1
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
3
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
4
|
Borkowski P, Borkowska N. Understanding Mental Health Challenges in Cardiovascular Care. Cureus 2024; 16:e54402. [PMID: 38505437 PMCID: PMC10950038 DOI: 10.7759/cureus.54402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
There is a profound link between cardiovascular health and mental well-being. This narrative review shows that heart and mental health are not isolated domains but deeply interconnected, influencing each other. It describes how cardiovascular diseases (CVDs) can cause mental health issues such as stress, anxiety, and depression. It also explains how these mental conditions can, in turn, worsen or raise the risk of CVDs. In addition, it emphasizes the necessity of a holistic approach to healthcare that integrates the treatment of physical symptoms of CVDs with interventions aimed at addressing mental health issues. This approach advocates for comprehensive care strategies that include psychotherapy, pharmacological treatments, lifestyle modifications, and digital health technologies. It also highlights the significant role of family and social support in recovery and discusses barriers to integrating mental health care in cardiovascular treatment. The article argues for a paradigm shift in healthcare towards more inclusive and integrated care models. The authors hope to foster a healthcare environment that prioritizes holistic care by increasing awareness about the connection between heart and mind. The call to action includes policy changes and healthcare system reforms aimed at facilitating the integration of mental health services into cardiovascular care, ultimately leading to improved outcomes for patients with CVDs and associated mental health issues.
Collapse
Affiliation(s)
- Pawel Borkowski
- Internal Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, New York, USA
| | | |
Collapse
|
5
|
Ahmed L, Al-Massri K. New Approaches for Enhancement of the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Diseases. Tissue Eng Regen Med 2022; 19:1129-1146. [PMID: 35867309 DOI: 10.1007/s13770-022-00469-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain a major health concern worldwide, where mesenchymal stem cells (MSCs) therapy gives great promise in their management through their regenerative and paracrine actions. In recent years, many studies have shifted from the use of transplanted stem cells to their secreted exosomes for the management of various CVDs and cardiovascular-related diseases including atherosclerosis, stroke, myocardial infarction, heart failure, peripheral arterial diseases, and pulmonary hypertension. In different models, MSC-derived exosomes have shown beneficial outcomes similar to cell therapy concerning regenerative and neovascular actions in addition to their anti-apoptotic, anti-remodeling, and anti-inflammatory actions. Compared with their parent cells, exosomes have also demonstrated several advantages, including lower immunogenicity and no risk of tumor formation. However, the maintenance of stability and efficacy of exosomes after in vivo transplantation is still a major concern in their clinical application. Recently, new approaches have been developed to enhance their efficacy and stability including their preconditioning before transplantation, use of genetically modified MSC-derived exosomes, or their utilization as a targeted drug delivery system. Herein, we summarized the use of MSC-derived exosomes as therapies in different CVDs in addition to recent advances for the enhancement of their efficacy in these conditions.
Collapse
Affiliation(s)
- Lamiaa Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Khaled Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
6
|
Šafaříková E, Ehlich J, Stříteský S, Vala M, Weiter M, Pacherník J, Kubala L, Víteček J. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation. Int J Mol Sci 2022; 23:ijms23031107. [PMID: 35163031 PMCID: PMC8835127 DOI: 10.3390/ijms23031107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Collapse
Affiliation(s)
- Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jiří Ehlich
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Stanislav Stříteský
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Vala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Weiter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Correspondence: ; Tel./Fax: +420-541-517104; Fax: +420-541-517104
| |
Collapse
|
7
|
Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. Int J Mol Sci 2021; 22:ijms221910885. [PMID: 34639225 PMCID: PMC8509689 DOI: 10.3390/ijms221910885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.
Collapse
|
8
|
Kraus L, Bryan C, Wagner M, Kino T, Gunchenko M, Jalal W, Khan M, Mohsin S. Bmi1 Augments Proliferation and Survival of Cortical Bone-Derived Stem Cells after Injury through Novel Epigenetic Signaling via Histone 3 Regulation. Int J Mol Sci 2021; 22:7813. [PMID: 34360579 PMCID: PMC8345961 DOI: 10.3390/ijms22157813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic heart disease can lead to myocardial infarction (MI), a major cause of morbidity and mortality worldwide. Multiple stem cell types have been safely transferred into failing human hearts, but the overall clinical cardiovascular benefits have been modest. Therefore, there is a dire need to understand the basic biology of stem cells to enhance therapeutic effects. Bmi1 is part of the polycomb repressive complex 1 (PRC1) that is involved in different processes including proliferation, survival and differentiation of stem cells. We isolated cortical bones stem cells (CBSCs) from bone stroma, and they express significantly high levels of Bmi1 compared to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs). Using lentiviral transduction, Bmi1 was knocked down in the CBSCs to determine the effect of loss of Bmi1 on proliferation and survival potential with or without Bmi1 in CBSCs. Our data show that with the loss of Bmi1, there is a decrease in CBSC ability to proliferate and survive during stress. This loss of functionality is attributed to changes in histone modification, specifically histone 3 lysine 27 (H3K27). Without the proper epigenetic regulation, due to the loss of the polycomb protein in CBSCs, there is a significant decrease in cell cycle proteins, including Cyclin B, E2F, and WEE as well as an increase in DNA damage genes, including ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR). In conclusion, in the absence of Bmi1, CBSCs lose their proliferative potential, have increased DNA damage and apoptosis, and more cell cycle arrest due to changes in epigenetic modifications. Consequently, Bmi1 plays a critical role in stem cell proliferation and survival through cell cycle regulation, specifically in the CBSCs. This regulation is associated with the histone modification and regulation of Bmi1, therefore indicating a novel mechanism of Bmi1 and the epigenetic regulation of stem cells.
Collapse
Affiliation(s)
- Lindsay Kraus
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Chris Bryan
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Marcus Wagner
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Tabito Kino
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Melissa Gunchenko
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Wassy Jalal
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| | - Mohsin Khan
- Center for Metabolic Diseases, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (L.K.); (C.B.); (M.W.); (T.K.); (M.G.); (W.J.)
| |
Collapse
|
9
|
Dedkov EI. Large- and Medium-sized Arteries Remaining in Transmural Scar Distal to Permanent Coronary Ligation Undergo Neointimal Hyperplasia and Inward Remodeling. J Histochem Cytochem 2021; 69:321-338. [PMID: 33749360 PMCID: PMC8091545 DOI: 10.1369/00221554211004297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the structural integrity and dynamic changes in chronically occluded residual arteries found in post-myocardial infarction (MI) scar. A transmural MI was induced in middle-aged, male Sprague-Dawley rats by left coronary artery ligation. The rats were euthanized 3 days and 1, 2, 4, 8, and 12 weeks after MI, and their hearts were processed into paraffin for histology, immunohistochemistry, and quantitative morphometry. It has been found that large- and medium-sized arteries were able to survive inside the transmural scars for 12 post-MI weeks. Furthermore, most residual arteries preserved their structural integrity for up to 2 weeks post-MI, but gradually all disused vessels had undergone neointimal hyperplasia and inward remodeling at later time periods. In addition, the replacement of vascular smooth muscle cells in the wall of residual arteries by extracellular matrix components led to a disruption of the vessel integrity and progressive obliteration of their lumen between 4 and 12 post-MI weeks. Taken together, this study demonstrate that residual arteries in post-infarcted region were capable of maintaining their structural integrity, including the patent lumen, during two post-MI weeks, suggesting that during this period they can be used as potential conduits for conceivable reflow of arterial blood within the scarred region of the heart.
Collapse
Affiliation(s)
- Eduard I. Dedkov
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
10
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells 2019; 8:cells8101224. [PMID: 31600901 PMCID: PMC6830113 DOI: 10.3390/cells8101224] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is an effective antineoplastic agent used to treat cancers, but its use is limited as Dox induces adverse cardiotoxic effects. Dox-induced cardiotoxicity (DIC) can lead to heart failure and death. There is no study that investigates whether embryonic stem cell-derived exosomes (ES-Exos) in DIC can attenuate inflammation-induced pyroptosis, pro-inflammatory M1 macrophages, inflammatory cell signaling, and adverse cardiac remodeling. For this purpose, we transplanted ES-Exos and compared with ES-cells (ESCs) to examine pyroptosis, inflammation, cell signaling, adverse cardiac remodeling, and their influence on DIC induced cardiac dysfunction. Therefore, we used C57BL/6J mice ages 10 ± 2 weeks and divided them into four groups (n = 6–8/group): Control, Dox, Dox + ESCs, and Dox + ES-Exos. Our data shows that the Dox treatment significantly increased expression of inflammasome markers (TLR4 and NLRP3), pyroptotic markers (caspase-1, IL1-β, and IL-18), cell signaling proteins (MyD88, p-P38, and p-JNK), pro-inflammatory M1 macrophages, and TNF-α cytokine. This increased pyroptosis, inflammation, and cell signaling proteins were inhibited with ES-Exos or ESCs. Moreover, ES-Exos or ESCs increased M2 macrophages and anti-inflammatory cytokine, IL-10. Additionally, ES-Exos or ESCs treatment inhibited significantly cytoplasmic vacuolization, myofibril loss, hypertrophy, and improved heart function. In conclusion, for the first time we demonstrated that Dox-induced pyroptosis and cardiac remodeling are ameliorated by ES-Exos or ESCs.
Collapse
|
12
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
13
|
Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, Cai B. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles. Front Pharmacol 2018; 9:547. [PMID: 29904347 PMCID: PMC5991072 DOI: 10.3389/fphar.2018.00547] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Wenya Ma
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Nofi C, Bogatyryov Y, Dedkov EI. Preservation of Functional Microvascular Bed Is Vital for Long-Term Survival of Cardiac Myocytes Within Large Transmural Post-Myocardial Infarction Scar. J Histochem Cytochem 2017; 66:99-120. [PMID: 29116876 DOI: 10.1369/0022155417741640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to understand the mechanism of persistent cardiac myocyte (CM) survival in myocardial infarction (MI) scars. A transmural MI was induced in 12-month-old Sprague-Dawley rats by permanent coronary artery ligation. The hearts were collected 3 days, 1, 2, 4, 8, and 12 weeks after MI and evaluated with histology, immunohistochemistry, and quantitative morphometry. Vasculature patency was assessed in 4-, 8-, and 12-week-old scars by infusion of 15-micron microspheres into the left ventricle before euthanasia. The infarcted/scarred area has a small continually retained population of surviving CMs in subendocardial and subepicardial regions. Surprisingly, whereas the transverse area of subepicardial CMs remained relatively preserved or even enlarged over 12 post-MI weeks, subendocardial CMs underwent progressive atrophy. Nevertheless, the fractional volume of viable CMs remained comparable in mature scars 4, 8, and 12 weeks after MI (3.6 ± 0.4%, 3.4 ± 0.5%, and 2.5 ± 0.3%, respectively). Despite the opposite dynamics of changes in size, CMs of both regions displayed sarcomeres and gap junctions. Most importantly, surviving CMs were always accompanied by patent microvessels linked to a venous network composed of Thebesian veins, intramural sinusoids, and subepicardial veins. Our findings reveal that long-term survival of CMs in transmural post-MI scars is sustained by a local microcirculatory bed.
Collapse
Affiliation(s)
- Colleen Nofi
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Yevgen Bogatyryov
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Eduard I Dedkov
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
15
|
Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert AD, Woo YJ, Rulifson E, Yang PC. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circ Res 2017; 121:e22-e36. [PMID: 28743804 DOI: 10.1161/circresaha.117.310803] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
Abstract
RATIONALE Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.
Collapse
Affiliation(s)
- Atsushi Tachibana
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Michelle R Santoso
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Praveen Shukla
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Lei Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mihoko Bennett
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Andrew B Goldstone
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mouer Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Masahiro Fukushi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Antje D Ebert
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Y Joseph Woo
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.).
| |
Collapse
|
16
|
Edlinger C, Schreiber C, Wernly B, Anker A, Ruzicka K, Jung C, Hoppe UC, Lichtenauer M. Stem Cell Therapy for Myocardial Infarction 2001-2013 Revisited. Stem Cell Rev Rep 2016; 11:743-51. [PMID: 26105665 DOI: 10.1007/s12015-015-9602-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stem cell therapy for ischemic heart disease was an emerging concept in the early 2000s. First hopes were largely overshadowed by rather inconsistent results in human trials conducted in the middle of the decade. We aimed at investigating how the field of stem cell research expanded worldwide over the years using scientometric methods. We performed a PubMed inquiry and screened a total of 2609 publications dealing with stem cell therapy for myocardial infarction in the years 2001-2013. Density equalizing maps were used to visualize important centres of stem cell research worldwide. This systematic bibliometric study revealed an increasing research interest in the field of stem cell research in the context of ischemic heart disease over the last decade. Though some of the large human trials failed to show significant effects of stem cell therapy, especially basic science represents an ever growing field that evolved promising new concepts over the last couple of years. The scientific principle of protective paracrine mediators released from transplanted stem cells seems to bear great potential for future cell-free therapeutic use. However, further mechanistic insights are needed before transition from bench to bedside should be attempted, taking the lessons learned from previous studies into account.
Collapse
Affiliation(s)
- Christoph Edlinger
- University Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lo CY, Weil BR, Palka BA, Momeni A, Canty JM, Neelamegham S. Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model. Biomaterials 2015; 74:19-30. [PMID: 26433489 DOI: 10.1016/j.biomaterials.2015.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7(+)] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7(+)] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7(+)] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.
Collapse
Affiliation(s)
- Chi Y Lo
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Department of Anesthesiology, The State University of New York, 252 Farber Hall, Buffalo, NY 14214, USA; Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Brian R Weil
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Beth A Palka
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Arezoo Momeni
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - John M Canty
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA; VA Western New York Health Care System, Buffalo, NY 14215, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; The NY State Center for Excellence in Bioinformatics and Life Sciences, The State University of New York, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
18
|
Abstract
Telocytes, a novel type of interstitial cells with very long and thin prolongations, have been identified in many organs in mammals. At present, the ultrastructural, immunocytochemical and electrophysiological properties of telocytes in multiple organs have been understood. However, telocytes in spleen, especially their roles in spleen have not been reported. The aim of this study was to investigate the ultrastructure, distribution and immunophenotypes of splenic telocytes. Rat spleen was harvested for the ultrastructure analysis by transmission electron microscopy (TEM). The primary culture of telocytes was performed after combined enzymatic digestion. The characteristic morphology was analyzed by a scanning electron microscopy (SEM). It was shown that telocytes displayed a piriform/spindle/triangular shape with long and slender telopods and extremely long prolongation contracting with surrounding cells in the spleen. Their dynamic profiles of cytoplasmic separation were recorded by the Live Cell Imaging System. The length of telopods was mostly distributing in 20–30 μm, in accordance with normal distribution. Most telocytes had three or two telopods (28.71% and 22.58% respectively). Immunostaining indicated that these cells were positive for vimentin, CD34, nanog and sca-1, but negative for c-kit. These data prove the existence of telocytes in the spleen, which may serve as the experimental base for exploring their roles in the spleen.
Collapse
Affiliation(s)
- Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
- Department of Human Anatomy and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Cixia Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Li Gan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - He Li
- Department of Human Anatomy and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
- * E-mail:
| |
Collapse
|
19
|
Tseng CCS, Ramjankhan FZ, de Jonge N, Chamuleau SAJ. Advanced Strategies for End-Stage Heart Failure: Combining Regenerative Approaches with LVAD, a New Horizon? Front Surg 2015; 2:10. [PMID: 25905105 PMCID: PMC4387859 DOI: 10.3389/fsurg.2015.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/07/2015] [Indexed: 12/15/2022] Open
Abstract
Despite the improved treatment of cardiovascular diseases, the population with end-stage heart failure (HF) is progressively growing. The scarcity of the gold standard therapy, heart transplantation, demands novel therapeutic approaches. For patients awaiting transplantation, ventricular-assist devices have been of great benefit on survival. To allow explantation of the assist device and obviate heart transplantation, sufficient and durable myocardial recovery is necessary. However, explant rates so far are low. Combining mechanical circulatory support with regenerative therapies such as cell (-based) therapy and biomaterials might give rise to improved long-term results. Although synergistic effects are suggested with mechanical support and stem cell therapy, evidence in both preclinical and clinical setting is lacking. This review focuses on advanced and innovative strategies for the treatment of end-stage HF and furthermore appraises clinical experience with combined strategies.
Collapse
Affiliation(s)
- Cheyenne C S Tseng
- Department of Cardiology, Division Heart and Lungs, University Medical Center , Utrecht , Netherlands ; Interuniversity Cardiology Institute of the Netherlands , Utrecht , Netherlands
| | - Faiz Z Ramjankhan
- Department of Cardio-thoracic Surgery, Division Heart and Lungs, University Medical Center , Utrecht , Netherlands
| | - Nicolaas de Jonge
- Department of Cardiology, Division Heart and Lungs, University Medical Center , Utrecht , Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Division Heart and Lungs, University Medical Center , Utrecht , Netherlands
| |
Collapse
|
20
|
Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 2014; 19:31-45. [PMID: 25545142 PMCID: PMC4288347 DOI: 10.1111/jcmm.12509] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).
Collapse
Affiliation(s)
- Laurentiu M Popescu
- Department of Cellular and Molecular Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania; Division of Advanced Studies, 'Victor Babeş' National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|