1
|
Azargoonjahromi A. A systematic review of the association between zinc and anxiety. Nutr Rev 2024; 82:612-621. [PMID: 37364014 DOI: 10.1093/nutrit/nuad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
CONTEXT The incidence of anxiety, which stems from both intrinsic and extrinsic factors, has been increasing worldwide. Various methods by which it can be treated or prevented have been reported thus far. One of the most popular and effective treatments is supplementation therapy. Zinc, which is an essential nutrient found in various plants, animal foods, and supplements, has been shown to be a potential nutrient in anxiety reduction by acting on γ-aminobutyric acid (GABA), glutamatergic, serotonergic, neurogenesis, and immune systems. It can also influence important receptors, such as GPR39. Thus, zinc has received considerable attention with respect to its potential role as a therapeutic or detrimental factor for anxiety; yet, the available evidence needs to be analyzed systematically to reach a convergent conclusion. OBJECTIVE The objective was to systematically review any potential connection between adult human anxiety and zinc intake. DATA SOURCES AND EXTRACTION Nine original human studies, of which 2 assessed the relationship between zinc consumption and anxiety (based on a questionnaire) and 7 assessed the relationship between serum zinc levels and anxiety, were included based on specific selection criteria. Studies that had been written in English and published in peer-reviewed publications with no restrictions on the date of publication were searched in the Google Scholar and PubMed databases. This project was also reported according to the PRISMA guidelines. DATA ANALYSIS As per the studies analyzed in this review, there was a noticeable relationship between serum zinc levels and anxiety, which means that patients with anxiety have lower levels of zinc in their serum, as compared with healthy individuals. Furthermore, zinc consumption was inversely associated with anxiety. CONCLUSION The results provide plausible evidence for the positive role of zinc in the treatment of patients afflicted with anxiety, albeit with some limitations.
Collapse
|
2
|
Sangeetha VJ, Dutta S, Moses JA, Anandharamakrishnan C. Zinc nutrition and human health: Overview and implications. EFOOD 2022. [DOI: 10.1002/efd2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- V. J. Sangeetha
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| |
Collapse
|
3
|
Zinc Fortification: Current Trends and Strategies. Nutrients 2022; 14:nu14193895. [PMID: 36235548 PMCID: PMC9572300 DOI: 10.3390/nu14193895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc, through its structural and cofactor roles, affects a broad range of critical physiological functions, including growth, metabolism, immune and neurological functions. Zinc deficiency is widespread among populations around the world, and it may, therefore, underlie much of the global burden of malnutrition. Current zinc fortification strategies include biofortification and fortification with zinc salts with a primary focus on staple foods, such as wheat or rice and their products. However, zinc fortification presents unique challenges. Due to the influences of phytate and protein on zinc absorption, successful zinc fortification strategies should consider the impact on zinc bioavailability in the whole diet. When zinc is absorbed with food, shifts in plasma zinc concentrations are minor. However, co-absorbing zinc with food may preferentially direct zinc to cellular compartments where zinc-dependent metabolic processes primarily occur. Although the current lack of sensitive biomarkers of zinc nutritional status reduces the capacity to assess the impact of fortifying foods with zinc, new approaches for assessing zinc utilization are increasing. In this article, we review the tools available for assessing bioavailable zinc, approaches for evaluating the zinc nutritional status of populations consuming zinc fortified foods, and recent trends in fortification strategies to increase zinc absorption.
Collapse
|
4
|
Jongstra R, Hossain MM, Galetti V, Hall AG, Holt RR, Cercamondi CI, Rashid SF, Zimmermann MB, Mridha MK, Wegmueller R. The effect of zinc-biofortified rice on zinc status of Bangladeshi preschool children: a randomized, double-masked, household-based, controlled trial. Am J Clin Nutr 2021; 115:724-737. [PMID: 34792094 PMCID: PMC8895213 DOI: 10.1093/ajcn/nqab379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Zinc biofortification of rice could sustainably improve zinc status in countries where zinc deficiency is common and rice is a staple, but its efficacy has not been tested. Fatty acid desaturases (FADS) are putative new zinc status biomarkers. OBJECTIVES Our objective was to test the efficacy of zinc-biofortified rice (BFR) in preschool-aged children with zinc deficiency. Our hypothesis was that consumption of BFR would increase plasma zinc concentration (PZC). METHODS We conducted a 9-mo, double-masked intervention trial in 12-36-mo-old rural Bangladeshi children, most of whom were zinc-deficient (PZC <70 µg/dL) and stunted (n = 520). The children were randomly assigned to receive either control rice (CR) or BFR provided in cooked portions to their households daily, with compliance monitoring. The primary outcome was PZC. Secondary outcomes were zinc deficiency, linear growth, infection-related morbidity, FADS activity indices, intestinal fatty acid binding protein (I-FABP) and fecal calprotectin. We applied sparse serial sampling for midpoint measures and analyzed data by intention-to-treat using mixed-effects models. RESULTS At baseline, median (IQR) PZC was 60.4 (56.3-64.3) µg/dL, 78.1% of children were zinc deficient, and 59.7% were stunted. Mean ± SD daily zinc intakes from the CR and BFR during the trial were 1.20 ± 0.34 and 2.22 ± 0.47 mg/d, respectively (P < 0.001). There were no significant time-by-treatment effects on PZC, zinc deficiency prevalence, FADS activity, I-FABP, or fecal calprotectin (all P > 0.05). There was a time-treatment interaction for height-for-age z-scores (P < 0.001) favoring the BFR group. The morbidity longitudinal prevalence ratio was 1.08 (95% CI: 1.05, 1.12) comparing the BFR and CR groups, due to more upper respiratory tract illness in the BFR group. CONCLUSIONS Consumption of BFR for 9 mo providing ∼1 mg of additional zinc daily to Bangladeshi children did not significantly affect PZC, prevalence of zinc deficiency, or FADS activity.The trial was registered at clinicaltrials.gov as NCT03079583.
Collapse
Affiliation(s)
- Roelinda Jongstra
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Md Mokbul Hossain
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | - Valeria Galetti
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Andrew G Hall
- Department of Nutrition, University of California, Davis, CA, USA
| | - Roberta R Holt
- Department of Nutrition, University of California, Davis, CA, USA
| | - Colin I Cercamondi
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Sabina F Rashid
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | | | - Malay K Mridha
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | - Rita Wegmueller
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland,GroundWork, Fläsch, Switzerland
| |
Collapse
|
5
|
Pompano LM, Boy E. Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:141-160. [PMID: 32722790 PMCID: PMC7850144 DOI: 10.1093/advances/nmaa087] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
No meta-analysis has examined the effect of dose and duration of zinc interventions on their impact on risk factors for type 2 diabetes (T2D) or cardiovascular disease (CVD). This study aimed first to compare the effects of zinc interventions dichotomized as low versus high dose (<25 mg/d and ≥25 mg/d, respectively) and short versus long duration (<12 wk and ≥12 wk, respectively) on risk factors for T2D and CVD. Second, it discusses the results from the low-dose and long-duration meta-analyses as a foundation for understanding what impact a zinc-biofortification intervention could have on these risk factors. The PubMed and Cochrane Review databases were searched through January 2020 for full-text, human studies providing zinc supplements (alone) at doses ≤75 mg/d and a placebo. Data on study and sample characteristics and several T2D and CVD risk factors were extracted. There were 1042 and 974 participants receiving zinc and placebo, respectively, from 27 studies. Low-dose zinc supplementation (<25 mg/d) significantly benefited fasting blood glucose, insulin resistance, triglycerides, total cholesterol, and LDL cholesterol. High-dose zinc supplementation (≥25 mg/d) benefited glycated hemoglobin and insulin resistance. Short-duration interventions (<12 wk) benefited fasting blood glucose, insulin resistance, and triglycerides, while long-duration studies (≥12 wk) benefited fasting blood glucose, triglycerides, and total and LDL cholesterol. Effect sizes for low-dose and long-duration interventions were of equal or greater magnitude to those from high-dose or short-duration interventions. Low-dose and long-duration zinc supplementation each improved more risk factors for T2D and CVD than high-dose and short-duration interventions, respectively. It is currently unknown whether low doses of zinc delivered over long durations via a biofortified crop would similarly impact these risk factors. However, this review suggests that low-dose, long-duration zinc intake from supplements, and potentially biofortification, can benefit risk factors for T2D and CVD.
Collapse
Affiliation(s)
- Laura M Pompano
- HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| |
Collapse
|
6
|
Woods BJ, Gallego-Castillo S, Talsma EF, Álvarez D. The acceptance of zinc biofortified rice in Latin America: A consumer sensory study and grain quality characterization. PLoS One 2020; 15:e0242202. [PMID: 33175890 PMCID: PMC7657500 DOI: 10.1371/journal.pone.0242202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc deficiency is a major public health problem in vulnerable populations of Latin America and the Caribbean. Biofortification of rice (Oryza sativa L.) with zinc has the potential to alleviate zinc deficiencies. However, as plant breeding processes can alter grain culinary quality and favorable sensory attributes, grain quality and consumer acceptability need to be assessed prior to releasing a variety to the public. A grain quality characterization and a sensory acceptability analysis were carried out with two varieties of zinc biofortified rice and a local control both in Bolivia and Colombia. The aim of this study was to evaluate the physicochemical parameters that are significant in consumer acceptance and to determine the acceptability of zinc biofortified rice by consumers. Results of physicochemical parameters were analyzed using ANOVA. The sensory acceptability was evaluated in 243 adults utilizing a 7-point hedonic scale and a Wilcoxon's signed rank test was used to determine the overall acceptability of the varieties. Biofortified rice variety T2-11 and MAC-18 -control 1- were equally accepted by consumers in Bolivia with no significant differences (p<0.05). The grain quality analysis reported that both presented long and slender rice grains (L>7.5 mm and L/B>3), an intermediate to high amylose content (>25%) and a similar level of chalkiness. In Colombia, the biofortified variety 035 presented a higher score in overall acceptance in comparison to biofortified variety 021 and the local variety CICA4 -control 2-. However, no significant differences were observed (p<0.05). Conversely to the other two varieties, the biofortified variety 035 presented the largest size grain (L/B = 2.97), a lower chalkiness and an amylose content above 25%. This study shows that the grain quality properties of rice have an influence on acceptability and that zinc biofortified rice varieties are accepted by consumers.
Collapse
Affiliation(s)
- Bo-Jane Woods
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Sonia Gallego-Castillo
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Elise F. Talsma
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Daniel Álvarez
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
- * E-mail:
| |
Collapse
|
7
|
Mitra-Ganguli T, Boyd K, Uchitelle-Pierce B, Walton J. Proceedings of the workshop ‘Biofortified food - Working together to get more nutritious food to the table in India’. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Signorell C, Zimmermann MB, Cakmak I, Wegmüller R, Zeder C, Hurrell R, Aciksoz SB, Boy E, Tay F, Frossard E, Moretti D. Zinc Absorption From Agronomically Biofortified Wheat Is Similar to Post-Harvest Fortified Wheat and Is a Substantial Source of Bioavailable Zinc in Humans. J Nutr 2019; 149:840-846. [PMID: 31004128 DOI: 10.1093/jn/nxy328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 12/31/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Limited data exist on human zinc absorption from wheat biofortified via foliar (FBW) or root (hydroponically fortified wheat, HBW) zinc application. Stable isotope labels added at point of consumption (extrinsic labeling) might not reflect absorption from native zinc obtained by intrinsic labeling. OBJECTIVES We measured fractional and total zinc absorption (FAZ, TAZ) in FBW and HBW wheat, compared with control wheat (CW) and fortified wheat (FW). The effect of labeling method was assessed in HBW (study 1), and the effect of milling extraction rate (EXR, 80% and 100%) in FBW (studies 2 and 3). METHODS Generally healthy adults (n = 71, age: 18-45 y, body mass index: 18.5-25 kg/m2) were allocated to 1 of the studies, in which they served as their own controls. In study 1, men and women consumed wheat porridges colabeled intrinsically and extrinsically with 67Zn and 70Zn. In studies 2 and 3, women consumed wheat flatbreads (chapatis) labeled extrinsically. Zinc absorption was measured with the oral to intravenous tracer ratio method with a 4-wk wash-out period between meals. Data were analyzed with linear mixed models. RESULTS In study 1 there were no differences in zinc absorption from extrinsic versus intrinsic labels in either FW or HBW. Similarly, FAZ and TAZ from FW and HBW did not differ. TAZ was 70-76% higher in FW and HBW compared with CW (P < 0.01). In studies 2 and 3, TAZ from FW and FBW did not differ but was 20-48% higher compared with CW (P < 0.001). Extraction rate had no effect on TAZ. CONCLUSIONS Colabeling demonstrates that extrinsic zinc isotopic labels can be used to accurately quantify zinc absorption from wheat in humans. Biofortification through foliar zinc application, root zinc application, or fortification provides higher TAZ compared with unfortified wheat. In biofortified wheat, extraction rate (100-80%) has a limited impact on total zinc absorption. These studies were registered on clinicaltrials.gov (NCT01775319).
Collapse
Affiliation(s)
- Coralie Signorell
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci Universitesi, Istanbul, Turkey
| | - Rita Wegmüller
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Richard Hurrell
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Seher B Aciksoz
- Plant Nutrition Laboratory, Institute for Agricultural Sciences, ETH Zurich, Lindau, Switzerland
| | - Erick Boy
- Harvest Plus, c/o IFPRI, Washington, DC
| | - Fabian Tay
- Clinical Trials Center, Center for Clinical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Emmanuel Frossard
- Plant Nutrition Laboratory, Institute for Agricultural Sciences, ETH Zurich, Lindau, Switzerland
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Lockyer S, White A, Buttriss JL. Biofortified crops for tackling micronutrient deficiencies - what impact are these having in developing countries and could they be of relevance within Europe? NUTR BULL 2018. [DOI: 10.1111/nbu.12347] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - A. White
- British Nutrition Foundation; London UK
| | | |
Collapse
|
10
|
Montes-Bayón M, Bettmer J. The Use of Stable Isotopic Tracers in Metallomics Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:111-137. [DOI: 10.1007/978-3-319-90143-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Hackl L, Speich C, Zeder C, Sánchez-Ferrer A, Adelmann H, de Pee S, Tay F, Zimmermann MB, Moretti D. Cold Extrusion but Not Coating Affects Iron Bioavailability from Fortified Rice in Young Women and Is Associated with Modifications in Starch Microstructure and Mineral Retention during Cooking. J Nutr 2017; 147:2319-2325. [PMID: 29046406 DOI: 10.3945/jn.117.259085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Rice can be fortified with the use of hot or cold extrusion or coating, but the nutritional qualities of the resulting rice grains have never been directly compared.Objective: Using fortified rice produced by coating or hot or cold extrusion, we compared 1) iron and zinc absorption with the use of stable isotopes, 2) iron and zinc retention during cooking, and 3) starch microstructure.Methods: We conducted 2 studies in young women: in study 1 [n = 19; mean ± SD age: 26.2 ± 3.4 y; body mass index (BMI; in kg/m2): 21.3 ± 1.6], we compared the fractional iron absorption (FAFe) from rice meals containing isotopically labeled ferric prophosphate (57FePP), zinc oxide (ZnO), citric acid, and micronutrients fortified through hot extrusion (HER1) with rice meals fortified through cold extrusion containing 57FePP, ZnO, citric acid, and micronutrients (CER); in study 2 (n = 22; age: 24 ± 4 y; BMI: 21.2 ± 1.3), we compared FAFe and fractional zinc absorption (FAZn) from rice meals fortified through hot extrusion (HER2) compared with rice meals fortified through coating containing 57FePP, ZnO, a citric acid and trisodium cirate mixture (CA/TSC), and micronutrients (COR) relative to rice meals extrinsically fortified with ferrous sulfate (reference). Rice types HER1 and CER contained citric acid, whereas types HER2 and COR contained CA/TSC. We assessed retention during standardized cooking experiments and characterized the rice starch microstructure.Results: FAFe (95% CI) was greater from CER [2.2% (1.4%, 3.4%)] than from HER1 [1.2% (0.7%, 2.0%)] (P = 0.036). There was no difference in FAFe between HER2 [5.1% (3.7%, 7.1%)] and COR [4.0% (2.9%, 5.4%)] (P = 0.14), but FAFe from COR was lower than that from the reference meal [6.6% (4.9%, 9.0%)] (P = 0.003), and the geometric mean FAZn (95% CI) did not differ between HER2 [9.5% (7.9%, 11.6%)] and COR [9.6% (8.7%, 10.7%)] (P = 0.92). Cooking in a rice-to-water ratio of 1:2 resulted in iron and zinc retentions >80%, and cooking in excess water did not affect iron retention from hot-extruded rice but caused iron losses of 25% from CER and COR. Distinct variations in starch microstructure were found in CER and HER1.Conclusions: Iron absorption was 64% higher from CER than from hot-extruded rice, with no difference between COR compared with hot-extruded rice. Lower extrusion temperatures may generate a more readily digestible starch structure, allowing for greater iron release in vivo but lower mineral retention during cooking. This trial was registered at clinicaltrials.gov as NCT02176759.
Collapse
Affiliation(s)
| | | | | | - Antoni Sánchez-Ferrer
- Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Horst Adelmann
- Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Fabian Tay
- Clinical Trials Center, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Dias DM, Costa NMB, Nutti MR, Tako E, Martino HSD. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. Crit Rev Food Sci Nutr 2017; 58:2136-2146. [PMID: 28414527 DOI: 10.1080/10408398.2017.1306484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe). Therefore, assessing iron and zinc bioavailability in biofortified crops is imperative to evaluate the efficacy of breeding programs. This review aimed to investigate the advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. In vitro, animal and isotopic human studies have shown high iron and zinc bioavailability in biofortified staple food crops. Human studies provide direct knowledge regarding the effectiveness of biofortification, however, human studies are time consuming and are more expensive than in vitro and animal studies. Moreover, in vitro studies may be a useful preliminary screening method to identify promising plant cultivars, however, these studies cannot provide data that are directly applicable to humans. None of these methods provides complete information regarding mineral bioavailability, thus, a combination of these methods should be the most appropriate strategy to investigate the effectiveness of zinc and iron biofortification programs.
Collapse
Affiliation(s)
- Desirrê Morais Dias
- a Department of Nutrition and Health , Federal University of Viçosa , Viçosa , Minas Gerais , Brazil
| | - Neuza Maria Brunoro Costa
- b Department of Pharmacy and Nutrition , Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alto Universitario , Alegre , ES , Brazil
| | - Marilia Regini Nutti
- c EMBRAPA Food Technology , Rio de Janeiro, Brazil-Leader of the Brazilian Biofortification Network
| | - Elad Tako
- d USDA/ARS , Robert W. Holley Center for Agriculture and Health, Cornell University , Ithaca , New York , USA
| | | |
Collapse
|
13
|
Talsma EF, Moretti D, Ly SC, Dekkers R, van den Heuvel EG, Fitri A, Boelsma E, Stomph TJ, Zeder C, Melse-Boonstra A. Zinc Absorption from Milk Is Affected by Dilution but Not by Thermal Processing, and Milk Enhances Absorption of Zinc from High-Phytate Rice in Young Dutch Women. J Nutr 2017; 147:1086-1093. [PMID: 28424261 DOI: 10.3945/jn.116.244426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Milk has been suggested to increase zinc absorption. The effect of processing and the ability of milk to enhance zinc absorption from other foods has not been measured directly in humans.Objective: We aimed to assess zinc absorption from 1) milk undergoing various processing and preparatory steps and 2) from intrinsically labeled high-phytate rice consumed with milk or water.Methods: Two randomized crossover studies were conducted in healthy young women [age:18-25 y; body mass index (in kg/m2): 20-25]: 1) a milk study (n = 19) comparing the consumption of 800 mL full-fat ultra-high temperature (UHT) milk [heat-treated milk (HTM)], full-fat UHT milk diluted 1:1 with water [heat-treated milk and water (MW)], water, or unprocessed (raw) milk (UM), each extrinsically labeled with 67Zn, and 2) a rice study (n = 18) comparing the consumption of 90 g intrinsically 67Zn-labeled rice with 600 mL of water [rice and water (RW)] or full-fat UHT milk [rice and milk (RM)]. The fractional absorption of zinc (FAZ) was measured with the double-isotope tracer ratio method. In vitro, we assessed zinc extraction from rice blended into water, UM, or HTM with or without phytate.Results: FAZ from HTM was 25.5% (95% CI: 21.6%, 29.4%) and was not different from UM (27.8%; 95% CI: 24.2%, 31.4%). FAZ from water was higher (72.3%; 95% CI: 68.7%, 75.9%), whereas FAZ from MW was lower (19.7%; 95% CI: 17.5%, 21.9%) than HTM and UM (both P < 0.01). FAZ from RM (20.7%; 95% CI: 18.8%, 22.7%) was significantly higher than from RW (12.8%; 95% CI: 10.8%, 14.6%; P < 0.01). In vitro, HTM and UM showed several orders of magnitude higher extraction of zinc from rice with HTM than from rice with water at various phytate concentrations.Conclusions: Milk enhanced human FAZ from high-phytate rice by 62% compared with water. Diluting milk with water decreases its absorption-enhancing proprieties, whereas UHT processing does not. This trial was registered at the Dutch trial registry as NTR4267 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4267).
Collapse
Affiliation(s)
- Elise F Talsma
- Division of Human Nutrition.,HarvestPlus, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Diego Moretti
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zurich, Switzerland; and
| | | | | | | | | | | | - Tjeerd Jan Stomph
- Center for Crop Systems Analysis, Wageningen University and Research, Wageningen, Netherlands
| | - Christophe Zeder
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zurich, Switzerland; and
| | | |
Collapse
|
14
|
Biofortification of crops with nutrients: factors affecting utilization and storage. Curr Opin Biotechnol 2017; 44:115-123. [DOI: 10.1016/j.copbio.2016.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/07/2023]
|
15
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|