1
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Pore AA, Kamyabi N, Bithi SS, Ahmmed SM, Vanapalli SA. Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells. Cell Mol Bioeng 2023; 16:443-457. [PMID: 38099214 PMCID: PMC10716102 DOI: 10.1007/s12195-023-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/10/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cell proliferation represents a major hallmark of cancer biology, and manifests itself in the assessment of tumor growth, drug resistance and metastasis. Tracking cell proliferation or cell fate at the single-cell level can reveal phenotypic heterogeneity. However, characterization of cell proliferation is typically done in bulk assays which does not inform on cells that can proliferate under given environmental perturbations. Thus, there is a need for single-cell approaches that allow longitudinal tracking of the fate of a large number of individual cells to reveal diverse phenotypes. Methods We fabricated a new microfluidic architecture for high efficiency capture of single tumor cells, with the capacity to monitor cell divisions across multiple daughter cells. This single-cell proliferation (SCP) device enabled the quantification of the fate of more than 1000 individual cancer cells longitudinally, allowing comprehensive profiling of the phenotypic heterogeneity that would be otherwise masked in standard cell proliferation assays. We characterized the efficiency of single cell capture and demonstrated the utility of the SCP device by exposing MCF-7 breast tumor cells to different doses of the chemotherapeutic agent doxorubicin. Results The single cell trapping efficiency of the SCP device was found to be ~ 85%. At the low doses of doxorubicin (0.01 µM, 0.001 µM, 0.0001 µM), we observed that 50-80% of the drug-treated cells had undergone proliferation, and less than 10% of the cells do not proliferate. Additionally, we demonstrated the potential of the SCP device in circulating tumor cell applications where minimizing target cell loss is critical. We showed selective capture of breast tumor cells from a binary mixture of cells (tumor cells and white blood cells) that was isolated from blood processing. We successfully characterized the proliferation statistics of these captured cells despite their extremely low counts in the original binary suspension. Conclusions The SCP device has significant potential for cancer research with the ability to quantify proliferation statistics of individual tumor cells, opening new avenues of investigation ranging from evaluating drug resistance of anti-cancer compounds to monitoring the replicative potential of patient-derived cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00773-z.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| | - Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: 10x Genomics, Pleasanton, CA USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: College of Engineering, West Texas A&M University, Canyon, TX USA
| | - Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: Manufacturing Integration Engineer, Intel Corporation, Hillsboro, OR USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| |
Collapse
|
3
|
Chen J, Xie T, Yang J, Lin X, Huang L, Su S, Deng J. Feasibility study of expressing epcam + /vimentin + CTC in prostate cancer diagnosis. J Cancer Res Clin Oncol 2023; 149:8699-8709. [PMID: 37127827 DOI: 10.1007/s00432-023-04819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Prostate cancer (PCa) is one of the most common malignancies in men and one of the leading causes of cancer-related deaths; circulating tumor cells (CTC) are malignant cells that have broken off from original tumor or metastatic sites and extravasated into the blood vessels either naturally or maybe as a consequence of surgical procedures. This study aims to explore the feasibility of liquid biopsy technique to diagnose prostate cancer. METHOD We constructed an assay platform integrating magnetic separation and fluorescence in situ hybridization (FISH) to effectively capture prostate cancer CTCs and evaluate the distribution between healthy volunteers and prostate cancer patients, respectively. RESULTS There was a significant difference in the number of CTCs between the healthy population and prostate cancer patients (P < 0.001). The results of the study showed that the CTCs capture identification system has good sensitivity and specificity in identifying prostate cancer patients. CONCLUSION The CTCs test allows us to accurately identify patients who are at high risk for prostate cancer, allowing for early intervention and treating patients effectively.
Collapse
Affiliation(s)
- Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Tao Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Jing Yang
- Department of Pathology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xuehua Lin
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| | - Shiya Su
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| |
Collapse
|
4
|
Mangini M, Ferrara MA, Zito G, Managò S, Luini A, De Luca AC, Coppola G. Cancer metabolic features allow discrimination of tumor from white blood cells by label-free multimodal optical imaging. Front Bioeng Biotechnol 2023; 11:1057216. [PMID: 36815877 PMCID: PMC9928723 DOI: 10.3389/fbioe.2023.1057216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have penetrated the circulatory system preserving tumor properties and heterogeneity. Detection and characterization of CTCs has high potential clinical values and many technologies have been developed for CTC identification. These approaches remain challenged by the extraordinary rarity of CTCs and the difficulty of efficiently distinguishing cancer from the much larger number of white blood cells in the bloodstream. Consequently, there is still a need for efficient and rapid methods to capture the broad spectrum of tumor cells circulating in the blood. Herein, we exploit the peculiarities of cancer metabolism for discriminating cancer from WBCs. Using deuterated glucose and Raman microscopy we show that a) the known ability of cancer cells to take up glucose at greatly increased rates compared to non-cancer cells results in the lipid generation and accumulation into lipid droplets and, b) by contrast, leukocytes do not appear to generate visible LDs. The difference in LD abundance is such that it provides a reliable parameter for distinguishing cancer from blood cells. For LD sensitive detections in a cell at rates suitable for screening purposes, we test a polarization-sensitive digital holographic imaging (PSDHI) technique that detects the birefringent properties of the LDs. By using polarization-sensitive digital holographic imaging, cancer cells (prostate cancer, PC3 and hepatocarcinoma cells, HepG2) can be rapidly discriminated from leukocytes with reliability close to 100%. The combined Raman and PSDHI microscopy platform lays the foundations for the future development of a new label-free, simple and universally applicable cancer cells' isolation method.
Collapse
Affiliation(s)
- Maria Mangini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Maria Antonietta Ferrara
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Gianluigi Zito
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Alberto Luini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Giuseppe Coppola
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| |
Collapse
|
5
|
Mihalcioiu C, Li J, Badescu D, Camirand A, Kremer N, Bertos N, Omeroglu A, Sebag M, Di Battista J, Park M, Ragoussis J, Kremer R. Improved platform for breast cancer circulating tumor cell enrichment and characterization with next-generation sequencing technology. Am J Cancer Res 2023; 13:25-44. [PMID: 36777514 PMCID: PMC9906071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 02/14/2023] Open
Abstract
Circulating tumor cells (CTCs) represent cells shed from the primary tumor or metastatic sites and can be used to monitor treatment response and tumor recurrence. However, CTCs circulate in extremely low numbers making in-depth analysis beyond simple enumeration challenging when collected from peripheral blood. Furthermore, tumor heterogeneity, a hallmark of many tumors, especially breast cancer, further complicates CTC characterization. To overcome this limitation, we developed a platform based on the large-scale isolation of CTCs by apheresis, allowing us to collect CTCs in large numbers, which were preserved live in liquid nitrogen for further characterization. Flow cytometry followed by cell sorting (FACS) was performed using a combination of antibodies directed against cell surface markers of white blood cells (CD45) and epithelial tumor cells (CK8). Analysis of subpopulations CD45+/- and CK8+/- by bulk RNA sequencing (RNAseq) and the CD45-/CK8 positive population by single-cell RNAseq was performed. The CD45- population was enriched using CD45 magnetic beads separation and examined by IHC for pan-cytokeratin and immunofluorescence (IF) for specific markers, including the elusive circulating cancer stem cells (CSCs). CSC-rich mammospheres were grown in vitro for further analysis and treated to examine their response to chemotherapeutic agents. Finally, mammospheres were transplanted into the mammary fat pad and bone of immunodeficient mice to examine tumor growth in vivo. This platform enables the detection and collection of CTCs in early and late-stage breast cancer patients of every subtype. Markers including CD44/24, ALDH1 and CXCR4 were identified by IF and showed high expression following mammosphere culture, which responded predictably to chemotherapeutic agents. Mammospheres were also transplanted into nude mice and induced tumors in the mammary fat pad and bone following intra-tibial transplantation. Finally, bulk RNA analysis of the FACS isolated CD45+/- and CK8+/- cells showed a clear separation of CD45- away from CD45+ populations. Single-cell RNAseq of the FACS isolated CD45-/CK8+ cells showed the presence of 4-5 clusters, confirming the high degree of heterogeneity of CTCs. Our platform for large-scale isolation of CTCs using apheresis is suitable for an in-depth analysis of the cancer phenotype and may eventually allow evaluation in real-time of the disease process to optimize cancer regimens.
Collapse
Affiliation(s)
- Catalin Mihalcioiu
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Jiarong Li
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Dunarel Badescu
- McGill University Génome Centre, Department of Human GeneticsMontréal, Québec, Canada
| | - Anne Camirand
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Nathaniel Kremer
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Nicholas Bertos
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Michael Sebag
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - John Di Battista
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| | - Morag Park
- Breast Cancer Functional Genomics Group, Rosalind and Morris Goodman Cancer Centre, McGill UniversityMontréal, Québec, Canada
| | - Jiannis Ragoussis
- McGill University Génome Centre, Department of Human GeneticsMontréal, Québec, Canada
| | - Richard Kremer
- Department of Medicine, McGill University Health CentreGlen Site, 1001 Boul. Décarie, Mail Drop EM1.3229, Montréal, Québec, H4A 3J1, Canada
| |
Collapse
|
6
|
Pace J, Ivich F, Marple E, Niedre M. Near-infrared diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220101GR. [PMID: 36114606 PMCID: PMC9478904 DOI: 10.1117/1.jbo.27.9.097002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Significance Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR fluorescence molecular contrast agents. Aim We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow phantoms in vitro and in mice in vivo. Approach We developed an improved optical fiber probe design for efficient collection of fluorescence from individual circulating cells and efficient rejection of instrument autofluorescence. We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells. Results NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower autofluorescence and false-alarm rates than blue-green DiFC. Conclusions NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the way for future use of NIR-DiFC in humans.
Collapse
Affiliation(s)
- Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Eric Marple
- EmVision LLC, Loxahatchee, Florida, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Clinical Implication of Circulating Tumor Cells Expressing Epithelial Mesenchymal Transition (EMT) and Cancer Stem Cell (CSC) Markers and Their Perspective in HCC: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143373. [PMID: 35884432 PMCID: PMC9322939 DOI: 10.3390/cancers14143373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary One of the major problems regarding hepatocellular carcinoma (HCC) is the development of metastasis and recurrence, even in patients with an early stage. Recently, circulating tumor cells (CTCs) enumeration has been intensively studied as a diagnostic and prognostic biomarker in HCC. Nevertheless, increasing evidence suggests the role of metastasis-associated CTC phenotypes, including epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs). We performed a systematic review to investigate the correlation of different CTC subtypes with HCC characteristics and their prognostic relevance to clinical outcomes. A preliminary meta-analysis found that CTC subtypes had prognostic power for predicting the probability of early recurrence. This study highlights the potential of CTC subtyping analysis as a biomarker for HCC management and provides information on metastasis-associated CTCs for a deeper molecular characterization of specific CTC subtypes. Abstract Circulating tumor cells (CTCs) play a key role in hematogenous metastasis and post-surgery recurrence. In hepatocellular carcinoma (HCC), CTCs have emerged as a valuable source of therapeutically relevant information. Certain subsets or phenotypes of CTCs can survive in the bloodstream and induce metastasis. Here, we performed a systematic review on the importance of epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs) in metastatic processes and their prognostic power in HCC management. PubMed, Scopus, and Embase databases were searched for relevant publications. PRISMA criteria were used to review all studies. Twenty publications were eligible, of which 14, 5, and 1 study reported EMT-CTCs, CCSCs, and both phenotypes, respectively. Most studies evaluated that mesenchymal CTCs and CCSCs positivity were statistically associated with extensive clinicopathological features, including larger size and multiple numbers of tumors, advanced stages, micro/macrovascular invasion, and metastatic/recurrent disease. A preliminary meta-analysis showed that the presence of mesenchymal CTCs in pre- and postoperative blood significantly increased the risk of early recurrence. Mesenchymal-CTCs positivity was the most reported association with inferior outcomes based on the prognosis of HCC recurrence. Our finding could be a step forward, conveying additional prognostic values of CTC subtypes as promising biomarkers in HCC management.
Collapse
|
8
|
Moallem G, Pore AA, Gangadhar A, Sari-Sarraf H, Vanapalli SA. Detection of live breast cancer cells in bright-field microscopy images containing white blood cells by image analysis and deep learning. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210268RR. [PMID: 35831930 PMCID: PMC9278981 DOI: 10.1117/1.jbo.27.7.076003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/09/2022] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE Circulating tumor cells (CTCs) are important biomarkers for cancer management. Isolated CTCs from blood are stained to detect and enumerate CTCs. However, the staining process is laborious and moreover makes CTCs unsuitable for drug testing and molecular characterization. AIM The goal is to develop and test deep learning (DL) approaches to detect unstained breast cancer cells in bright-field microscopy images that contain white blood cells (WBCs). APPROACH We tested two convolutional neural network (CNN) approaches. The first approach allows investigation of the prominent features extracted by CNN to discriminate in vitro cancer cells from WBCs. The second approach is based on faster region-based convolutional neural network (Faster R-CNN). RESULTS Both approaches detected cancer cells with higher than 95% sensitivity and 99% specificity with the Faster R-CNN being more efficient and suitable for deployment presenting an improvement of 4% in sensitivity. The distinctive feature that CNN uses for discrimination is cell size, however, in the absence of size difference, the CNN was found to be capable of learning other features. The Faster R-CNN was found to be robust with respect to intensity and contrast image transformations. CONCLUSIONS CNN-based DL approaches could be potentially applied to detect patient-derived CTCs from images of blood samples.
Collapse
Affiliation(s)
- Golnaz Moallem
- Texas Tech University, Department of Electrical and Computer Engineering, Lubbock, Texas, United States
| | - Adity A. Pore
- Texas Tech University, Department of Chemical Engineering, Lubbock, Texas, United States
| | - Anirudh Gangadhar
- Texas Tech University, Department of Chemical Engineering, Lubbock, Texas, United States
| | - Hamed Sari-Sarraf
- Texas Tech University, Department of Electrical and Computer Engineering, Lubbock, Texas, United States
- Address all correspondence to Hamed Sari-Sarraf, ; Siva A. Vanapalli,
| | - Siva A. Vanapalli
- Texas Tech University, Department of Chemical Engineering, Lubbock, Texas, United States
- Address all correspondence to Hamed Sari-Sarraf, ; Siva A. Vanapalli,
| |
Collapse
|
9
|
Stevens M, Nanou A, Terstappen LWMM, Driemel C, Stoecklein NH, Coumans FAW. StarDist Image Segmentation Improves Circulating Tumor Cell Detection. Cancers (Basel) 2022; 14:cancers14122916. [PMID: 35740582 PMCID: PMC9221404 DOI: 10.3390/cancers14122916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Automated enumeration of circulating tumor cells (CTC) from immunofluorescence images starts with a selection of areas containing potential CTC. The CellSearch system has a built-in selection algorithm that has been observed to fail in samples with high cell density, thereby underestimating the true CTC load. We evaluated the deep learning method StarDist for the selection of possible CTC. In whole blood sample images, StarDist recovered 99.95% of CTC detected by CellSearch and segmented 10% additional CTC. In diagnostic leukapheresis (DLA) samples, StarDist segmented 20% additional CTC and performed well, whereas CellSearch had serious failures in 9% of samples. Abstract After a CellSearch-processed circulating tumor cell (CTC) sample is imaged, a segmentation algorithm selects nucleic acid positive (DAPI+), cytokeratin-phycoerythrin expressing (CK-PE+) events for further review by an operator. Failures in this segmentation can result in missed CTCs. The CellSearch segmentation algorithm was not designed to handle samples with high cell density, such as diagnostic leukapheresis (DLA) samples. Here, we evaluate deep-learning-based segmentation method StarDist as an alternative to the CellSearch segmentation. CellSearch image archives from 533 whole blood samples and 601 DLA samples were segmented using CellSearch and StarDist and inspected visually. In 442 blood samples from cancer patients, StarDist segmented 99.95% of CTC segmented by CellSearch, produced good outlines for 98.3% of these CTC, and segmented 10% more CTC than CellSearch. Visual inspection of the segmentations of DLA images showed that StarDist continues to perform well when the cell density is very high, whereas CellSearch failed and generated extremely large segmentations (up to 52% of the sample surface). Moreover, in a detailed examination of seven DLA samples, StarDist segmented 20% more CTC than CellSearch. Segmentation is a critical first step for CTC enumeration in dense samples and StarDist segmentation convincingly outperformed CellSearch segmentation.
Collapse
Affiliation(s)
- Michiel Stevens
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; (M.S.); (A.N.); (L.W.M.M.T.)
| | - Afroditi Nanou
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; (M.S.); (A.N.); (L.W.M.M.T.)
| | - Leon W. M. M. Terstappen
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; (M.S.); (A.N.); (L.W.M.M.T.)
| | - Christiane Driemel
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.D.); (N.H.S.)
| | - Nikolas H. Stoecklein
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.D.); (N.H.S.)
| | - Frank A. W. Coumans
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; (M.S.); (A.N.); (L.W.M.M.T.)
- Correspondence:
| |
Collapse
|
10
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Circulating tumour cells in the -omics era: how far are we from achieving the 'singularity'? Br J Cancer 2022; 127:173-184. [PMID: 35273384 PMCID: PMC9296521 DOI: 10.1038/s41416-022-01768-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.
Collapse
|
12
|
Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci Rep 2021; 11:20583. [PMID: 34663896 PMCID: PMC8523721 DOI: 10.1038/s41598-021-99951-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Reliable and routine isolation of circulating tumor cells (CTCs) from peripheral blood would allow effective monitoring of the disease and guide the development of personalized treatments. Negative enrichment of CTCs by depleting normal blood cells ensures against a biased selection of a subpopulation and allows the assay to be applied on different tumor types. Here, we report an additively manufactured microfluidic device that can negatively enrich viable CTCs from clinically-relevant volumes of unmanipulated whole blood samples. Our device depletes nucleated blood cells based on their surface antigens and the smaller anucleated cells based on their size. Enriched CTCs are made available off the device in suspension making our technique compatible with standard immunocytochemical, molecular and functional assays. Our device could achieve a ~ 2.34-log depletion by capturing > 99.5% of white blood cells from 10 mL of whole blood while recovering > 90% of spiked tumor cells. Furthermore, we demonstrated the capability of the device to isolate CTCs from blood samples collected from patients (n = 15) with prostate and pancreatic cancers in a pilot study. A universal CTC assay that can differentiate tumor cells from normal blood cells with the specificity of clinically established membrane antigens yet require no label has the potential to enable routine blood-based tumor biopsies at the point-of-care.
Collapse
|
13
|
Muhanna N, Eu D, Chan HHL, Douglas C, Townson JL, Di Grappa MA, Mohamadi RM, Kelley SO, Bratman SV, Irish JC. Cell-free DNA and circulating tumor cell kinetics in a pre-clinical head and neck Cancer model undergoing radiation therapy. BMC Cancer 2021; 21:1075. [PMID: 34600526 PMCID: PMC8487588 DOI: 10.1186/s12885-021-08791-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Monitoring circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), known as liquid biopsies, continue to be developed as diagnostic and prognostic markers for a wide variety of cancer indications, mainly due to their minimally invasive nature and ability to offer a wide range of phenotypic and genetic information. While liquid biopsies maintain significant promising benefits, there is still limited information regarding the kinetics of ctDNA and CTCs following radiation therapy which remains a vital treatment modality in head and neck cancers. This study aims to describe the kinetics of ctDNA and CTCs following radiation exposure in a preclinical rabbit model with VX2 induced buccal carcinoma. METHODS Seven rabbits were inoculated with VX2 cells in the buccal mucosa and subjected to radiation. At selected time points, blood sampling was performed to monitor differing levels of ctDNA and CTC. Plasma ctDNA was measured with quantitative PCR for papillomavirus E6 while CTCs were quantified using an immunomagnetic nanoparticles within a microfluidic device. Comparisons of CTC detection with EpCAM compared to multiple surface markers (EGFR, HER2 and PSMA) was evaluated and correlated with the tumor size. RESULTS Plasma ctDNA reflects the overall tumor burden within the animal model. Analysis of correlations between ctDNA with tumor and lymph node volumes showed a positive correlation (R = 0.452 and R = 0.433 [p < 0.05]), respectively. Over the course of treatment, ctDNA levels declined and quickly becomes undetectable following tumor eradication. While during the course of treatment, ctDNA levels were noted to rise particularly upon initiation of radiation following scheduled treatment breaks. Levels of CTCs were observed to increase 1 week following inoculation of tumor to the primary site. For CTC detection, the use of multiple surface markers showed a greater sensitivity when compared to detection using only EpCAM. Plasma CTC levels remained elevated following radiation therapy which may account for an increased shedding of CTCs following radiation. CONCLUSION This study demonstrates the utility of ctDNA and CTCs detection in response to radiation treatment in a preclinical head and neck model, allowing for better understanding of liquid biopsy applications in both clinical practice and research development.
Collapse
Affiliation(s)
- Nidal Muhanna
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery-Surgical Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Otolaryngology-Head and Neck Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | - Donovan Eu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Harley H L Chan
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Catriona Douglas
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Jason L Townson
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Marco A Di Grappa
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jonathan C Irish
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery-Surgical Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Schuster E, Taftaf R, Reduzzi C, Albert MK, Romero-Calvo I, Liu H. Better together: circulating tumor cell clustering in metastatic cancer. Trends Cancer 2021; 7:1020-1032. [PMID: 34481763 PMCID: PMC8541931 DOI: 10.1016/j.trecan.2021.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Circulating tumor cells (CTCs) are vital components of liquid biopsies for diagnosis of residual cancer, monitoring of therapy response, and prognosis of recurrence. Scientific dogma focuses on metastasis mediated by single CTCs, but advancement of CTC detection technologies has elucidated multicellular CTC clusters, which are associated with unfavorable clinical outcomes and a 20- to 100-fold greater metastatic potential than single CTCs. While the mechanistic understanding of CTC cluster formation is still in its infancy, multiple cell adhesion molecules and tight junction proteins have been identified that underlie the outperforming attributes of homotypic and heterotypic CTC clusters, such as cell survival, cancer stemness, and immune evasion. Future directions include high-resolution characterization of CTCs at multiomic levels for diagnostic/prognostic evaluations and targeted therapies.
Collapse
Affiliation(s)
- Emma Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carolina Reduzzi
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary K Albert
- Biomedical Visualization Graduate Program, Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Isabel Romero-Calvo
- Biomedical Visualization Graduate Program, Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Lurie Comprehensive Cancer Center and Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Park C, Abafogi AT, Ponnuvelu DV, Song I, Ko K, Park S. Enhanced Luminescent Detection of Circulating Tumor Cells by a 3D Printed Immunomagnetic Concentrator. BIOSENSORS 2021; 11:278. [PMID: 34436080 PMCID: PMC8391490 DOI: 10.3390/bios11080278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Circulating tumor cells (CTCs) are an indicator of metastatic progression and relapse. Since non-CTC cells such as red blood cells outnumber CTCs in the blood, the separation and enrichment of CTCs is key to improving their detection sensitivity. The ATP luminescence assay can measure intracellular ATP to detect cells quickly but has not yet been used for CTC detection in the blood because extracellular ATP in the blood, derived from non-CTCs, interferes with the measurement. Herein, we report on the improvement of the ATP luminescence assay for the detection of CTCs by separating and concentrating CTCs in the blood using a 3D printed immunomagnetic concentrator (3DPIC). Because of its high-aspect-ratio structure and resistance to high flow rates, 3DPIC allows cancer cells in 10 mL to be concentrated 100 times within minutes. This enables the ATP luminescence assay to detect as low as 10 cells in blood, thereby being about 10 times more sensitive than when commercial kits are used for CTC concentration. This is the first time that the ATP luminescence assay was used for the detection of cancer cells in blood. These results demonstrate the feasibility of 3DPIC as a concentrator to improve the detection limit of the ATP luminescence assay for the detection of CTCs.
Collapse
Affiliation(s)
- Chanyong Park
- Department of Medical Device, Korea Institute of Machinery & Materials (KIMM), Daegu 42994, Korea;
| | - Abdurhaman Teyib Abafogi
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (A.T.A.); (D.V.P.)
| | - Dinesh Veeran Ponnuvelu
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (A.T.A.); (D.V.P.)
| | - Ilchan Song
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (I.S.); (K.K.)
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (I.S.); (K.K.)
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (A.T.A.); (D.V.P.)
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
16
|
Patil RA, Srinivasarao M, Amiji MM, Low PS, Niedre M. Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Mol Imaging Biol 2021; 22:1280-1289. [PMID: 32519245 DOI: 10.1007/s11307-020-01505-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.
Collapse
Affiliation(s)
- Roshani A Patil
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Carmona-Ule N, González-Conde M, Abuín C, Cueva JF, Palacios P, López-López R, Costa C, Dávila-Ibáñez AB. Short-Term Ex Vivo Culture of CTCs from Advance Breast Cancer Patients: Clinical Implications. Cancers (Basel) 2021; 13:cancers13112668. [PMID: 34071445 PMCID: PMC8198105 DOI: 10.3390/cancers13112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are responsible for metastasis, they represent tumor biology and have also predictive value for therapy monitoring and prognosis of metastatic breast cancer patients. In the blood, CTCs are found in low frequency and a small percentage of them survive. Therefore, achieving their expansion in vitro will allow performing characterization and functional analysis. In this work, we used growth factors and Nanoemulsions to support CTCs culture. We have seen that the CTCs subpopulation capable of ex vivo expanding presented mesenchymal and stem characteristics and loss of epithelial markers. Besides, CTC culture predicted progression-free survival. Abstract Background: Circulating tumor cells (CTC) have relevance as prognostic markers in breast cancer. However, the functional properties of CTCs or their molecular characterization have not been well-studied. Experimental models indicate that only a few cells can survive in the circulation and eventually metastasize. Thus, it is essential to identify these surviving cells capable of forming such metastases. Methods: We isolated viable CTCs from 50 peripheral blood samples obtained from 35 patients with advanced metastatic breast cancer using RosetteSepTM for ex vivo culture. The CTCs were seeded and monitored on plates under low adherence conditions and with media supplemented with growth factors and Nanoemulsions. Phenotypic analysis was performed by immunofluorescence and gene expression analysis using RT-PCR and CTCs counting by the Cellsearch® system. Results: We found that in 75% of samples the CTC cultures lasted more than 23 days, predicting a shorter Progression-Free Survival in these patients, independently of having ≥5 CTC by Cellsearch®. We also observed that CTCs before and after culture showed a different gene expression profile. Conclusions: the cultivability of CTCs is a predictive factor. Furthermore, the subset of cells capable of growing ex vivo show stem or mesenchymal features and may represent the CTC population with metastatic potential in vivo.
Collapse
Affiliation(s)
- Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Juan F. Cueva
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Patricia Palacios
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| |
Collapse
|
18
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
19
|
Guglielmi R, Lai Z, Raba K, van Dalum G, Wu J, Behrens B, Bhagat AAS, Knoefel WT, Neves RPL, Stoecklein NH. Technical validation of a new microfluidic device for enrichment of CTCs from large volumes of blood by using buffy coats to mimic diagnostic leukapheresis products. Sci Rep 2020; 10:20312. [PMID: 33219265 PMCID: PMC7680114 DOI: 10.1038/s41598-020-77227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
Diagnostic leukapheresis (DLA) enables to sample larger blood volumes and increases the detection of circulating tumor cells (CTC) significantly. Nevertheless, the high excess of white blood cells (WBC) of DLA products remains a major challenge for further downstream CTC enrichment and detection. To address this problem, we tested the performance of two label-free CTC technologies for processing DLA products. For the testing purposes, we established ficollized buffy coats (BC) with a WBC composition similar to patient-derived DLA products. The mimicking-DLA samples (with up to 400 × 106 WBCs) were spiked with three different tumor cell lines and processed with two versions of a spiral microfluidic chip for label-free CTC enrichment: the commercially available ClearCell FR1 biochip and a customized DLA biochip based on a similar enrichment principle, but designed for higher throughput of cells. While the samples processed with FR1 chip displayed with increasing cell load significantly higher WBC backgrounds and decreasing cell recovery, the recovery rates of the customized DLA chip were stable, even if challenged with up to 400 × 106 WBCs (corresponding to around 120 mL peripheral blood or 10% of a DLA product). These results indicate that the further up-scalable DLA biochip has potential to process complete DLA products from 2.5 L of peripheral blood in an affordable way to enable high-volume CTC-based liquid biopsies.
Collapse
Affiliation(s)
- R Guglielmi
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Z Lai
- Biolidics Limited, Singapore, Singapore
| | - K Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - G van Dalum
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - J Wu
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - B Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - A A S Bhagat
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - W T Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - R P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - N H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany.
| |
Collapse
|
20
|
Williams AL, Fitzgerald JE, Ivich F, Sontag ED, Niedre M. Short-Term Circulating Tumor Cell Dynamics in Mouse Xenograft Models and Implications for Liquid Biopsy. Front Oncol 2020; 10:601085. [PMID: 33240820 PMCID: PMC7677561 DOI: 10.3389/fonc.2020.601085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Circulating tumor cells (CTCs) are widely studied using liquid biopsy methods that analyze fractionally-small peripheral blood (PB) samples. However, little is known about natural fluctuations in CTC numbers that may occur over short timescales in vivo, and how these may affect detection and enumeration of rare CTCs from small blood samples. METHODS We recently developed an optical instrument called "diffuse in vivo flow cytometry" (DiFC) that uniquely allows continuous, non-invasive counting of rare, green fluorescent protein expressing CTCs in large blood vessels in mice. Here, we used DiFC to study short-term changes in CTC numbers in multiple myeloma and Lewis lung carcinoma xenograft models. We analyzed CTC detections in over 100 h of DiFC data, and considered intervals corresponding to approximately 1%, 5%, 10%, and 20% of the PB volume. In addition, we analyzed changes in CTC numbers over 24 h (diurnal) periods. RESULTS For rare CTCs (fewer than 1 CTC per ml of blood), the use of short DiFC intervals (corresponding to small PB samples) frequently resulted in no detections. For more abundant CTCs, CTC numbers frequently varied by an order of magnitude or more over the time-scales considered. This variance in CTC detections far exceeded that expected by Poisson statistics or by instrument variability. Rather, the data were consistent with significant changes in mean numbers of CTCs on the timescales of minutes and hours. CONCLUSIONS The observed temporal changes can be explained by known properties of CTCs, namely, the continuous shedding of CTCs from tumors and the short half-life of CTCs in blood. It follows that the number of cells in a blood sample are strongly impacted by the timing of the draw. The issue is likely to be compounded for multicellular CTC clusters or specific CTC subtypes, which are even more rare than single CTCs. However, we show that enumeration can in principle be improved by averaging multiple samples, analysis of larger volumes, or development of methods for enumeration of CTCs directly in vivo.
Collapse
Affiliation(s)
- Amber L. Williams
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Fernando Ivich
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eduardo D. Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
21
|
Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200009. [PMID: 37361495 PMCID: PMC10197281 DOI: 10.1515/almed-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 06/28/2023]
Abstract
The term liquid biopsy is used in contraposition to the traditional "solid" tissue biopsy. In the oncology field it has opened a new plethora of clinical opportunities as tumor-derived material is shedded into the different biofluids from where it can be isolated and analyzed. Common biofluids include blood, urine, saliva, cerebrospinal fluid (CSF), pleural effusion or bile. Starting from these biological specimens several analytes can be isolated, among which we will review the most widely used: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), proteins, metabolites, and exosomes. Regarding the nature of the biomarkers it will depend on the analyte, the type of tumor and the clinical application of the liquid biopsy and it includes, somatic point mutations, deletions, amplifications, gene-fusions, DNA-methylated marks, tumor-specific miRNAs, proteins or metabolites. Here we review the characteristics of the analytes and the methodologies used for their isolation. We also describe the applications of the liquid biopsy in the management of patients with cancer, from the early detection of cancers to treatment guidance in patients with advanced tumors. Finally, we also discuss some current limitations and still open questions.
Collapse
Affiliation(s)
- María Arechederra
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Matías A. Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| |
Collapse
|
22
|
Park JE, Oh N, Nam H, Park JH, Kim S, Jeon JS, Yang M. Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5089. [PMID: 32906807 PMCID: PMC7570931 DOI: 10.3390/s20185089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.
Collapse
Affiliation(s)
- Jong-Eun Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Nuri Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Jessie S. Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Minyang Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
- Department of Mechanical Engineering, State University of New York Korea, Incheon 21985, Korea
| |
Collapse
|
23
|
Yap K, Cohen EN, Reuben JM, Khoury JD. Circulating Tumor Cells: State-of-the-art Update on Technologies and Clinical Applications. Curr Hematol Malig Rep 2020; 14:353-357. [PMID: 31364034 DOI: 10.1007/s11899-019-00531-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Circulating tumor cells represent rare events in the peripheral blood of patients with cancer that can provide insight into tumor biology. CTC enumeration, isolation, and analysis represent liquid biopsy approaches whose role in the management of patients with cancer continues to evolve in the era of precision medicine. This review presents an overview of technologies central to studying CTCs. RECENT FINDINGS Technologies for CTC isolation can be divided into two categories: label-dependent and label-independent. Label-dependent techniques utilize biological properties such as cell surface proteins, while label-independent techniques utilize distinctive physical properties such as cell size, density, and plasticity. Advances in microfluidics designs as well as hybrid combinations of label-dependent and label-independent techniques have resulted in unprecedented improvements in CTC isolation, permitting not only the detection and enumeration of these rare events but also providing the means for studying them and exploring them as a new dimension of cancer biomarkers. With advances in tools for isolating and studying CTCs in hand, questions regarding the clinical utility of CTC enumeration in peripheral blood, detection of CTC-associated biomarkers, and analysis of dynamic changes in CTCs during the course of cancer therapy represent exciting new opportunities for cancer research.
Collapse
Affiliation(s)
- Kristofor Yap
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Di Lauro V, Fusco G, di Gioia G, Licenziato M, de Laurentiis M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:E4579. [PMID: 32605126 PMCID: PMC7369987 DOI: 10.3390/ijms21134579] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michelino de Laurentiis
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Napoli NA, Italy; (S.C.); (M.P.); (A.C.); (D.C.); (R.C.); (V.D.L.); (G.F.); (G.d.G.); (M.L.)
| |
Collapse
|
25
|
Chelakkot C, Ryu J, Kim MY, Kim JS, Kim D, Hwang J, Park SH, Ko SB, Park JW, Jung MY, Kim RN, Song K, Kim YJ, Choi YL, Lee HS, Shin YK. An Immune-Magnetophoretic Device for the Selective and Precise Enrichment of Circulating Tumor Cells from Whole Blood. MICROMACHINES 2020; 11:mi11060560. [PMID: 32486306 PMCID: PMC7345362 DOI: 10.3390/mi11060560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Here, we validated the clinical utility of our previously developed microfluidic device, GenoCTC, which is based on bottom magnetophoresis, for the isolation of circulating tumor cells (CTCs) from patient whole blood. GenoCTC allowed 90% purity, 77% separation rate, and 80% recovery of circulating tumor cells at a 90 μL/min flow rate when tested on blood spiked with epithelial cell adhesion molecule (EpCAM)-positive Michigan Cancer Foundation-7 (MCF7) cells. Clinical studies were performed using blood samples from non-small cell lung cancer (NSCLC) patients. Varying numbers (2 to 114) of CTCs were found in each NSCLC patient, and serial assessment of CTCs showed that the CTC count correlated with the clinical progression of the disease. The applicability of GenoCTC to different cell surface biomarkers was also validated in a cholangiocarcinoma patient using anti-EPCAM, anti-vimentin, or anti-tyrosine protein kinase MET (c-MET) antibodies. After EPCAM-, vimentin-, or c-MET-positive cells were isolated, CTCs were identified and enumerated by immunocytochemistry using anti-cytokeratin 18 (CK18) and anti-CD45 antibodies. Furthermore, we checked the protein expression of PDL1 and c-MET in CTCs. A study in a cholangiocarcinoma patient showed that the number of CTCs varied depending on the biomarker used, indicating the importance of using multiple biomarkers for CTC isolation and enumeration.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Jiyeon Ryu
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea; (M.Y.K.); (J.-S.K.)
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea; (M.Y.K.); (J.-S.K.)
| | - Dohyeong Kim
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Juhyun Hwang
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Sung Hoon Park
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Seok Bum Ko
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Jeong Won Park
- IT Convergence Technology Research Laboratory, Electronic and Telecommunications Research Institute, Daejon 34129, Korea; (J.W.P.); (M.Y.J.)
| | - Moon Youn Jung
- IT Convergence Technology Research Laboratory, Electronic and Telecommunications Research Institute, Daejon 34129, Korea; (J.W.P.); (M.Y.J.)
| | - Ryong Nam Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea;
| | - Kyoung Song
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul 08394, Korea; (K.S.); (Y.J.K.)
| | - Yu Jin Kim
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul 08394, Korea; (K.S.); (Y.J.K.)
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 08394, Korea;
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hun Seok Lee
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
- Correspondence: (H.S.L.); (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- The Center for Anti-Cancer Companion Diagnostics, Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
- Correspondence: (H.S.L.); (Y.K.S.)
| |
Collapse
|
26
|
Deutsch TM, Riethdorf S, Fremd C, Feisst M, Nees J, Fischer C, Hartkopf AD, Pantel K, Trumpp A, Schütz F, Schneeweiss A, Wallwiener M. HER2-targeted therapy influences CTC status in metastatic breast cancer. Breast Cancer Res Treat 2020. [PMID: 32436146 DOI: 10.1007/s10549‐020‐05687‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE As an independent, negative-prognostic biomarker for progression-free survival (PFS) and overall survival (OS), circulating tumor cells (CTCs) constitute a promising component for developing a liquid biopsy for patients with metastatic breast cancer (MBC). The effects of HER2-targeted therapy such as trastuzumab, pertuzumab, T-DM1, and lapatinib on CTC status and longitudinal enumeration were assessed in this trial. METHODS CTC status of 264 patients with MBC was analyzed prior to and after 4 weeks of a new line of palliative systemic therapy. CTCs were assessed using CellSearch®. Three groups were compared: patients with HER2-positive MBC receiving ongoing HER2-targeted therapy (n = 28), patients with de novo HER2-positive MBC and no HER2-targeted therapy in the last 12 months prior to enrollment and start of HER2-targeted therapy (n = 15), and patients with HER2-nonamplified disease and no HER2-targeted therapy (n = 212). RESULTS Positive CTC status (≥ 5 CTC/7.5 ml blood) at enrollment was observed in the 3 groups for 17.9, 46.7, and 46.2% (p = 0.02) of patients, respectively. At least one CTC/7.5 ml was seen in 28.6, 53.3, and 67.0% (p < 0.001) of these patients. Furthermore, 3.6, 40.0, and 3.3% (p < 0.001) of the patients had at least one HER2-positive CTC. After 4 weeks of therapy 7.1, 0.0, and 31.1% (p = 0.001) of patients had still a positive CTC status (≥ 5 CTC/7.5 ml blood). At least one CTC/7.5 ml was still observed in 25.0, 20.0, and 50.5% (p = 0.004) of the patients. Furthermore, 7.1, 0.0, and 1.9% (p = 0.187) had at least one HER2-positive CTC. After 3 months of therapy, 35.7, 20.0, and 28.3% (p = 0.536) showed disease progression. CONCLUSIONS HER2-targeted therapy seems to reduce the overall CTC count in patients with MBC. This should be taken into account when CTC status is used as an indicator for aggressive or indolent metastatic tumor disease.
Collapse
Affiliation(s)
- Thomas M Deutsch
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Carlo Fremd
- Department of Medical Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Manuel Feisst
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Juliane Nees
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Chiara Fischer
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Andreas D Hartkopf
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Calwerstraße 7, 72076, Tübingen, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGMBH), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Schütz
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Markus Wallwiener
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
HER2-targeted therapy influences CTC status in metastatic breast cancer. Breast Cancer Res Treat 2020; 182:127-136. [PMID: 32436146 PMCID: PMC7274999 DOI: 10.1007/s10549-020-05687-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Purpose As an independent, negative-prognostic biomarker for progression-free survival (PFS) and overall survival (OS), circulating tumor cells (CTCs) constitute a promising component for developing a liquid biopsy for patients with metastatic breast cancer (MBC). The effects of HER2-targeted therapy such as trastuzumab, pertuzumab, T-DM1, and lapatinib on CTC status and longitudinal enumeration were assessed in this trial. Methods CTC status of 264 patients with MBC was analyzed prior to and after 4 weeks of a new line of palliative systemic therapy. CTCs were assessed using CellSearch®. Three groups were compared: patients with HER2-positive MBC receiving ongoing HER2-targeted therapy (n = 28), patients with de novo HER2-positive MBC and no HER2-targeted therapy in the last 12 months prior to enrollment and start of HER2-targeted therapy (n = 15), and patients with HER2-nonamplified disease and no HER2-targeted therapy (n = 212). Results Positive CTC status (≥ 5 CTC/7.5 ml blood) at enrollment was observed in the 3 groups for 17.9, 46.7, and 46.2% (p = 0.02) of patients, respectively. At least one CTC/7.5 ml was seen in 28.6, 53.3, and 67.0% (p < 0.001) of these patients. Furthermore, 3.6, 40.0, and 3.3% (p < 0.001) of the patients had at least one HER2-positive CTC. After 4 weeks of therapy 7.1, 0.0, and 31.1% (p = 0.001) of patients had still a positive CTC status (≥ 5 CTC/7.5 ml blood). At least one CTC/7.5 ml was still observed in 25.0, 20.0, and 50.5% (p = 0.004) of the patients. Furthermore, 7.1, 0.0, and 1.9% (p = 0.187) had at least one HER2-positive CTC. After 3 months of therapy, 35.7, 20.0, and 28.3% (p = 0.536) showed disease progression. Conclusions HER2-targeted therapy seems to reduce the overall CTC count in patients with MBC. This should be taken into account when CTC status is used as an indicator for aggressive or indolent metastatic tumor disease.
Collapse
|
28
|
Cut-Off Analysis of CTC Change under Systemic Therapy for Defining Early Therapy Response in Metastatic Breast Cancer. Cancers (Basel) 2020; 12:cancers12041055. [PMID: 32344685 PMCID: PMC7226373 DOI: 10.3390/cancers12041055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Detection of circulating tumor cells (CTC) can distinguish between aggressive and indolent metastatic disease in breast cancer patients and is thus considered an independent, negative prognostic factor. A clear decline in CTCs is observed in patients who respond to systemic therapy. Nevertheless, CTCs can decrease in patients experiencing disease progression during systemic therapy, too. This study aims to determine the differences between CTC decline in patients responding to therapy and those in whom disease is progressing. Therefore, CTC values were compared at the start and after one cycle of a new line of systemic therapy. In all, 108 initially CTC-positive patients (with ≥5 intact CTCs in 7.5 mL blood) were enrolled in this study and intact and apoptotic CTCs were measured via the CellSearch® system. A cut-off analysis was performed using Youden’s J statistics to differentiate between CTC change in the two groups. Here, 64 (59.3%) patients showed stable disease or partial response vs. 44 (40.7%) presenting disease progression. Median overall survival was 23 (range: 4–92) vs. 7 (2–43) months (p < 0.001). Median intact CTC count at enrollment was 15.0 (5–2760) vs. 30.5 (5–200000) cells (p = 0.39) and 2.5 (0–420) vs. 8.5 (0–15000) cells after one cycle of systemic therapy (p = 0.001). Median apoptotic CTC count at enrollment was 10.5 (0–1500) vs. 9 (0–800) cells (p = 0.475) and 1 (0–200) vs. 3 (0–250) cells after one cycle of systemic therapy (p = 0.01). A 50% reduction in baseline apoptotic CTC count represents the optimal cut-off to differentiate between therapy response and disease progression. An apoptotic CTC reduction of ≤10% is 74% specific for early disease progression.
Collapse
|
29
|
Bartosik PB, Fitzgerald JE, El Khatib M, Yaseen MA, Vinogradov SA, Niedre M. Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. Int J Nanomedicine 2020; 15:1709-1719. [PMID: 32210561 PMCID: PMC7074808 DOI: 10.2147/ijn.s243157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We recently developed a new fluorescence-based technique called "diffuse in vivo flow cytometry" (DiFC) for enumerating rare circulating tumor cells (CTCs) directly in the bloodstream. Non-specific tissue autofluorescence is a persistent problem, as it creates a background which may obscure signals from weakly-labeled CTCs. Here we investigated the use of upconverting nanoparticles (UCNPs) as a contrast agent for DiFC, which in principle could significantly reduce the autofluorescence background and allow more sensitive detection of rare CTCs. METHODS We built a new UCNP-compatible DiFC instrument (U-DiFC), which uses a 980 nm laser and detects upconverted luminescence in the 520, 545 and 660 nm emission bands. We used NaYF4:Yb,Er UCNPs and several covalent and non-covalent surface modification strategies to improve their biocompatibility and cell uptake. We tested U-DiFC with multiple myeloma (MM) and Lewis lung carcinoma (LLC) cells in tissue-mimicking optical flow phantoms and in nude mice. RESULTS U-DiFC significantly reduced the background autofluorescence signals and motion artifacts from breathing in mice. Upconverted luminescence from NaYF4:Yb,Er microparticles (UμNP) and cells co-incubated with UCNPs were readily detectable with U-DiFC in phantoms, and from UCNPs in circulation in mice. However, we were unable to achieve reliable labeling of CTCs with UCNPs. Our data suggest that most (or all) of the measured U-DIFC signal in vitro and in vivo likely arose from unbound UCNPs or due to the uptake by non-CTC blood cells. CONCLUSION UCNPs have a number of properties that make them attractive contrast agents for high-sensitivity detection of CTCs in the bloodstream with U-DiFC and other intravital imaging methods. More work is needed to achieve reliable and specific labeling of CTCs with UCNPs and verify long-term retention and viability of cells.
Collapse
Affiliation(s)
- Peter B Bartosik
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
30
|
Wang J, Wuethrich A, Sina AAI, Lane RE, Lin LL, Wang Y, Cebon J, Behren A, Trau M. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. SCIENCE ADVANCES 2020; 6:eaax3223. [PMID: 32133394 PMCID: PMC7043913 DOI: 10.1126/sciadv.aax3223] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/10/2019] [Indexed: 05/13/2023]
Abstract
Monitoring targeted therapy in real time for cancer patients could provide vital information about the development of drug resistance and improve therapeutic outcomes. Extracellular vesicles (EVs) have recently emerged as a promising cancer biomarker, and EV phenotyping shows high potential for monitoring treatment responses. Here, we demonstrate the feasibility of monitoring patient treatment responses based on the plasma EV phenotypic evolution using a multiplex EV phenotype analyzer chip (EPAC). EPAC incorporates the nanomixing-enhanced microchip and the multiplex surface-enhanced Raman scattering (SERS) nanotag system for direct EV phenotyping without EV enrichment. In a preclinical model, we observe the EV phenotypic heterogeneity and different phenotypic responses to the treatment. Furthermore, we successfully detect cancer-specific EV phenotypes from melanoma patient plasma. We longitudinally monitor the EV phenotypic evolution of eight melanoma patients receiving targeted therapy and find specific EV profiles involved in the development of drug resistance, reflecting the potential of EV phenotyping for monitoring treatment responses.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L. Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Dermatology Research Centre, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yuling Wang
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Kuang M, Peng Y, Tao X, Zhou Z, Mao H, Zhuge L, Sun Y, Zhang H. FGB and FGG derived from plasma exosomes as potential biomarkers to distinguish benign from malignant pulmonary nodules. Clin Exp Med 2019; 19:557-564. [PMID: 31576477 DOI: 10.1007/s10238-019-00581-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Previous proteomic analysis (label-free) of plasma exosomes revealed that the expression of FGG and FGB was significantly higher in the malignant pulmonary nodules group, compared to the benign pulmonary nodules group. The present study was performed to evaluate the role of plasma exosomal proteins FGB and FGG in the diagnosis of benign and malignant pulmonary nodules. We examined the expression levels of FGB and FGG in plasma exosomes from 63 patients before surgery. Postoperative pathological diagnosis confirmed that 43 cases were malignant and 20 cases were benign. The ROC curve was used to describe the sensitivity, specificity, area under the curve (AUC) of the biomarker and the corresponding 95% confidence interval. We confirmed that the expression levels of FGB and FGG were higher in the plasma exosomes of malignant group than in the benign group. The sensitivity and AUC of FGB combined with FGG detection to determine the nature of pulmonary nodules are superior to single FGB or FGG detection. FGB and FGG might represent novel and sensitive biomarker to distinguish benign from malignant pulmonary nodules.
Collapse
Affiliation(s)
- Muyu Kuang
- Huadong Hospital, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yizhou Peng
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoting Tao
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zilang Zhou
- The First High School, Xintian County, Hunan, China
| | - Hengyu Mao
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lingdun Zhuge
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yihua Sun
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huibiao Zhang
- Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Liquid Biopsy in Glioblastoma: Opportunities, Applications and Challenges. Cancers (Basel) 2019; 11:cancers11070950. [PMID: 31284524 PMCID: PMC6679205 DOI: 10.3390/cancers11070950] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy represents a minimally invasive procedure that can provide similar information from body fluids to what is usually obtained from a tissue biopsy sample. Its implementation in the clinical setting might significantly renew the field of medical oncology, facilitating the introduction of the concepts of precision medicine and patient-tailored therapies. These advances may be useful in the diagnosis of brain tumors that currently require surgery for tissue collection, or to perform genetic tumor profiling for disease classification and guidance of therapy. In this review, we will summarize the most recent advances and putative applications of liquid biopsy in glioblastoma, the most common and malignant adult brain tumor. Moreover, we will discuss the remaining challenges and hurdles in terms of technology and biology for its clinical application.
Collapse
|
33
|
Worrede A, Meucci O, Fatatis A. Limiting tumor seeding as a therapeutic approach for metastatic disease. Pharmacol Ther 2019; 199:117-128. [PMID: 30877019 PMCID: PMC6571062 DOI: 10.1016/j.pharmthera.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
Here we propose that therapeutic targeting of circulating tumor cells (CTCs), which are widely understood to be the seeds of metastasis, would represent an effective strategy towards limiting numerical expansion of secondary lesions and containing overall tumor burden in cancer patients. However, the molecular mediators of tumor seeding have not been well characterized. This is in part due to the limited number of pre-clinical in vivo approaches that appropriately interrogate the mechanisms by which cancer cells home to arresting organs. It is critical that we continue to investigate the mediators of tumor seeding as it is evident that the ability of CTCs to colonize in distant sites is what drives disease progression even after the primary tumor has been ablated by local modalities. In addition to slowing disease progression, containing metastatic spread by impeding tumor cell seeding may also provide a clinical benefit by increasing the duration of the residence of CTCs in systemic circulation thereby increasing their exposure to pharmacological agents commonly used in the treatment of patients such as chemotherapy and immunotherapies. In this review we will examine the current state of knowledge about the mechanisms of tumor cells seeding as well as explore how targeting this stage of metastatic spreading may provide therapeutic benefit to patients with advanced disease.
Collapse
Affiliation(s)
- Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA; Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
35
|
Abouleila Y, Onidani K, Ali A, Shoji H, Kawai T, Lim CT, Kumar V, Okaya S, Kato K, Hiyama E, Yanagida T, Masujima T, Shimizu Y, Honda K. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci 2019; 110:697-706. [PMID: 30549153 PMCID: PMC6361580 DOI: 10.1111/cas.13915] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there has been increased attention on the analysis of circulating tumor cells (CTCs), also known as liquid biopsy, owing to its potential benefits in cancer diagnosis and treatment. Circulating tumor cells are released from primary tumor lesions into the blood stream and eventually metastasize to distant body organs. However, a major hurdle with CTC analysis is their natural scarcity. Existing methods lack sensitivity, specificity, or reproducibility required in CTC characterization and detection. Here, we report untargeted molecular profiling of single CTCs obtained from gastric cancer and colorectal cancer patients, using live single cell mass spectrometry integrated with microfluidics-based cell enrichment techniques. Using this approach, we showed the difference in the metabolomic profile between CTCs originating from different cancer groups. Moreover, potential biomarkers were putatively annotated to be specific to each cancer type.
Collapse
Affiliation(s)
- Yasmine Abouleila
- RIKEN Center for Biosystems Dynamics research (BDR)OsakaJapan
- Natural Science for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Misr International University Research Center (MIU‐RC)CairoEgypt
| | - Kaoru Onidani
- Department of Biomarkers for Early Detection of CancerNational Cancer Center Research InstituteTokyoJapan
- Department of Oral and Maxillofacial SurgeryTokyo Dental CollegeTokyoJapan
| | - Ahmed Ali
- RIKEN Center for Biosystems Dynamics research (BDR)OsakaJapan
- Natural Science for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Misr International University Research Center (MIU‐RC)CairoEgypt
| | - Hirokazu Shoji
- Department of Biomarkers for Early Detection of CancerNational Cancer Center Research InstituteTokyoJapan
- Gastrointestinal Medical Oncology DivisionNational Cancer Center HospitalTokyoJapan
| | - Takayuki Kawai
- RIKEN Center for Biosystems Dynamics research (BDR)OsakaJapan
- Japan Science and Technology AgencyPRESTOSaitamaJapan
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Chwee Teck Lim
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Biomedical Institute for Global Health Research and TechnologyNational University of SingaporeSingapore
| | - Vipin Kumar
- RIKEN Center for Biosystems Dynamics research (BDR)OsakaJapan
| | - Shinobu Okaya
- Department of Biomarkers for Early Detection of CancerNational Cancer Center Research InstituteTokyoJapan
| | - Ken Kato
- Gastrointestinal Medical Oncology DivisionNational Cancer Center HospitalTokyoJapan
| | - Eiso Hiyama
- Natural Science for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Toshio Yanagida
- RIKEN Center for Biosystems Dynamics research (BDR)OsakaJapan
| | | | | | - Kazufumi Honda
- Department of Biomarkers for Early Detection of CancerNational Cancer Center Research InstituteTokyoJapan
- Japan Agency for Medical Research and Development (AMED) CRESTTokyoJapan
| |
Collapse
|
36
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
37
|
Seenivasan R, Warrick JW, Rodriguez CI, Mattison W, Beebe DJ, Setaluri V, Gunasekaran S. Integrating Electrochemical Immunosensing and Cell Adhesion Technologies for Cancer Cell Detection and Enumeration. Electrochim Acta 2018; 286:205-211. [PMID: 31130739 PMCID: PMC6530932 DOI: 10.1016/j.electacta.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have successfully integrated techniques for controlling cell adhesion and performing electrochemical differential pulse voltammetry (DPV) through the use of digitally controlled microfluidics and patterned transparent indium tin oxide electrode arrays to enable rapid and sensitive enumeration of cancer cells in a scalable microscale format. This integrated approach leverages a dual-working electrode (WE) surface to improve the specificity of the detection system. Here, one of the WE surfaces is functionalized with anti-Melanocortin 1 Receptor antibodies specific to melanoma cancer cells, while the other WE acts as a control (i.e., without antibody), for detecting non-specific interactions between cells and the electrode. The method is described and shown to provide effective detection of melanoma cells at concentrations ranging between 25 to 300 cells per 20 μL sample volume after a 5 min incubation and 15 s of DPV measurements. The estimated limit of detection was ~17 cells. The sensitivity and specificity of the assay were quantified using addition of large fractions of non-target cells and resulted in a detection reproducibility of ~97%. The proposed approach demonstrates a unique integration of electrochemical sensing and microfluidic cell adhesion technologies with multiple advantages such as label-free detection, short detection times, and low sample volumes. Next steps for this platform include testing with patient samples and use of other cell-surface biomarkers for detection and enumeration of circulating tumor cells in prostate, breast, and colon cancer.
Collapse
Affiliation(s)
- Rajesh Seenivasan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Carlos I. Rodriguez
- Department of Dermatology, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William Mattison
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
38
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
39
|
Pizon M, Schott D, Pachmann U, Pachmann K. The number of tumorspheres cultured from peripheral blood is a predictor for presence of metastasis in patients with breast cancer. Oncotarget 2018; 7:48143-48154. [PMID: 27340862 PMCID: PMC5217007 DOI: 10.18632/oncotarget.10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor metastases are the major cause of cancer morbidity and mortality. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs). METHODS CETCs were cultured under conditions favoring growth of tumorspheres from 72 patients with breast cancer, including a subpopulation of 23 patients with metastatic disease. CETCs were determined using the maintrac® method. Gene expression profiles of single CETCs and tumorspheres of the same patients were analyzed using qRT-PCR. RESULTS Sphere formation was observed in 79 % of patients. We found that the number of tumorspheres depended on stage of disease. Furthermore, the most important factor for growing of tumorspheres is obtaining chemotherapy. Patients with chemotherapy treatment had lower numbers of tumorspheres compared to patients without chemotherapy. Patients with HER2 positive primary tumor had higher number of tumorspheres. Analysis of surface marker expression profile of tumorspheres showed that cells in the spheres had typical phenotype of cancer stem cells. There was no sphere formation in a control group with 50 healthy donors. CONCLUSIONS This study demonstrates that a small fraction of CETCs has proliferative activity. Identifying the CETC subset with cancer stem cell properties may provide more clinically useful prognostic information. Chemotherapy is the most important component in cancer therapy because it frequently reduces the number of tumorspheres.
Collapse
Affiliation(s)
- Monika Pizon
- Transfusion Center Bayreuth, 95448, Bayreuth, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Head and neck cancer is the sixth most common cancer worldwide. It remains one of the leading causes of death, and its early detection is crucial. Liquid biopsy has emerged as a promising tool for detecting and monitoring the disease status of patients with early and advanced cancers. Circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomal miRNAs have received enormous attention because of their apparent clinical implications. Analyses of these circulating biomarkers have paved the way for novel therapeutic approaches and precision medicine. A growing number of reports have implicated the use of circulating biomarkers for detection, treatment planning, response monitoring, and prognosis assessment. Although these new biomarkers can provide a wide range of possible clinical applications, no validated circulating biomarkers have yet been integrated into clinical practice for head and neck cancer. In this review, we summarize the current knowledge of circulating biomarkers in this field, focusing on their feasibility, limitations, and key areas of clinical applications. We also highlight recent advances in salivary diagnostics and their potential application in head and neck cancer.
Collapse
Affiliation(s)
- T Nonaka
- 1 Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California, Los Angeles, CA, USA.,2 Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - D T W Wong
- 1 Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California, Los Angeles, CA, USA.,2 Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Bastos DA, Antonarakis ES. CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert Rev Mol Diagn 2018; 18:155-163. [PMID: 29319382 PMCID: PMC6088794 DOI: 10.1080/14737159.2018.1427068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Prostate cancer is a highly heterogeneous disease, with remarkably different prognosis across all stages. Increased circulating tumor cell (CTC) count (≥ 5) using the CellSearch assay has been identified as one of the markers that can be used to predict survival, with added value beyond currently available prognostic factors. Recently, androgen receptor splice variant 7 (AR-V7) detection has been associated with worse outcomes for patients with castration-resistant prostate cancer (CRPC) treated with novel androgen receptor-signaling (ARS) inhibitors such as abiraterone and enzalutamide but not taxane chemotherapies. Areas covered: In this manuscript, the authors review the available biomarkers in CRPC and discuss emerging data on the value of CTC-derived AR-V7 status to assess prognosis and its potential role to guide treatment selection for patients with advanced prostate cancer. Expert commentary: Current evidence supports AR-V7 status as a prognostic biomarker and also as a potential predictive biomarker for patients with mCRPC. The authors expect that the incorporation of AR-V7 status and other biomarkers (e.g. AR mutations) in the sequential assessment of patients with advanced prostate cancer will lead to a more rational use of available and future therapies, with significant improvements in outcomes for our patients.
Collapse
MESH Headings
- Alternative Splicing
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor
- Humans
- Male
- Mutation
- Neoplasm Staging
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Prostatic Neoplasms/blood
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Receptors, Androgen/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Diogo A. Bastos
- Department of Oncology, Hospital Sirio-Libanes, Sao Paulo-SP, Brazil
| | - Emmanuel S. Antonarakis
- Departments of Oncology and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Yeop Majlis B, Hoe SLL, Marzuki M, Khoo ASB, Ostrikov K(K, Ataur Rahman M, Sriram S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. BIOMICROFLUIDICS 2018; 12:011503. [PMID: 29531634 PMCID: PMC5825230 DOI: 10.1063/1.5010158] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 05/15/2023]
Abstract
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Collapse
Affiliation(s)
- Jun Yuan Chan
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | | | - Mohd Anuar Md Ali
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Chee Kuang Kok
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | | | | | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
43
|
Gallerani G, Cocchi C, Bocchini M, Piccinini F, Fabbri F. Characterization of Tumor Cells Using a Medical Wire for Capturing Circulating Tumor Cells: A 3D Approach Based on Immunofluorescence and DNA FISH. J Vis Exp 2017. [PMID: 29286485 PMCID: PMC5755680 DOI: 10.3791/56936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Circulating tumor cells (CTCs) are associated with poor survival in metastatic cancer. Their identification, phenotyping, and genotyping could lead to a better understanding of tumor heterogeneity and thus facilitate the selection of patients for personalized treatment. However, this is hampered because of the rarity of CTCs. We present an innovative approach for sampling a high volume of the patient blood and obtaining information about presence, phenotype, and gene translocation of CTCs. The method combines immunofluorescence staining and DNA fluorescent-in-situ-hybridization (DNA FISH) and is based on a functionalized medical wire. This wire is an innovative device that permits the in vivo isolation of CTCs from a large volume of peripheral blood. The blood volume screened by a 30-min administration of the wire is approximately 1.5-3 L. To demonstrate the feasibility of this approach, epithelial cell adhesion molecule (EpCAM) expression and the chromosomal translocation of the ALK gene were determined in non-small-cell lung cancer (NSCLC) cell lines captured by the functionalized wire and stained with an immuno-DNA FISH approach. Our main challenge was to perform the assay on a 3D structure, the functionalized wire, and to determine immuno-phenotype and FISH signals on this support using a conventional fluorescence microscope. The results obtained indicate that catching CTCs and analyzing their phenotype and chromosomal rearrangement could potentially represent a new companion diagnostic approach and provide an innovative strategy for improving personalized cancer treatments.
Collapse
Affiliation(s)
- Giulia Gallerani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS;
| | | | - Martine Bocchini
- Nuclear Medicine Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | - Filippo Piccinini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| |
Collapse
|
44
|
Yoneda K, Chikaishi Y, Kuwata T, Ohnaga T, Tanaka F. Capture of mesothelioma cells with 'universal' CTC-chip. Oncol Lett 2017; 15:2635-2640. [PMID: 29434985 DOI: 10.3892/ol.2017.7619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive malignant tumor, predominantly associated with job-related exposure to asbestos. Development of effective and non-invasive modalities for diagnosis is an important issue in occupational medicine. Circulating tumor cells (CTCs), which are tumor cells that are shed from primary tumors and circulate in the peripheral blood, may be detected at an earlier stage than malignant tumors, and detection of CTCs may provide a novel insight into the diagnosis of MM. In a previous study evaluating clinical utility of CTCs, detected with a widely used system 'CellSearch', the authors indicated a significant however insufficient capability in the diagnosis of MM, suggesting need for a more sensitive system. Accordingly, the authors developed a novel microfluidic system to capture CTCs (CTC-chip), and demonstrated that the CTC-chip effectively captured MM cells (ACC-MESO-4) spiked in the blood by conjugating an anti-podoplanin antibody. The results of the present study demonstrated that the CTC-chip coated with the anti-podoplanin antibody captured another MM cell (ACC-MESO-1). However, the capture efficiencies were lower than those for ACC-MESO-4. In addition, an anti-mesothelin antibody was used to capture CTCs, however the CTC-chip coated with the anti-mesothelin antibody failed to effectively capture MM cells, possibly due to low mesothelin expression. Overall, the CTC-chip may capture specific types of CTCs by conjugating any antibody against an antigen expressed on CTCs, and may be a useful system for the diagnosis of malignant tumors, including MM.
Collapse
Affiliation(s)
- Kazue Yoneda
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuhiro Chikaishi
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Taiji Kuwata
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takashi Ohnaga
- Central Research Institute, Toyama Industrial Technology Center, Takaoka, Toyama 933-0981, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
45
|
Chen Y, Guo W, Fan J, Chen Y, Zhang X, Chen X, Luo P. The applications of liquid biopsy in resistance surveillance of anaplastic lymphoma kinase inhibitor. Cancer Manag Res 2017; 9:801-811. [PMID: 29263703 PMCID: PMC5724713 DOI: 10.2147/cmar.s151235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the clinical promotion of precision medicine and individualized medical care, molecular targeted medicine has been used to treat non-small cell lung cancer (NSCLC) patients and proved to be significantly effective. Anaplastic lymphoma kinase (ALK) inhibitor is one of the most important specific therapeutic agents for patients with ALK-positive NSCLC. It can extend the survival of patients. However, resistance to the ALK inhibitor inevitably develops in the application process. So, the real-time resistance surveillance is particularly important, and liquid biopsy is one of the most potential inspection methods. Circulating tumor cells, circulating free tumor DNA and exosome in body fluid are used as the main detection biomarkers to reflect the occurrence of resistance in real time through sequencing or counting and then to guide the follow-up treatment.
Collapse
Affiliation(s)
- Yating Chen
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenjie Guo
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Junsheng Fan
- Department of Respiratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuqing Chen
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoli Zhang
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Respiratory, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Zhou M, Zheng H, Wang Z, Li R, Liu X, Zhang W, Wang Z, Li H, Wei Z, Hu Z. Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm. Theranostics 2017; 7:4710-4721. [PMID: 29187898 PMCID: PMC5706094 DOI: 10.7150/thno.20440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Enumerating circulating tumor cells (CTCs) has been demonstrably useful in cancer treatment. Although there are several approaches that have proved effective in isolating CTC-like cells, the crucial identification of CTCs continues to rely on the manual interpretation of immunofluorescence images of all cells that have been isolated. This procedure is time consuming and more importantly, CTC identification relies on subjective criteria that may differ between examiners. In this study, we describe the design, testing, and verification of a microfluidic platform that provides accurate and automated CTC enumeration using a common objective criterion. Methods: The platform consists of a multi-functional microfluidic chip and a unique image processing algorithm. The microfluidic chip integrates blood filtering, cell isolation, and single cell positioning to ensure minimal cell loss, efficient cell isolation, and fixed arraying of single cells to facilitate downstream image processing. By taking advantage of the microfluidic chip design to reduce calculation loads and eliminate measurement errors, our specially designed algorithm has the capability of rapidly interpreting hundreds of images to provide accurate CTC counts. Results: Following intensive optimization of the microfluidic chip, the image processing algorithm, and their collaboration, we verified the complete platform by enumerating CTCs from six clinical blood samples of patients with breast cancer. Compared to tube-based CTC isolation and manual CTC identification, our platform had better accuracy and reduced the time needed from sample loading to result review by 50%. Conclusion: This automated CTC enumeration platform demonstrates not only a sound strategy in integrating a specially designed multi-functional microfluidic chip with a unique image processing algorithm for robust, accurate, and "hands-free" CTC enumeration, but may also lead to its use as a novel in vitro diagnostic device used in clinics and laboratories as readily as a routine blood test.
Collapse
Affiliation(s)
- Mingxing Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Hui Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhaoba Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Ren Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weikai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing 314000, China
| |
Collapse
|
47
|
Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, Charafe-Jauffret E, Pham K, Molck C, Rolland N, Bourgaux JF, Prudhomme M, Philippe C, Bravo S, Boyer JC, Canterel-Thouennon L, Taylor GR, Hsu A, Pascussi JM, Hollande F, Pannequin J. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 2017; 66:1802-1810. [PMID: 27456153 PMCID: PMC5595103 DOI: 10.1136/gutjnl-2016-311447] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Although counting of circulating tumour cells (CTC) has attracted a broad interest as potential markers of tumour progression and treatment response, the lack of functional characterisation of these cells had become a bottleneck in taking these observations to the clinic. Our objective was to culture these cells in order to understand them and exploit their therapeutic potential to the full. DESIGN Here, hypothesising that some CTC potentially have cancer stem cell (CSC) phenotype, we generated several CTC lines from the blood of patients with advanced metastatic colorectal cancer (CRC) based on their self-renewal abilities. Multiple standard tests were then employed to characterise these cells. RESULTS Our CTC lines self-renew, express CSC markers and have multilineage differentiation ability, both in vitro and in vivo. Patient-derived CTC lines are tumorigenic in subcutaneous xenografts and are also able to colonise the liver after intrasplenic injection. RNA sequencing analyses strikingly demonstrate that drug metabolising pathways represent the most upregulated feature among CTC lines in comparison with primary CRC cells grown under similar conditions. This result is corroborated by the high resistance of the CTC lines to conventional cytotoxic compounds. CONCLUSIONS Taken together, our results directly demonstrate the existence of patient-derived colorectal CTCs that bear all the functional attributes of CSCs. The CTC culture model described here is simple and takes <1 month from blood collection to drug testing, therefore, routine clinical application could facilitate access to personalised medicine. CLINICAL TRIAL REGISTRATION ClinicalTrial.gov NCT01577511.
Collapse
Affiliation(s)
- Fanny Grillet
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Elsa Bayet
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Olivia Villeronce
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Luke Zappia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ebba Louise Lagerqvist
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Sebastian Lunke
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Kym Pham
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia,Center for Translational Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina Molck
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | - Sophie Bravo
- Laboratoire de Biochimie, CHU Carémeau, Nîmes, France
| | | | | | - Graham Roy Taylor
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Arthur Hsu
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Jean Marc Pascussi
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Frédéric Hollande
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie Pannequin
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| |
Collapse
|
48
|
Maertens Y, Humberg V, Erlmeier F, Steffens S, Steinestel J, Bögemann M, Schrader AJ, Bernemann C. Comparison of isolation platforms for detection of circulating renal cell carcinoma cells. Oncotarget 2017; 8:87710-87717. [PMID: 29152114 PMCID: PMC5675666 DOI: 10.18632/oncotarget.21197] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Analysis of circulating tumor cells (CTCs) has progressed in several tumor entities. However, little is known about CTCs in clear cell renal cell carcinoma (ccRCC) patients. Aim of our studies was to build a stable in vitro fundament for isolation of CTCs in ccRCC. Methods We compared the analytical performance of different CTC isolation methods with regard to yield and purity: EpCAM based enrichment, leukocyte depletion and size based enrichment. EpCAM and cytokeratin 8 (KRT8) as biomarker for CTCs expression were evaluated in ccRCC cell lines as well as clinical samples. Results While the EpCAM based approach failed to successfully isolate tumor cells, CD45 based approaches showed intermediate recovery rates. The cell-size based Parsortix system showed highest recovery rates. EpCAM expression was low or absent in most cell lines as well as in clinical samples, whereas KRT8 was detected as a potential biomarker in ccRCC. Conclusion EpCAM based approaches might miss a high number of CTCs due to low or absent expression of EpCAM in ccRCC, as shown in cell lines as well as in patient samples. We identified the cell-sized based, label independent Parsortix system to be the most effective recovery system for ccRCC CTCs.
Collapse
Affiliation(s)
- Yvonne Maertens
- Clinic for Urology, University Hospital Muenster, Muenster, Germany
| | - Verena Humberg
- Clinic for Urology, University Hospital Muenster, Muenster, Germany
| | - Franziska Erlmeier
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
| | - Sandra Steffens
- Clinic for Urology, University Hospital Muenster, Muenster, Germany
| | - Julie Steinestel
- Clinic for Urology, University Hospital Muenster, Muenster, Germany
| | - Martin Bögemann
- Clinic for Urology, University Hospital Muenster, Muenster, Germany
| | | | | |
Collapse
|
49
|
Zhou L, Dicker DT, Matthew E, El-Deiry WS, Alpaugh RK. Circulating tumor cells: silent predictors of metastasis. F1000Res 2017; 6. [PMID: 28868131 PMCID: PMC5558099 DOI: 10.12688/f1000research.11313.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) were added to the arsenal of clinical testing in 2004 for three cancer types: metastatic breast, prostate, and colorectal cancer. CTCs were found to be an independent prognostic indicator of survival for these three diseases. Multiple enrichment/isolation strategies have been developed and numerous assay applications have been performed using both single and pooled captured/enriched CTCs. We have reviewed the isolation techniques and touched on many analyses. The true utility of a CTC is that it acts as a “silent” predictor of metastatic disease. The mere presence of a single CTC is an indication that disease has spread from the primary site. Comments and suggestions have been set forth for CTCs and cell-free DNA to be used as a screening panel for the early detection of disease recurrence and metastatic spread, providing the opportunity for early intervention with curative intent to treat metastatic disease.
Collapse
Affiliation(s)
- LanLan Zhou
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
50
|
Au SH, Edd J, Haber DA, Maheswaran S, Stott SL, Toner M. Clusters of Circulating Tumor Cells: a Biophysical and Technological Perspective. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 3:13-19. [PMID: 29226271 DOI: 10.1016/j.cobme.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vast majority of cancer associated deaths result from metastasis, yet the behaviors of its most potent cellular driver, circulating tumor cell clusters, are only beginning to be revealed. This review highlights recent advances to our understanding of tumor cell clusters with emphasis on enabling technologies. The importance of intercellular adhesions among cells in clusters have begun to be unraveled with the aid of promising microfluidic strategies for isolating clusters from patient blood. Due to their metastatic potency, the utility of circulating tumor cell clusters for cancer diagnosis, drug screening, precision oncology and as targets of antimetastatic therapeutics are being explored. The continued development of tools for exploring circulating tumor cell clusters will enhance our fundamental understanding of the metastatic process and may be instrumental in devising new strategies to suppress and eliminate metastasis.
Collapse
Affiliation(s)
- Sam H Au
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Bioengineering, Imperial College London, London, UK SW7 2AZ
| | - Jon Edd
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Daniel A Haber
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Howard Hughes Medical Institute, Bethesda, MD, 20815
| | - Shyamala Maheswaran
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Mehmet Toner
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Shriners Hospital for Children, Boston, MA, 02114
| |
Collapse
|