1
|
Zhou D, Zhang Y, Chen W, Jiang J, Chen Y, Zhou X, Tang Q. Enhanced ultrasound-guided versus non-enhanced ultrasound-guided percutaneous needle biopsy in tissue cellularity of lung malignancies: a propensity score matched study. Quant Imaging Med Surg 2022; 12:5056-5067. [PMID: 36330190 PMCID: PMC9622440 DOI: 10.21037/qims-22-119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2023]
Abstract
BACKGROUND Though ultrasound-guided percutaneous lung needle biopsy (US-PLNB) is a first-line small biopsy method for peripheral lung lesions, quality of cellularity in specimens obtained via US-PLNB is uncertain. This study investigated the accuracy, sensitivity, and cellularity of US-PLNB. It examined the ability of contrast-enhanced ultrasound (CEUS) to improve the effectiveness of US-PLNB. METHODS We retrospectively analyzed all data of patients with subpleural lung lesions who underwent US-PLNB. The cellularity of US-PLNB from malignant lesions included the tumor cell number and proportion. The definition of high-quality cellularity (HQC) was concurrently achieving a tumor cell number ≥400 and a proportion ≥20%. The sensitivity, the actual numbers of tumor cell number/proportion, and the rate of HQC were calculated and compared between the CEUS and non-enhanced US groups after propensity score matching (PSM) with subgroup analyses by lesion size (small lesion ≤30 mm and large lesion >30 mm). RESULTS A total of 345 patients undergoing 345 US-PLNBs were evaluated, with 3.7±1.1 of punctures on average. There were 201 malignant and 144 benign lesions with a mean size of 43.8±24.1 mm. Among the 201 malignant lesions, 124 cases underwent CEUS and 77 underwent non-enhanced US. The quantity of tumor cells, the proportion of tumor cells, and the rate of HQC in 201 cases of US-PLNB from malignant lesions were 2,862.1±2,288.0, 44.6%±24.5%, and 82.1% [95% confidence interval (CI): 76.6% to 87.1%], respectively. The quantity of tumor cells, the proportion of tumor cells, and rate of HQC were significantly higher in the CEUS group than that in the non-enhanced US group, both in the analysis of overall malignant lesions and in large malignant lesions (all P<0.05). CONCLUSIONS The US-PLNB has high sensitivity and thereby obtains HQC samples for subpleural lung malignant lesions. The CEUS helps improve the rate of HQC and tissue cellularity of lung malignancies.
Collapse
Affiliation(s)
- Dazhi Zhou
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxin Zhang
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wuxi Chen
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juhong Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanbin Chen
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinghua Zhou
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Tang
- Department of Ultrasound, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Simons MJHG, Retèl VP, Ramaekers BLT, Butter R, Mankor JM, Paats MS, Aerts JGJV, Mfumbilwa ZA, Roepman P, Coupé VMH, Uyl-de Groot CA, van Harten WH, Joore MA. Early Cost Effectiveness of Whole-Genome Sequencing as a Clinical Diagnostic Test for Patients with Inoperable Stage IIIB,C/IV Non-squamous Non-small-Cell Lung Cancer. PHARMACOECONOMICS 2021; 39:1429-1442. [PMID: 34405371 PMCID: PMC8599348 DOI: 10.1007/s40273-021-01073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced non-small-cell lung cancer (NSCLC) harbours many genetic aberrations that can be targeted with systemic treatments. Whole-genome sequencing (WGS) can simultaneously detect these (and possibly new) molecular targets. However, the exact added clinical value of WGS is unknown. OBJECTIVE The objective of this study was to determine the early cost effectiveness of using WGS in diagnostic strategies compared with currently used molecular diagnostics for patients with inoperable stage IIIB,C/IV non-squamous NSCLC from a Dutch healthcare perspective. METHODS A decision tree represented the diagnostic pathway, and a cohort state transition model represented disease progression. Three diagnostic strategies were modelled: standard of care (SoC) alone, WGS as a diagnostic test, and SoC followed by WGS. Treatment effectiveness was based on a systematic review. Probabilistic cost-effectiveness analyses were performed, and threshold analyses (using €80,000 per quality-adjusted life-year [QALY]) was used to explore the early cost effectiveness of WGS. RESULTS WGS as a diagnostic test resulted in more QALYs (0.002) and costs (€1534 [incremental net monetary benefit -€1349]), and SoC followed by WGS resulted in fewer QALYs (-0.002) and more costs (€1059 [-€1194]) compared with SoC alone. WGS as a diagnostic test was only cost effective if it was priced at €2000 per patient and identified 2.7% more actionable patients than SoC alone. Treating these additional identified patients with new treatments costing >€4069 per month decreased the probability of cost effectiveness. CONCLUSIONS Our analysis suggests that providing WGS as a diagnostic test is cost effective compared with SoC followed by WGS and SoC alone if costs for WGS decrease and additional patients with actionable targets are identified. This cost-effectiveness model can be used to incorporate new findings iteratively and to support ongoing decision making regarding the use of WGS in this rapidly evolving field.
Collapse
Affiliation(s)
- Martijn J H G Simons
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- Maastricht University, Care and Public Health Research Institute (CAPHRI), Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Valesca P Retèl
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Hallenweg 5, 7522 NH, Enschede, The Netherlands
| | - Bram L T Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- Maastricht University, Care and Public Health Research Institute (CAPHRI), Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Rogier Butter
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joanne M Mankor
- Department of Pulmonary Medicine, Erasmus Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marthe S Paats
- Department of Pulmonary Medicine, Erasmus Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Zakile A Mfumbilwa
- Department of Epidemiology and Data Science, Amsterdam University Medical Center-Location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Amsterdam University Medical Center-Location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Carin A Uyl-de Groot
- Erasmus School of Health Policy and Management/Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Wim H van Harten
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Hallenweg 5, 7522 NH, Enschede, The Netherlands
| | - Manuela A Joore
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Maastricht University, Care and Public Health Research Institute (CAPHRI), Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Wadowska K, Bil-Lula I, Trembecki Ł, Śliwińska-Mossoń M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int J Mol Sci 2020; 21:E4569. [PMID: 32604993 PMCID: PMC7369725 DOI: 10.3390/ijms21134569] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the most often diagnosed cancer in the world and the most frequent cause of cancer death. The prognosis for lung cancer is relatively poor and 75% of patients are diagnosed at its advanced stage. The currently used diagnostic tools are not sensitive enough and do not enable diagnosis at the early stage of the disease. Therefore, searching for new methods of early and accurate diagnosis of lung cancer is crucial for its effective treatment. Lung cancer is the result of multistage carcinogenesis with gradually increasing genetic and epigenetic changes. Screening for the characteristic genetic markers could enable the diagnosis of lung cancer at its early stage. The aim of this review was the summarization of both the preclinical and clinical approaches in the genetic diagnostics of lung cancer. The advancement of molecular strategies and analytic platforms makes it possible to analyze the genome changes leading to cancer development-i.e., the potential biomarkers of lung cancer. In the reviewed studies, the diagnostic values of microsatellite changes, DNA hypermethylation, and p53 and KRAS gene mutations, as well as microRNAs expression, have been analyzed as potential genetic markers. It seems that microRNAs and their expression profiles have the greatest diagnostic potential value in lung cancer diagnosis, but their quantification requires standardization.
Collapse
Affiliation(s)
- Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (I.B.-L.)
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (I.B.-L.)
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (I.B.-L.)
| |
Collapse
|
4
|
Dufraing K, van Krieken JH, De Hertogh G, Hoefler G, Oniscu A, Kuhlmann TP, Weichert W, Marchiò C, Ristimäki A, Ryška A, Scoazec JY, Dequeker E. Neoplastic cell percentage estimation in tissue samples for molecular oncology: recommendations from a modified Delphi study. Histopathology 2019; 75:312-319. [PMID: 31054167 PMCID: PMC6851675 DOI: 10.1111/his.13891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
Abstract
AIMS Results from external quality assessment revealed considerable variation in neoplastic cell percentages (NCP) estimation in samples for biomarker testing. As molecular biology tests require a minimal NCP, overestimations may lead to false negative test results. We aimed to develop recommendations to improve the NCP determination in a prototypical entity - colorectal carcinoma - that can be adapted for other cancer types. METHODS AND RESULTS A modified Delphi study was conducted to reach consensus by 10 pathologists from 10 countries with experience in determining the NCP for colorectal adenocarcinoma. This study included two online surveys and a decision-making meeting. Consensus was defined a priori as an agreement of > 80%. All pathologists completed both surveys. Consensus was reached for 8 out of 19 and 2 out of 13 questions in the first and second surveys, respectively. Remaining issues were resolved during the meeting. Twenty-four recommendations were formulated. Major recommendations resulted as follows: only pathologists should conduct the morphological evaluation; nevertheless molecular biologists/technicians may estimate the NCP, if specific training has been performed and a pathologist is available for feedback. The estimation should be determined in the area with the highest density of viable neoplastic cells and lowest density of inflammatory cells. Other recommendations concerned: the determination protocol itself, needs for micro- and macro-dissection, reporting and interpreting, referral practices and applicability to other cancer types. CONCLUSION We believe these recommendations may lead to more accurate NCP estimates, ensuring the correct interpretation of test results, and might help in validating digital algorithms in the future.
Collapse
Affiliation(s)
- Kelly Dufraing
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Gert De Hertogh
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Anca Oniscu
- Department of Molecular Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tine P Kuhlmann
- Department of Pathology, Herlev Hospital, Copenhagen, Denmark
| | - Wilko Weichert
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin and Pathology Unit, Torino, Italy.,FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Ari Ristimäki
- Department of Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital, Hradec Kralove, Czech Republic
| | | | - Elisabeth Dequeker
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Koinis F, Kotsakis A, Georgoulias V. Small cell lung cancer (SCLC): no treatment advances in recent years. Transl Lung Cancer Res 2016; 5:39-50. [PMID: 26958492 PMCID: PMC4758968 DOI: 10.3978/j.issn.2218-6751.2016.01.03] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy with a distinct natural history and dismal prognosis. Given its predisposition for early dissemination, patients are commonly diagnosed with metastatic disease and chemotherapy is regarded as the cornerstone of approved treatment strategies. However, over the last 30 years there has been a distinct paucity of significant breakthroughs in SCLC therapy. Thus, SCLC is characterized as a recalcitrant neoplasm with limited therapeutic options. By employing well-established research approaches, proven to be efficacious in non-small cell lung cancer (NSCLC), a growing amount of data has shed light on the molecular biology of SCLC and enhanced our knowledge of the "drivers" of tumor cell survival and proliferation. New therapeutic targets have emerged, but no significant improvement in patients' survival has been demonstrated thus far. In a sense, the more we know, the more we fail. Nowadays this is starting to change and methodical research efforts are underway. It is anticipated that the next decade will see a revolution in the treatment of SCLC patients with the application of effective precision medicine and immunotherapy strategies.
Collapse
|