1
|
Scully DM, Larina IV. Mouse embryo phenotyping with optical coherence tomography. Front Cell Dev Biol 2022; 10:1000237. [PMID: 36158219 PMCID: PMC9500480 DOI: 10.3389/fcell.2022.1000237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
With the explosion of gene editing tools in recent years, there has been a much greater demand for mouse embryo phenotyping, and traditional methods such as histology and histochemistry experienced a methodological renaissance as they became the principal tools for phenotyping. However, it is important to explore alternative phenotyping options to maximize time and resources and implement volumetric structural analysis for enhanced investigation of phenotypes. Cardiovascular phenotyping, in particular, is important to perform in vivo due to the dramatic structural and functional changes that occur in heart development over relatively short periods of time. Optical coherence tomography (OCT) is one of the most exciting advanced imaging techniques emerging within the field of developmental biology, and this review provides a summary of how it is currently being implemented in mouse embryo investigations and phenotyping. This review aims to provide an understanding of the approaches used in optical coherence tomography and how they can be applied in embryology and developmental biology, with the overall aim of bridging the gap between biology and technology.
Collapse
|
2
|
Lopez AL, Wang S, Larina IV. Embryonic Mouse Cardiodynamic OCT Imaging. J Cardiovasc Dev Dis 2020; 7:E42. [PMID: 33020375 PMCID: PMC7712379 DOI: 10.3390/jcdd7040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The embryonic heart is an active and developing organ. Genetic studies in mouse models have generated great insight into normal heart development and congenital heart defects, and suggest mechanical forces such as heart contraction and blood flow to be implicated in cardiogenesis and disease. To explore this relationship and investigate the interplay between biomechanical forces and cardiac development, live dynamic cardiac imaging is essential. Cardiodynamic imaging with optical coherence tomography (OCT) is proving to be a unique approach to functional analysis of the embryonic mouse heart. Its compatibility with live culture systems, reagent-free contrast, cellular level resolution, and millimeter scale imaging depth make it capable of imaging the heart volumetrically and providing spatially resolved information on heart wall dynamics and blood flow. Here, we review the progress made in mouse embryonic cardiodynamic imaging with OCT, highlighting leaps in technology to overcome limitations in resolution and acquisition speed. We describe state-of-the-art functional OCT methods such as Doppler OCT and OCT angiography for blood flow imaging and quantification in the beating heart. As OCT is a continuously developing technology, we provide insight into the future developments of this area, toward the investigation of normal cardiogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA;
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
4
|
Lopez AL, Larina IV. Second harmonic generation microscopy of early embryonic mouse hearts. BIOMEDICAL OPTICS EXPRESS 2019; 10:2898-2908. [PMID: 31259060 PMCID: PMC6583332 DOI: 10.1364/boe.10.002898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 05/15/2023]
Abstract
The understanding of biomechanical regulation of early heart development in genetic mouse models can contribute to improved management of congenital cardiovascular defects and embryonic cardiac failures in humans. The extracellular matrix (ECM), and particularly fibrillar collagen, are central to heart biomechanics, regulating tissue strength, elasticity and contractility. Here, we explore second harmonic generation (SHG) microscopy for visualization of establishing cardiac fibers such as collagen in mouse embryos through the earliest stages of development. We detected significant increase in SHG positive fibrillar content and organization over the first 24 hours after initiation of contractions. SHG microscopy revealed regions of higher fibrillar organization in regions of higher contractility and reduced fibrillar content and organization in mouse Mlc2a model with cardiac contractility defect, suggesting regulatory role of mechanical load in production and organization of structural fibers from the earliest stages. Simultaneous volumetric SHG and two-photon excitation microscopy of vital fluorescent reporter EGFP in the heart was demonstrated. In summary, these data set SHG microscopy as a valuable non-bias imaging tool to investigate mouse embryonic cardiogenesis and biomechanics.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
5
|
Polat A, Hassan S, Yildirim I, Oliver LE, Mostafaei M, Kumar S, Maharjan S, Bourguet L, Cao X, Ying G, Eyvazi Hesar M, Zhang YS. A miniaturized optical tomography platform for volumetric imaging of engineered living systems. LAB ON A CHIP 2019; 19:550-561. [PMID: 30657153 PMCID: PMC6391727 DOI: 10.1039/c8lc01190g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Volumetric optical microscopy approaches that enable acquisition of three-dimensional (3D) information from a biological sample are attractive for numerous non-invasive imaging applications. The unprecedented structural details that these techniques provide have helped in our understanding of different aspects of architecture of cells, tissues, and organ systems as they occur in their natural states. Nonetheless, the instrumentation for most of these techniques is sophisticated, bulky, and costly, and is less affordable to most laboratory settings. Several miniature imagers based on webcams or low-cost sensors featuring easy assembly have been reported, for in situ imaging of biological structures at low costs. However, they have not been able to achieve the ability of 3D imaging throughout the entire volumes for spatiotemporal analyses of the structural changes in these specimens. Here we present a miniaturized optical tomography (mini-Opto) platform for low-cost, volumetric characterization of engineered living systems through hardware optimizations as well as applications of an optimized algebraic algorithm for image reconstruction.
Collapse
Affiliation(s)
- Adem Polat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grishina OA, Wang S, Larina IV. Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart. JOURNAL OF BIOPHOTONICS 2017; 10:735-743. [PMID: 28417585 PMCID: PMC5565627 DOI: 10.1002/jbio.201600293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 05/19/2023]
Abstract
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo.
Collapse
Affiliation(s)
| | | | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| |
Collapse
|
7
|
Wang S, Garcia MD, Lopez AL, Overbeek PA, Larin KV, Larina IV. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:407-419. [PMID: 28101427 PMCID: PMC5231309 DOI: 10.1364/boe.8.000407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Paul A. Overbeek
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
8
|
Singh M, Raghunathan R, Piazza V, Davis-Loiacono AM, Cable A, Vedakkan TJ, Janecek T, Frazier MV, Nair A, Wu C, Larina IV, Dickinson ME, Larin KV. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2295-310. [PMID: 27375945 PMCID: PMC4918583 DOI: 10.1364/boe.7.002295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/17/2023]
Abstract
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Victor Piazza
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | | | - Alex Cable
- Thorlabs, Inc., 56 Sparta Ave., Newton, 07860, USA
| | - Tegy J. Vedakkan
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Trevor Janecek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Michael V. Frazier
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
- Department of Electrical Engineering, Samara National Research University, Samara, 34 Moskovskoye sh., 443086, Russia
| |
Collapse
|
9
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|
10
|
Dynamic Contrast-Enhanced CT Characterization of Xp11.2 Translocation/TFE3 Gene Fusions versus Papillary Renal Cell Carcinomas. BIOMED RESEARCH INTERNATIONAL 2015; 2015:298679. [PMID: 26636097 PMCID: PMC4655261 DOI: 10.1155/2015/298679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare the differences of CT characteristics between renal cell carcinomas (RCCs) associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 RCCs) and papillary cell renal cell carcinomas (PRCCs). METHODS CT images and clinical records of 64 patients (25 Xp11.2 RCCs, 15 type 1 and 24 type 2 PRCCs) were analyzed and compared retrospectively. RESULTS Xp11.2 RCC more frequently affected young (30.7 ± 8.7 years) women (16/25, 64%) with gross hematuria (12/25, 48%), while PRCC more frequently involved middle-aged (54.8 ± 11.1 years) men (28/39, 71.8%) asymptomatically. Xp11.2 RCC tended to be heterogeneous density with some showing circular calcification. Lesion sizes of Xp11.2 RCC (5.4 ± 2.2 cm) and type 2 PRCC (5.7 ± 2.5 cm) were significantly larger than that of type 1 PRCC (3.8 ± 1.8 cm). Xp11.2 RCC contained more cystic components (22/25, 88%) than type 1 PRCC (all solid) and type 2 PRCC (9/24, 36.0%). Type 1 PRCC (13/15, 86.7%) and Xp11.2 RCC (21/25, 84.0%) showed more clear boundary than type 2 PRCC (12/24, 50.0%). CONCLUSION CT features including diameter, boundary, attenuation, nature, and circular calcification of the tumor, combined with demographic information and symptoms, may be useful to differentiate Xp11.2 RCC from different subtypes of PRCC.
Collapse
|
11
|
Lopez AL, Wang S, Larin KV, Overbeek PA, Larina IV. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090501. [PMID: 26385422 PMCID: PMC4681392 DOI: 10.1117/1.jbo.20.9.090501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| | - Kirill V. Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston 77204, United States
- Samara State Aerospace University, 34 Moskovskoye Shosse, Samara 443086, Russia
| | - Paul A. Overbeek
- Baylor College of Medicine, Department of Molecular & Cellular Biology, One Baylor Plaza, Houston 77030, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| |
Collapse
|