Large-scale, public-private, regulated; and (4) Large-scale, private, regulated. We characterise these four groups with country examples and suggest that this typology can help the discourse around viability of food fortification initiatives.
Collapse
|
34
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
35
|
Sindi AS, Geddes DT, Wlodek ME, Muhlhausler BS, Payne MS, Stinson LF. Can we modulate the breastfed infant gut microbiota through maternal diet? FEMS Microbiol Rev 2021; 45:6133472. [PMID: 33571360 DOI: 10.1093/femsre/fuab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Initial colonisation of the infant gut is robustly influenced by regular ingestion of human milk, a substance that contains microbes, microbial metabolites, immune proteins, and oligosaccharides. Numerous factors have been identified as potential determinants of the human milk and infant gut microbiota, including maternal diet; however, there is limited data on the influence of maternal diet during lactation on either of these. Here, we review the processes thought to contribute to human milk and infant gut bacterial colonisation and provide a basis for considering the role of maternal dietary patterns during lactation in shaping infant gut microbial composition and function. Although only one observational study has directly investigated the influence of maternal diet during lactation on the infant gut microbiome, data from animal studies suggests that modulation of the maternal gut microbiota, via diet or probiotics, may influence the mammary or milk microbiota. Additionally, evidence from human studies suggests that the maternal diet during pregnancy may affect the gut microbiota of the breastfed infant. Together, there is a plausible hypothesis that maternal diet during lactation may influence the infant gut microbiota. If substantiated in further studies, this may present a potential window of opportunity for modulating the infant gut microbiome in early life.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Beverly S Muhlhausler
- CSIRO, Adelaide, South Australia, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Bayaga CLT, Tanguilig KMN, Aba RPM, Pico MB, Gabriel AA. Culturable micro-organisms in human milk were found to be associated with maternal weight, diet and age during early lactation. J Appl Microbiol 2021; 131:925-937. [PMID: 33336459 DOI: 10.1111/jam.14974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 11/26/2022]
Abstract
AIMS This study aimed to evaluate the influence of maternal factors on the total plate count, Staphylococci, Lactobacilli and Bifidobacteria populations in the milk of lactating Filipino women for the first 4 months of lactation period. METHODS AND RESULTS Milk samples (n = 136), 24 h diet recalls and responses from a qualitative food frequency questionnaire (FFQ) were collected from 34 healthy lactating women classified according to their BMI: underweight (n = 7), normal weight (n = 16) and overweight (n = 11). The FFQ was useful in assessing prebiotic and probiotic food items consumed by the participants. Microbial populations were enumerated using culture-plating method, and showed a nonsignificant decreasing trend suggesting their relative stability throughout the first 4 months of lactation. Carbohydrate and fat intakes were associated with TPC, and with both TPC and Staphylococci respectively (P ≤ 0·05); and consumption of root crop is linked with Staphylococci, Lactobacilli and Bifidobacteria (P ≤ 0·05). Interestingly, age was found to be a positive determinant for Bifidobacteria (P = 0·00), whereas being normal- or overweight as negative determinants of Lactobacilli (P = 0·017). Consumption of milk also seems to positively influence both Lactobacilli (P = 0·00) and Bifidobacteria (P = 0·05) counts. CONCLUSIONS Certain populations of culturable micro-organisms were found to be associated with maternal diet, weight classification and age. SIGNIFICANCE AND IMPACT OF THE STUDY This study offered new discoveries in the recently growing endeavor on the role of maternal factors in modulating certain microbial populations in human milk. Ultimately, the findings of this study could provide a basis in crafting lactation policies and guidelines that may help enhance the microbial quality of human milk through adjustments in maternal diet or weight during lactation.
Collapse
Affiliation(s)
- C L T Bayaga
- Breast Milk Laboratory, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Philippines
| | - K M N Tanguilig
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Philippines
| | - R P M Aba
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Philippines
| | - M B Pico
- Breast Milk Laboratory, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Philippines
| | - A A Gabriel
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
37
|
Ruiz L, Alba C, García-Carral C, Jiménez EA, Lackey KA, McGuire MK, Meehan CL, Foster J, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Gindola K D, Otoo GE, Pareja RG, Bode L, McGuire MA, Williams JE, Rodríguez JM. Comparison of Two Approaches for the Metataxonomic Analysis of the Human Milk Microbiome. Front Cell Infect Microbiol 2021; 11:622550. [PMID: 33842385 PMCID: PMC8027255 DOI: 10.3389/fcimb.2021.622550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
Recent work has demonstrated the existence of large inter-individual and inter-population variability in the microbiota of human milk from healthy women living across variable geographical and socio-cultural settings. However, no studies have evaluated the impact that variable sequencing approaches targeting different 16S rRNA variable regions may have on the human milk microbiota profiling results. This hampers our ability to make meaningful comparisons across studies. In this context, the main purpose of the present study was to re-process and re-sequence the microbiome in a large set of human milk samples (n = 412) collected from healthy women living at diverse international sites (Spain, Sweden, Peru, United States, Ethiopia, Gambia, Ghana and Kenya), by targeting a different 16S rRNA variable region and reaching a larger sequencing depth. Despite some differences between the results obtained from both sequencing approaches were notable (especially regarding alpha and beta diversities and Proteobacteria representation), results indicate that both sequencing approaches revealed a relatively consistent microbiota configurations in the studied cohorts. Our data expand upon the milk microbiota results we previously reported from the INSPIRE cohort and provide, for the first time across globally diverse populations, evidence of the impact that different DNA processing and sequencing approaches have on the microbiota profiles obtained for human milk samples. Overall, our results corroborate some similarities regarding the microbial communities previously reported for the INSPIRE cohort, but some differences were also detected. Understanding the impact of different sequencing approaches on human milk microbiota profiles is essential to enable meaningful comparisons across studies. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT02670278.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Lorena Ruiz, ; Juan Miguel Rodriguez,
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Cristina García-Carral
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Esther A. Jiménez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - James Foster
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Daniel W. Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E. Moore
- Division of Women’s Health, King’s College London, London, United Kingdom
- MRC Unit, Serekunda, Gambia
| | - Andrew M. Prentice
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Debela Gindola K
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Gloria E. Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CoRE), University of California, San Diego, La Jolla, CA, United States
| | - Mark A. McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Janet E. Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Lorena Ruiz, ; Juan Miguel Rodriguez,
| |
Collapse
|
38
|
Effects of trace mineral supply from rumen boluses on performance, carcass characteristics, and fecal bacterial profile in beef cattle. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
40
|
Dahlberg J, Williams JE, McGuire MA, Peterson HK, Östensson K, Agenäs S, Dicksved J, Waller KP. Microbiota of bovine milk, teat skin, and teat canal: Similarity and variation due to sampling technique and milk fraction. J Dairy Sci 2020; 103:7322-7330. [PMID: 32534929 DOI: 10.3168/jds.2019-17783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to evaluate the effect of sampling technique and milk fraction on bovine milk microbiota data and to compare the microbiota in milk to microbiota on the teat end and in the teat canal. Representative milk samples are highly important for assessment of bacteriological findings and microbiota in milk. Samples were obtained from 5 healthy lactating dairy cows at udder quarter level during 1 milking. Swab samples from the teat end and teat canal, and milk samples collected using different techniques and in different milk fractions were included. Milk was collected by hand stripping and through a teat canal cannula before and after machine milking, through a trans-teat wall needle aspirate after milking, and from udder quarter composite milk. The microbiota of the samples was analyzed with sequencing of the V1-V3 region of the 16S rRNA gene. In addition, somatic cell counts and bacterial cultivability were analyzed in the milk samples. Microbiota data were analyzed using multivariate methods, and differences between samples were tested using analysis of similarity (ANOSIM). Differences between samples were further explored via individual studies of the 10 most abundant genera. The microbiota on the teat end, in the teat canal, and in udder quarter composite milk, collected using a milking machine, differed in composition from the microbiota in milk collected directly from the udder quarter. No differences in milk microbiota composition were detected between hand-stripped milk samples, milk samples taken through a teat canal cannula, or milk samples taken as a trans-teat wall needle aspirate before or after milking. We conclude that for aseptic milk samples collected directly from the lactating udder quarter, sampling technique or milk fraction has minor effect on the microbiota composition.
Collapse
Affiliation(s)
- J Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - J E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - H K Peterson
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - K Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - S Agenäs
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - J Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - K Persson Waller
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 75189 Uppsala, Sweden
| |
Collapse
|
41
|
Demmelmair H, Jiménez E, Collado MC, Salminen S, McGuire MK. Maternal and Perinatal Factors Associated with the Human Milk Microbiome. Curr Dev Nutr 2020; 4:nzaa027. [PMID: 32270132 PMCID: PMC7127925 DOI: 10.1093/cdn/nzaa027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Microbes are present in human milk regardless of the mother's health. The origins of the milk microbiota likely include the mother's skin, infant's mouth, and transfer from the maternal gastrointestinal (GI) tract. Prominent bacterial taxa in human milk are Staphylococcus and Streptococcus, but many other genera are also found including anaerobic Lactobacillus, Bifidobacterium, and Bacteroides. The milk microbiome is highly variable and potentially influenced by geographic location, delivery mode, time postpartum, feeding mode, social networks, environment, maternal diet, and milk composition. Mastitis alters the milk microbiome, and the intake of Lactobacilli has shown potential for mastitis treatment and prevention. Although milk and infant fecal microbiomes are different, their variations appear to be related - suggesting that milk is an important contributor of early GI colonization. Nonetheless, nothing is known regarding whether the milk microbiome influences infant health. Further research and clinical interventions are needed to determine if changes in the microbiomes of human milk and infant formula/food impact health.
Collapse
Affiliation(s)
- Hans Demmelmair
- Dr. von Hauner Children´s Hospital, University of Munich Medical Center, Munich, Germany
| | - Esther Jiménez
- ProbiSearch SLU, Madrid, Spain
- Department of Nutrition, Food Science, and Technology, University Complutense, Madrid, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
42
|
SEURA T, FUKUWATARI T. Differences in gut microbial patterns associated with salivary biomarkers in young Japanese adults. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:243-249. [PMID: 33117623 PMCID: PMC7573114 DOI: 10.12938/bmfh.2019-034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that psychological stress is associated with gut microbiota;
however, there are no reports of its association with gut microbial structure. This
cross-sectional study examined the relationship between psychological stress and gut
microbial patterns in young Japanese adults. Analysis of fecal microbiota was performed
using terminal restriction fragment length polymorphism (T-RFLP). Psychological stress was
assessed using salivary biomarkers, including cortisol, alpha-amylase, and secretory IgA
(S-IgA). Fecal microbial patterns were defined using principal component analysis of the
T-RFLP profile and were classified into two enterotype-like clusters, which were defined
by the B (microbiota dominated by Bacteroides) and BL patterns
(microbiota dominated by Bifidobacterium and
Lactobacillales), respectively. The Simpson index was significantly
higher for the BL pattern than for the B pattern. The salivary cortisol level was
significantly lower for the BL pattern than for the B pattern. Salivary alpha-amylase and
S-IgA levels showed a negative correlation with the Simpson index. Our results raise the
possibility that salivary biomarkers may be involved in the observed differences in
microbial patterns.
Collapse
Affiliation(s)
- Takahiro SEURA
- Department of Sports and Health Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University, 2-9 Katahira, Nagakute, Aichi 480-1197, Japan
- Graduate School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
- Department of Home Economics and Technology Education, Hokkaido University of Education, 9 Hokumon-cho, Asahikawa, Hokkaido 070-8621, Japan
| | - Tsutomu FUKUWATARI
- Graduate School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
43
|
SEURA T, FUKUWATARI T. Japanese Diet Score Is Associated with Gut Microbiota Composition in Young Japanese Adults. J Nutr Sci Vitaminol (Tokyo) 2019; 65:414-420. [DOI: 10.3177/jnsv.65.414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Takahiro SEURA
- Department of Sports and Health Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University
- Graduate School of Human Cultures, The University of Shiga Prefecture
| | | |
Collapse
|
44
|
The Human Milk Microbiota is Modulated by Maternal Diet. Microorganisms 2019; 7:microorganisms7110502. [PMID: 31671720 PMCID: PMC6920866 DOI: 10.3390/microorganisms7110502] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Human milk microorganisms contribute not only to the healthy development of the immune system in infants, but also in shaping the gut microbiota. We evaluated the effect of the maternal diet during pregnancy and during the first month of lactation on the human milk microbiota in a cross-sectional study including 94 healthy lactating women. Microbiota composition was determined by 16S rDNA profiling and nutrient intake assessed through food questionnaires. Thirteen genera were present in at least 90% of all samples, with three genera present in all samples: Streptococcus, Staphylococcus, and Corynebacterium. Cluster analysis indicated two distinct compositions: one marked by a high abundance of Streptococcus (cluster 1), and other by a high abundance of Staphylococcus (cluster 2). A global association with milk microbiota diversity was observed for vitamin C intake during pregnancy (p = 0.029), which was higher for cluster 2 individuals (cluster 2 median = 232 mg/d; cluster 1 = 175 mg/d; p = 0.02). Positive correlations were found between Bifidobacterium in the milk and intake of polyunsaturated and linoleic fatty acids during the lactation period (p < 0.01). We show that maternal diet influences the human milk microbiota, especially during pregnancy, which may contribute in shaping the gut microbiota.
Collapse
|
45
|
Urolithin Metabotypes can Anticipate the Different Restoration of the Gut Microbiota and Anthropometric Profiles during the First Year Postpartum. Nutrients 2019; 11:nu11092079. [PMID: 31484413 PMCID: PMC6769946 DOI: 10.3390/nu11092079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023] Open
Abstract
The metabolism of dietary polyphenols ellagitannins by the gut-microbiota allows the human stratification in urolithin metabotypes depending on the final urolithins produced. Metabotype-A only produces urolithin-A, metabotype-B yields urolithin-B and isourolithin-A in addition to urolithin-A, and metabotype 0 does not produce urolithins. Metabotype-A has been suggested to be ‘protective’, and metabotype-B dysbiotic-prone to cardiometabolic impairments. We analyzed the gut-microbiome of 40 healthy women and determined their metabotypes and enterotypes, and their associations with anthropometric and gut-microbial changes after 3 weeks, 4, 6, and 12 months postpartum. Metabotype-A was predominant in mothers who lost weight (≥2 kg) (75%) versus metabotype-B (54%). After delivery, the microbiota of metabotype-A mothers changed, unlike metabotype-B, which barely changed over 1 year. The metabotype-A discriminating bacteria correlated to the decrease of the women’s waist while some metabotype-B bacteria were inversely associated with a reduction of body mass index (BMI), waist, and waist-to-hip ratio. Metabotype-B was associated with a more robust and less modulating microbial and anthropometric profiles versus metabotype-A, in which these profiles were normalized through the 1-year follow-up postpartum. Consequently, urolithin metabotypes assessment could be a tool to anticipate the predisposition of women to normalize their anthropometric values and gut-microbiota, significantly altered during pregnancy and after childbirth.
Collapse
|
46
|
Stevens AJ, Purcell RV, Darling KA, Eggleston MJF, Kennedy MA, Rucklidge JJ. Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder. Sci Rep 2019; 9:10128. [PMID: 31300667 PMCID: PMC6625977 DOI: 10.1038/s41598-019-46146-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
It has been widely hypothesized that both diet and the microbiome play a role in the regulation of attention-deficit/hyperactivity disorder (ADHD) behaviour. However, there has been very limited scientific investigation into the potential biological connection. We performed a 10-week pilot study investigating the effects of a broad spectrum micronutrient administration on faecal microbiome content, using 16S rRNA gene sequencing. The study consisted of 17 children (seven in the placebo and ten in the treatment group) between the ages of seven and 12 years, who were diagnosed with ADHD. We found that micronutrient treatment did not drive large-scale changes in composition or structure of the microbiome. However, observed OTUs significantly increased in the treatment group, and showed no mean change in the placebo group. The differential abundance and relative frequency of Actinobacteria significantly decreased post- micronutrient treatment, and this was largely attributed to species from the genus Bifidobacterium. This was compensated by an increase in the relative frequency of species from the genus Collinsella. Further research is required to establish the role that Bifidobacterium contribute towards neuropsychiatric disorders; however, these findings suggest that micronutrient administration could be used as a safe, therapeutic method to modulate Bifidobacterium abundance, which could have potential implications for modulating and regulating ADHD behaviour. Our pilot study provides an initial observation into this area of research, and highlights an interesting avenue for further investigation in a larger cohort. Furthermore, these novel results provide a basis for future research on the biological connection between ADHD, diet and the microbiome.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | - Rachel V Purcell
- Department of Surgery, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Kathryn A Darling
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Matthew J F Eggleston
- Mental Health Division, Canterbury District Health Board, Private Bag 4733, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Julia J Rucklidge
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
47
|
Williams JE, Carrothers JM, Lackey KA, Beatty NF, Brooker SL, Peterson HK, Steinkamp KM, York MA, Shafii B, Price WJ, McGuire MA, McGuire MK. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J Nutr 2019; 149:902-914. [PMID: 31063198 PMCID: PMC6543206 DOI: 10.1093/jn/nxy299] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neonatal gastrointestinal (GI) bacterial community structure may be related to bacterial communities of the mother, including those of her milk. However, very little is known about the diversity in and relationships among complex bacterial communities in mother-infant dyads. OBJECTIVE Our primary objective was to assess whether microbiomes of milk are associated with those of oral and fecal samples of healthy lactating women and their infants. METHODS Samples were collected 9 times from day 2 to 6 mo postpartum from 21 healthy lactating women and their infants. Milk was collected via complete breast expression, oral samples via swabs, and fecal samples from tissue (mothers) and diapers (infants). Microbiomes were characterized using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene. Alpha and beta diversity indices were used to compare microbiomes across time and sample types. Membership and composition of microbiomes were analyzed using nonmetric multidimensional scaling and canonical correlation analysis (CCA). The contribution of various bacterial communities of the mother-infant dyad to both milk and infant fecal bacterial communities were estimated using SourceTracker2. RESULTS Bacterial community structures were relatively unique to each sample type. The most abundant genus in milk and maternal and infant oral samples was Streptococcus (47.1% ± 2.3%, 53.9% ± 1.3%, and 69.1% ± 1.8%, respectively), whereas Bacteroides were predominant in maternal and infant fecal microbiomes (22.9% ± 1.3% and 21.4% ± 2.4%, respectively). The milk microbiome was more similar to the infant oral microbiome than the infant fecal microbiome. However, CCA suggested strong associations between the complex microbial communities of milk and those of all other sample types collected. CONCLUSIONS These findings suggest complex microbial interactions between breastfeeding mothers and their infants and support the hypothesis that variation in the milk microbiome may influence the infant GI microbiome.
Collapse
Affiliation(s)
- Janet E Williams
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID
| | | | - Kimberly A Lackey
- School of Family and Consumer Sciences, University of Idaho, Moscow, ID
| | - Nicola F Beatty
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
| | - Sarah L Brooker
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID
| | - Haley K Peterson
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
| | - Katelyn M Steinkamp
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
| | - Mara A York
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Bahman Shafii
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID
| | - William J Price
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID
| | - Mark A McGuire
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
| | | |
Collapse
|
48
|
Lane AA, McGuire MK, McGuire MA, Williams JE, Lackey KA, Hagen EH, Kaul A, Gindola D, Gebeyehu D, Flores KE, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kvist LJ, Otoo GE, Rodríguez JM, Ruiz L, Pareja RG, Bode L, Price WJ, Meehan CL. Household composition and the infant fecal microbiome: The INSPIRE study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:526-539. [PMID: 31012086 DOI: 10.1002/ajpa.23843] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/01/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Establishment and development of the infant gastrointestinal microbiome (GIM) varies cross-culturally and is thought to be influenced by factors such as gestational age, birth mode, diet, and antibiotic exposure. However, there is little data as to how the composition of infants' households may play a role, particularly from a cross-cultural perspective. Here, we examined relationships between infant fecal microbiome (IFM) diversity/composition and infants' household size, number of siblings, and number of other household members. MATERIALS AND METHODS We analyzed 377 fecal samples from healthy, breastfeeding infants across 11 sites in eight different countries (Ethiopia, The Gambia, Ghana, Kenya, Peru, Spain, Sweden, and the United States). Fecal microbial community structure was determined by amplifying, sequencing, and classifying (to the genus level) the V1-V3 region of the bacterial 16S rRNA gene. Surveys administered to infants' mothers identified household members and composition. RESULTS Our results indicated that household composition (represented by the number of cohabitating siblings and other household members) did not have a measurable impact on the bacterial diversity, evenness, or richness of the IFM. However, we observed that variation in household composition categories did correspond to differential relative abundances of specific taxa, namely: Lactobacillus, Clostridium, Enterobacter, and Klebsiella. DISCUSSION This study, to our knowledge, is the largest cross-cultural study to date examining the association between household composition and the IFM. Our results indicate that the social environment of infants (represented here by the proxy of household composition) may influence the bacterial composition of the infant GIM, although the mechanism is unknown. A higher number and diversity of cohabitants and potential caregivers may facilitate social transmission of beneficial bacteria to the infant gastrointestinal tract, by way of shared environment or through direct physical and social contact between the maternal-infant dyad and other household members. These findings contribute to the discussion concerning ways by which infants are influenced by their social environments and add further dimensionality to the ongoing exploration of social transmission of gut microbiota and the "old friends" hypothesis.
Collapse
Affiliation(s)
- Avery A Lane
- Department of Anthropology, Washington State University, Pullman, Washington
| | - Michelle K McGuire
- School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho
| | - Kimberly A Lackey
- School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington
| | - Abhishek Kaul
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Dubale Gebeyehu
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Katherine E Flores
- Department of Anthropology, Washington State University, Pullman, Washington
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Lorena Ruiz
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain.,Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| | | | - Lars Bode
- Department of Pediatrics, and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, California
| | - William J Price
- Statistical Programs, College of Agriculture and Life Sciences, University of Idaho, Moscow, Idaho
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington
| |
Collapse
|
49
|
Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, K DG, Kvist LJ, Otoo GE, García-Carral C, Jiménez E, Ruiz L, Rodríguez JM, Pareja RG, Bode L, McGuire MA, McGuire MK. What's Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study. Front Nutr 2019; 6:45. [PMID: 31058158 PMCID: PMC6479015 DOI: 10.3389/fnut.2019.00045] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Microbial communities in human milk and those in feces from breastfed infants vary within and across populations. However, few researchers have conducted cross-cultural comparisons between populations, and little is known about whether certain “core” taxa occur normally within or between populations and whether variation in milk microbiome is related to variation in infant fecal microbiome. The purpose of this study was to describe microbiomes of milk produced by relatively healthy women living at diverse international sites and compare these to the fecal microbiomes of their relatively healthy infants. Methods: We analyzed milk (n = 394) and infant feces (n = 377) collected from mother/infant dyads living in 11 international sites (2 each in Ethiopia, The Gambia, and the US; 1 each in Ghana, Kenya, Peru, Spain, and Sweden). The V1-V3 region of the bacterial 16S rRNA gene was sequenced to characterize and compare microbial communities within and among cohorts. Results: Core genera in feces were Streptococcus, Escherichia/Shigella, and Veillonella, and in milk were Streptococcus and Staphylococcus, although substantial variability existed within and across cohorts. For instance, relative abundance of Lactobacillus was highest in feces from rural Ethiopia and The Gambia, and lowest in feces from Peru, Spain, Sweden, and the US; Rhizobium was relatively more abundant in milk produced by women in rural Ethiopia than all other cohorts. Bacterial diversity also varied among cohorts. For example, Shannon diversity was higher in feces from Kenya than Ghana and US-California, and higher in rural Ethiopian than Ghana, Peru, Spain, Sweden, and US-California. There were limited associations between individual genera in milk and feces, but community-level analyses suggest strong, positive associations between the complex communities in these sample types. Conclusions: Our data provide additional evidence of within- and among-population differences in milk and infant fecal bacterial community membership and diversity and support for a relationship between the bacterial communities in milk and those of the recipient infant's feces. Additional research is needed to understand environmental, behavioral, and genetic factors driving this variation and association, as well as its significance for acute and chronic maternal and infant health.
Collapse
Affiliation(s)
- Kimberly A Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Jessica A Zachek
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Elizabeth D Benda
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - William J Price
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Daniel W Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Andrew M Prentice
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Debela Gindola K
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | | | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | | | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Juan M Rodríguez
- Department of Nutrition, Food Science, and Food Technology, Complutense University of Madrid, Madrid, Spain
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
50
|
Liu H, Hou C, Li N, Zhang X, Zhang G, Yang F, Zeng X, Liu Z, Qiao S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation. FASEB J 2019; 33:4490-4501. [PMID: 30653349 DOI: 10.1096/fj.201801221rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gut microbiota plays a critical role in various physiologic processes; however, maternal microbial and metabolic changes during pregnancy and lactation remain elusive. Using pigs as an animal model, we conducted comparative analyses of gut microbiota and short-chain fatty acid (SCFA) profiles across different stages of gestation, lactation, and the empty (nonpregnancy) phase in 2 distinct breeds of sow, Rongchang (RS) and Landrace (LS). Coriobacteriaceae were found to gradually increase over gestational time irrespective of breed, which was further validated in an independent cohort of sows, indicating that Coriobacteriaceae are likely associated with the progression of pregnancy. Escherichia increased as well. Relative to empty and gestation, lactation was associated with an increase in SCFA producers and a concomitant augmentation in SCFA production in both breeds. A comparison between the 2 breeds revealed that Ruminococcaceae were more abundant in RSs than in LSs, consistent with the strong ability of Rongchang pigs to digest highly fibrous feedstuffs. Taken together, we revealed characteristic structural and metabolic changes in maternal gut microbiota throughout pregnancy, lactation, and the empty phase, which could potentially help improve the pregnancy and lactation outcomes for both animals and humans.-Liu, H., Hou, C., Li, N., Zhang, X., Zhang, G., Yang, F., Zeng, X., Liu, Z., Qiao, S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation.
Collapse
Affiliation(s)
- Hongbin Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiaoya Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, USA; and
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| |
Collapse
|