1
|
Zhang H, Li Q, Zhou H, Feng M, Zhao Y, Zhou R, Chen L, Tachibana H, Cheng X. Identification and characterization of a carbohydrate recognition domain-like region in Entamoeba histolytica Gal/GalNAc lectin intermediate subunit. Microbiol Spectr 2024; 12:e0053824. [PMID: 39365081 PMCID: PMC11537071 DOI: 10.1128/spectrum.00538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Entamoeba histolytica is an enteric protozoan parasite that causes human amebic colitis and extraintestinal abscesses. As a prerequisite for parasite colonization and invasion, adherence of E. histolytica is predominantly mediated by galactose (Gal)- and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectins. The intermediate subunit (Igl) of Gal-/GalNAc-inhibitable lectin is a cysteine-rich protein containing multiple CXXC motifs and is considered a key factor affecting trophozoite's pathogenicity. However, details of the function of Igl during parasite adherence remain unclear. Here, using segmentally expressed Igl proteins and a CHO cell model transfected with Igl fragments, we identified a carbohydrate-recognition domain (CRD)-like region between amino acids 989 and 1,088. Through single- and double-point mutations in the Igl segments, two core CXXC motifs responsible for carbohydrate recognition in the CRD-like region, which are highly conserved among several lectins, were confirmed. In addition to adhesion, the roles of CRD-like region and its core CXXC motifs in various pathogenic effects were further explored. To our knowledge, this is the first report showing an adhesion-related region in E. histolytica Igl. The identification and characterization of this CRD-like region provides further insights into molecular mechanisms underlying E. histolytica pathogenicity and also aids in the determination of a potential drug target in this parasite. IMPORTANCE Entamoeba histolytica adhesion mainly depends on galactose (Gal)-/N-acetyl-d-galactosamine (GalNAc)-inhibitable lectins, subsequently triggering a series of amebic reactions. Among the three subunits of Gal-/GalNAc-inhibitable lectin, heavy subunit and intermediate subunit (Igl) have exhibited lectin activity, but that of Igl remains poorly understood. In this study, we confirmed a carbohydrate-recognition domain (CRD)-like limiting region in E. histolytica Igl and further identified its two core CXXC motifs responsible for carbohydrate recognition. Moreover, the role of Igl's CRD-like region and its CXXC motifs in hemolysis and pathogenic effects was explored. This is the first study to determine an adhesion-related region in E. histolytica Igl protein, providing a new reference direction for subsequent research studies. Since the potential homogeneity of galectin-2 in several mammals and Igl CRD-like region, it could be meaningful to relate the corresponding pathogeneses and phenotypes of these two proteins. Except for adhesion, studies on the involvement of Igl CRD-like region in different parasite-host interactions are also promising.
Collapse
Affiliation(s)
- Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingshan Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Hanuman S, B HK, Pai KSR, Nune M. Surface-Conjugated Galactose on Electrospun Polycaprolactone Nanofibers: An Innovative Scaffold for Uterine Tissue Engineering. ACS OMEGA 2024; 9:34314-34328. [PMID: 39157094 PMCID: PMC11325431 DOI: 10.1021/acsomega.3c10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
The uterus, a vital organ in the female reproductive system, nurtures and supports developing embryos until maturity. This study focuses on addressing uterine related problems by creating a nanofibrous scaffold to regenerate uterine myometrial tissue, closely resembling the native extracellular matrix (ECM) for enhanced efficacy. To achieve this, we utilized polycaprolactone (PCL) as a biomaterial and employed an electrospinning technique to generate PCL nanofibers in both random and aligned orientations. Due to the inherent hydrophobic nature of PCL nanofibers, a two-step wet chemistry surface modification technique is used, involving the conjugation of galactose onto them. Galactose, a lectin-binding sugar, was chosen to enhance the scaffold's hydrophilicity, thereby improving cell adhesion and fostering l-selectin-based interactions between the scaffold and uterine cells. These interactions, in turn, activated uterine fibroblasts, leading to ECM remodeling. The optimized electrospinning process successfully generated random and aligned nanofibers. Subsequent surface modification was carried out, and the modified scaffold was subjected to various physicochemical characterization, such as the ninhydrin assay, enzyme-linked lectin assay techniques that revealed successful galactose conjugation, and mechanical characterization to assess any changes in material bulk properties resulting from the modification. The tensile strength of random galactose-modified PCL fibers reached 0.041 ± 0.01 MPa, outperforming random unmodified PCL fibers (0.026 ± 0.01 MPa), aligned unmodified PCL fibers (0.011 ± 0.001 MPa), and aligned modified PCL fibers (0.016 ± 0.002 MPa). Cytocompatibility studies with human uterine fibroblast cells showed enhanced viability and proliferation on the modified scaffolds. Initial pilot studies were attempted in the current study involving subcutaneous implantation in the dorsal area of Wistar rats to assess biocompatibility and tissue response before proceeding to intrauterine implantation indicated that the modification did not induce adverse inflammation in vivo. In conclusion, our study introduces a surface-modified PCL nanofibrous material for myometrial tissue engineering, offering promise in addressing myometrial damage and advancing uterine health and reproductive well-being.
Collapse
Affiliation(s)
- Srividya Hanuman
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Harish Kumar B
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K. Sreedhara Ranganath Pai
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Manasa Nune
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
de Sousa GF, Lund RG, da Silva Pinto L. The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview. Curr Pharm Des 2023; 29:2618-2625. [PMID: 37933218 DOI: 10.2174/0113816128264103231030093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.
Collapse
Affiliation(s)
- Guilherme Feijó de Sousa
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Rafael Guerra Lund
- School of Dentistry, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Luciano da Silva Pinto
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
4
|
Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232315319. [PMID: 36499646 PMCID: PMC9737805 DOI: 10.3390/ijms232315319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skin fibrosis is a hallmark of a wide array of dermatological diseases which can greatly impact the patients' quality of life. Galectin-3 (GAL-3) has emerged as a central regulator of tissue fibrosis, playing an important pro-fibrotic role in numerous organs. Various studies are highlighting its importance as a skin fibrotic diseases biomarker; however, there is a need for further studies that clarify its role. This paper aims to ascertain whether the expression of GAL-3 is increased in relevant in vitro and in vivo models of skin fibrosis. We studied the role of GAL-3 in vitro using normal human dermal fibroblasts (NHDF) and fibrocytes. In addition, we used a skin fibrosis murine model (BALB/c mice) and human biopsies of healthy or keloid tissue. GAL-3 expression was analyzed using real time PCR, Western blot and immunostaining techniques. We report a significantly increased expression of GAL-3 in NHDF and fibrocytes cell cultures following stimulation with transforming growth factor β1 (TGFβ1). In vivo, GAL-3 expression was increased in a murine model of systemic sclerosis and in human keloid biopsies. In sum, this study underlines the involvement of GAL-3 in skin fibrosis using several models of the disease and highlights its role as a relevant target.
Collapse
|
5
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
6
|
Chen JL, Chen Y, Xu DX, Chen DZ. Possible important roles of galectins in the healing of human fetal membranes. Front Endocrinol (Lausanne) 2022; 13:941029. [PMID: 36017312 PMCID: PMC9395672 DOI: 10.3389/fendo.2022.941029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The fetal membranes healing is a complex and dynamic process of replacing devitalized and missing cellular structures and tissue layers. Multiple cells and extracellular matrices, and cell differentiation, migration and proliferation may participate in restoring the integrity of damaged tissue, however this process still remains unclear. Therefore, there is a need to identify and integrate new ideas and methods to design a more effective dressing to accelerate fetal membrane healing. This review explores the function and role of galectins in the inflammatory, epithelial mesenchymal transition, proliferative migration, and remodeling phases of fetal membrane healing. In conclusion, the preliminary findings are promising. Research on amnion regeneration is expected to provide insight into potential treatment strategies for premature rupture of membranes.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Laboratory, Haidong No.2 People’s Hospital, Haidong, China
| |
Collapse
|
7
|
Yu D, Bu M, Yu P, Li Y, Chong Y. Regulation of wound healing and fibrosis by galectins. J Mol Med (Berl) 2022; 100:861-874. [PMID: 35589840 DOI: 10.1007/s00109-022-02207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Galectins are a family of proteins with at least one carbohydrate-recognition domain. Galectins are present in various tissues and organs and participate in different physiological and pathological molecular reactions in vivo. Wound healing is the basic process of traumatic disease recovery. Wound healing involves three overlapping stages: inflammation, proliferation, and remodelling. Furthermore, a comparison of wound healing with the tumour microenvironment revealed that galectin plays a key role in the wound healing process. The current review describes the role of galectin in inflammation, angiogenesis, re-epithelialisation, and fibrous scar formation and evaluates its potential as a therapeutic drug for wounds.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ming Bu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ping Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yaping Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China. .,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
8
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Galectin-8, cytokines, and the storm. Biochem Soc Trans 2022; 50:135-149. [PMID: 35015084 PMCID: PMC9022973 DOI: 10.1042/bst20200677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) belongs to a family of animal lectins that modulate cell adhesion, cell proliferation, apoptosis, and immune responses. Recent studies have shown that mammalian Gal-8 induces in an autocrine and paracrine manner, the expression and secretion of cytokines and chemokines such as RANKL, IL-6, IL-1β, SDF-1, and MCP-1. This involves Gal-8 binding to receptor complexes that include MRC2/uPAR/LRP1, integrins, and CD44. Receptors ligation triggers FAK, ERK, Akt, and the JNK signaling pathways, leading to induction of NF-κB that promotes cytokine expression. Indeed, immune-competent Gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for Gal-8 transgenic animals. Cytokine and chemokine secretion, induced by Gal-8, promotes the migration of cancer cells toward cells expressing this lectin. Accordingly, Gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These observations suggest the existence of a ‘vicious cycle’ whereby Gal-8 expression and secretion promotes the secretion of cytokines and chemokines that further promote Gal-8 expression. This ‘vicious cycle’ could enhance the development of a ‘cytokine storm’ which is a key contributor to the poor prognosis of COVID-19 patients.
Collapse
|
10
|
Ajovalasit A, Redondo-Gómez C, Sabatino MA, Okesola BO, Braun K, Mata A, Dispenza C. Carboxylated-xyloglucan and peptide amphiphile co-assembly in wound healing. Regen Biomater 2021; 8:rbab040. [PMID: 34386265 PMCID: PMC8355605 DOI: 10.1093/rb/rbab040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks. At a higher concentration, CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by small-amplitude oscillatory shear rheological measurements and compression tests at different CXG/PA-H3 ratios. A preliminary biological evaluation has been carried out both in vitro with HaCat cells and in vivo in a mouse model.
Collapse
Affiliation(s)
- Alessia Ajovalasit
- Dipartimento di Ingegneria (DI), Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, Palermo 90128, Italy
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, UK
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Carlos Redondo-Gómez
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, UK
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Maria Antonietta Sabatino
- Dipartimento di Ingegneria (DI), Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, Palermo 90128, Italy
| | - Babatunde O Okesola
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, UK
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Kristin Braun
- Blizard Institute, Barts and The London School of Medicine and Dentistry, The Blizard Building, 4 Newark Street, London E1 2AT, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Clelia Dispenza
- Dipartimento di Ingegneria (DI), Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, Palermo 90128, Italy
- Istituto di Biofisica (IBF), Consiglio Nazionale Delle Ricerche (CNR), Via U. La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
11
|
Sedlář A, Trávníčková M, Bojarová P, Vlachová M, Slámová K, Křen V, Bačáková L. Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22105144. [PMID: 34067978 PMCID: PMC8152275 DOI: 10.3390/ijms22105144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 128 44 Prague 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná, CZ 272 01 Kladno, Czech Republic
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| | - Miluše Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| |
Collapse
|
12
|
Patel DM, Kitani Y, Korsnes K, Iversen MH, Brinchmann MF. A Truncated Galectin-3 Isolated from Skin Mucus of Atlantic Salmon Salmo salar Binds to and Modulates the Proteome of the Gram-Negative Bacteria Moritella viscosa. Mar Drugs 2020; 18:md18020102. [PMID: 32033203 PMCID: PMC7074318 DOI: 10.3390/md18020102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), β-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.
Collapse
Affiliation(s)
- Deepti Manjari Patel
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa 927-0553, Japan
| | - Kjetil Korsnes
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Martin Haugmo Iversen
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Monica Fengsrud Brinchmann
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
- Correspondence:
| |
Collapse
|
13
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
14
|
Hyaluronic Acid Accelerates Re-epithelialization and Alters Protein Expression in a Human Wound Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2221. [PMID: 31333952 PMCID: PMC6571313 DOI: 10.1097/gox.0000000000002221] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Hyaluronic acid (HA), a large glycosaminoglycan involved in proliferation, migration, and tissue repair, is suggested to be an important factor for keratinocyte activation and re-epithelialization. The experimental hypothesis of this study was that HA accelerates re-epithelialization, and we aimed to investigate the effect of exogenous intradermal HA during deep dermal, incisional wound healing in vivo in humans, the primary endpoint being re-epithelialization. Methods: A total of 8 standardized deep dermal incisional wounds (depth 1.6 mm, width 1.8 mm) per subject were induced in 10 healthy volunteers. Two of the wound sites per subject were pretreated with injections of HA and 2 with saline solution. At 2 time points (24 hours and 14 days), 2 biopsies for each treatment group (one for histology and one for proteomics) were taken. Skin erythema was measured at 24-hour intervals for 14 days as a surrogate measurement of inflammation. Results: At 24 hours, 8 of 9 wounds pretreated with HA showed complete re-epithelization, whereas none of the wounds pretreated with saline had re-epithelized. Wounds pretreated with HA also showed a 10-fold regulation of 8 identified proteins involved in wound healing compared to wounds treated with saline solution. No difference in inflammation, as measured as erythema, could be seen between any of the groups. Conclusions: We conclude that HA accelerates re-epithelialization and stimulates an altered protein expression in vivo in human deep dermal incisional skin wounds, but has no effect on the inflammation process as measured by erythema.
Collapse
|
15
|
AbuSamra DB, Argüeso P. Lectin-Glycan Interactions in Corneal Infection and Inflammation. Front Immunol 2018; 9:2338. [PMID: 30349544 PMCID: PMC6186829 DOI: 10.3389/fimmu.2018.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cornea is an extraordinary component of vision that functions as the principal barrier to pathogens in the eye while allowing light transmission into the retina. Understanding the cellular and molecular mechanisms that maintain homeostasis in this tissue is the subject of intense scientific study given the high prevalence of corneal disease. Over the past decade, the interactions between lectins and glycans on plasma membranes have emerged as important regulatory factors in corneal biology. In particular, members of the galectin family have been shown to bind multiple β-galactoside-containing receptors to regulate immunopathological processes associated with viral and bacterial infection, transplantation, wound healing, dry eye, angiogenesis, and lymphangiogenesis. In this review, we describe the current understanding of how these surface interactions intersect with different pathways to activate unique cellular responses in cornea as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Choi JW, Nam KM, Choi HR, Lee DH, Huh CH, Park KC. Decreased Galectin-3 and -7 Expressions in Old-Aged Skin and Their Differential Expression in Skin Equivalents. Ann Dermatol 2018; 30:375-378. [PMID: 29853761 PMCID: PMC5929964 DOI: 10.5021/ad.2018.30.3.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/24/2017] [Accepted: 06/11/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jee Woong Choi
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Kyung Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
17
|
Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Int J Mol Sci 2018; 19:ijms19020392. [PMID: 29382172 PMCID: PMC5855614 DOI: 10.3390/ijms19020392] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
Galectins are β-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.
Collapse
|
18
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
19
|
McLeod K, Walker JT, Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: insights for chronic skin wound therapeutics. J Cell Commun Signal 2018; 12:281-287. [PMID: 29372416 DOI: 10.1007/s12079-018-0453-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
A member of the lectin family, galectin-3 is a 250 amino-acid protein that contains a C-terminus carbohydrate recognition domain (CRD) that recognizes β-galactosides. Considered to have certain common properties associated with matricellular proteins, galectin-3 is expressed in the dermis and epidermis in healthy skin and is upregulated in skin healing, peaking at day 1 post wounding in mice. Galectin-3 has been implicated in several processes central to the wound healing response, specifically in the regulation of inflammation, macrophage polarization, angiogenesis, fibroblast to myofibroblast transition and re-epithelialization. However, it appears that many of the effects of Galectin-3 are highly tissue specific and context dependent. Genetic deletion of galectin-3 shows different effects in skin compared to lung, heart, and kidney remodeling. In this review, we will compare galectin-3 functions in these tissues. Furthermore, we will discuss, based on its identified regulation of cell processes, whether in an exogenous form, galectin-3 could represent a novel therapeutic for impaired skin healing.
Collapse
Affiliation(s)
- Karrington McLeod
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada
| | - John T Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada
| | - Douglas W Hamilton
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada. .,Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, 1151 Richmond St, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
20
|
Reesink HL, Sutton RM, Shurer CR, Peterson RP, Tan JS, Su J, Paszek MJ, Nixon AJ. Galectin-1 and galectin-3 expression in equine mesenchymal stromal cells (MSCs), synovial fibroblasts and chondrocytes, and the effect of inflammation on MSC motility. Stem Cell Res Ther 2017; 8:243. [PMID: 29096716 PMCID: PMC5667510 DOI: 10.1186/s13287-017-0691-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/08/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of β-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs) express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility. Methods Equine galectin-1 and -3 gene expression was quantified using qRT-PCR in cultured BMSCs, synoviocytes and articular chondrocytes, in addition to synovial membrane and articular cartilage tissues. Galectin gene expression, protein expression, and protein secretion were measured in equine BMSCs following exposure to inflammatory cytokines (IL-1β 5 and 10 ng/mL, TNF-α 25 and 50 ng/mL, or LPS 0.1, 1, 10 and 50 μg/mL). BMSC focal adhesion formation was assessed using confocal microscopy, and BMSC motility was quantified in the presence of inflammatory cytokines (IL-1β or TNF-α) and the pan-galectin inhibitor β-lactose (100 and 200 mM). Results Equine BMSCs expressed 3-fold higher galectin-1 mRNA levels as compared to cultured synovial fibroblasts (p = 0.0005) and 30-fold higher galectin-1 (p < 0.0001) relative to cultured chondrocytes. BMSC galectin-1 mRNA expression was significantly increased as compared to carpal synovial membrane and articular cartilage tissues (p < 0.0001). IL-1β and TNF-α treatments decreased BMSC galectin gene expression and impaired BMSC motility in dose-dependent fashion but did not alter galectin protein expression. β-lactose abrogated BMSC focal adhesion formation and inhibited BMSC motility. Conclusions Equine BMSCs constitutively express high levels of galectin-1 mRNA relative to other articular cell types, suggesting a possible mechanism for their intra-articular immunomodulatory properties. BMSC galectin expression and motility are impaired in an inflammatory environment, which may limit tissue repair properties following intra-articular administration. β-lactose-mediated galectin inhibition also impaired BMSC adhesion and motility. Further investigation into the effects of joint inflammation on BMSC function and the potential therapeutic effects of BMSC galectin expression in OA is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0691-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Ryan M Sutton
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Carolyn R Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan P Peterson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Julie S Tan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alan J Nixon
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep 2017; 7:11006. [PMID: 28887481 PMCID: PMC5591297 DOI: 10.1038/s41598-017-11212-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/21/2017] [Indexed: 01/12/2023] Open
Abstract
Concomitant expressions of glycan-binding proteins and their bound glycans regulate many pathophysiologic processes, but this issue has not been addressed in liver fibrosis. Activation of hepatic stellate cells (HSCs) is a rate-limiting step in liver fibrosis and is an important target for liver fibrosis therapy. We previously reported that galectin (Gal)-1, a β-galactoside-binding protein, regulates myofibroblast homeostasis in oral carcinoma and wound healing, but the role of Gal-1 in HSC migration and activation is unclear. Herein, we report that Gal-1 and its bound glycans were highly expressed in fibrotic livers and activated HSCs. The cell-surface glycome of activated HSCs facilitated Gal-1 binding, which upon recognition of the N-glycans on neuropilin (NRP)-1, activated platelet-derived growth factor (PDGF)- and transforming growth factor (TGF)-β-like signals to promote HSC migration and activation. In addition, blocking endogenous Gal-1 expression suppressed PDGF- and TGF-β1-induced signaling, migration, and gene expression in HSCs. Methionine and choline-deficient diet (MCD)-induced collagen deposition and HSC activation were attenuated in Gal-1-null mice compared to wild-type mice. In summary, we concluded that glycosylation-dependent Gal-1/NRP-1 interactions activate TGF-β and PDGF-like signaling to promote the migration and activation of HSCs. Therefore, targeting Gal-1/NRP-1 interactions could be developed into liver fibrosis therapy.
Collapse
|
22
|
Farhadi SA, Hudalla GA. Engineering galectin-glycan interactions for immunotherapy and immunomodulation. Exp Biol Med (Maywood) 2017; 241:1074-83. [PMID: 27229902 DOI: 10.1177/1535370216650055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Galectins, a 15-member family of soluble carbohydrate-binding proteins, are receiving increasing interest as therapeutic targets for immunotherapy and immunomodulation due to their role as extracellular signals that regulate innate and adaptive immune cell phenotype and function. However, different galectins can have redundant, synergistic, or antagonistic signaling activity in normal immunological responses, such as resolution of inflammation and induction of antigen-specific tolerance. In addition, certain galectins can be hijacked to promote progression of immunopathologies, such as tumor immune privilege, metastasis, and viral infection, while others can inhibit these processes. Thus, eliciting a desired immunological outcome will likely necessitate therapeutics that can precisely enhance or inhibit particular galectin-glycan interactions. Multivalency is an important determinant of the affinity and specificity of natural galectin-glycan interactions, and is emerging as a key design element for therapeutics that can effectively manipulate galectin bioactivity. This minireview surveys current molecular and biomaterial engineering approaches to create therapeutics that can stabilize galectin multivalency or recapitulate natural glycan multivalency (i.e. "the glycocluster effect"). In particular, we highlight examples of using natural and engineered multivalent galectins for immunosuppression and immune tolerance, with a particular emphasis on treating autoimmune diseases or avoiding transplant rejection. In addition, we present examples of multivalent inhibitors of galectin-glycan interactions to maintain or restore T-cell function, with a particular emphasis on promoting antitumor immunity. Finally, we discuss emerging opportunities to further engineer galectin-glycan interactions for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Yang H, Yin J, Ficarrotta K, Hsu SH, Zhang W, Cheng C. Aberrant expression and hormonal regulation of Galectin-3 in endometriosis women with infertility. J Endocrinol Invest 2016; 39:785-91. [PMID: 26886939 PMCID: PMC4906070 DOI: 10.1007/s40618-016-0435-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/21/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the role and potential molecular mechanism of Galectin-3 (Gal-3) in the etiology of endometriosis-associated infertility. METHODS We detected Gal-3 expression in eutopic endometrium from women with endometriosis-associated infertility and healthy women without endometriosis or infertility. We then evaluated Gal-3 expression in endometrial glandular epithelial cells (EECs) and endometrial stromal cells (ESCs) and investigated its response to hormone stimulation in EECs and ESCs from both groups of women. RESULTS Results of real-time PCR and western blot analysis showed Gal-3 expression in both proliferative and secretory stages of the menstrual cycle decreased significantly in women with endometriosis-associated infertility compared to healthy women. The changes in expression of Gal-3 were more dramatic in EECs than ESCs. Moreover, estrogen (E2) and progesterone (P4) induced Gal-3 expression in EECs of healthy groups, and P4 was more significant than E2 and combined E2 and P4 (E2P4). However, in the endometriosis group, P4 failed to induce a similar increase in Gal-3 expression. CONCLUSIONS Our results suggest that aberrant expression of Gal-3 might contribute to infertility in patients with endometriosis due to progesterone resistance.
Collapse
Affiliation(s)
- H. Yang
- />Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai, 200011 China
| | - J. Yin
- />Department of Gynecology, Chongqing Ninth People’s Hospital, Chongqing, China
| | - K. Ficarrotta
- />Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - S. H. Hsu
- />Department of Medicine, SUNY Downstate Medical Center, New York, NY USA
| | - W. Zhang
- />Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai, 200011 China
| | - C. Cheng
- />Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
24
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Chiappori A, De Ferrari L, Folli C, Mauri P, Riccio AM, Canonica GW. Biomarkers and severe asthma: a critical appraisal. Clin Mol Allergy 2015; 13:20. [PMID: 26430389 PMCID: PMC4590266 DOI: 10.1186/s12948-015-0027-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Severe asthma (SA) is a clinically and etiologically heterogeneous respiratory disease which affects among 5–10 % of asthmatic patients. Despite high-dose therapy, a large patients percentage is not fully controlled and has a poor quality of life. In this review, we describe the biomarkers actually known in scientific literature and used in clinical practice for SA assessment and management: neutrophils, eosinophils, periostin, fractional exhaled nitric oxide, exhaled breath condensate and galectins. Moreover, we give an overview on clinical and biological features characterizing severe asthma, paying special attention to the potential use of these ones as reliable markers. We finally underline the need to define different biomarkers panels to select patients affected by severe asthma for specific and personalized therapeutic approach.
Collapse
Affiliation(s)
- Alessandra Chiappori
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Laura De Ferrari
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Chiara Folli
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Anna Maria Riccio
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Giorgio Walter Canonica
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| |
Collapse
|
26
|
Cortés A, Sotillo J, Muñoz-Antoli C, Fried B, Esteban JG, Toledo R. Altered Protein Expression in the Ileum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda). PLoS Negl Trop Dis 2015; 9:e0004082. [PMID: 26390031 PMCID: PMC4577103 DOI: 10.1371/journal.pntd.0004082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022] Open
Abstract
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. Intestinal helminth infections are among the most prevalent parasitic diseases and about 1 billion people are currently infected with intestinal helminths. Incidence of intestinal helminth infections is high due to both socio-economic factors that facilitates continuous re-infections and the lack of effective vaccines. In this context, further knowledge on the host-parasite relationships is required to elucidate the factors that determine the expulsion of the intestinal helminths or, in contrast, the chronic establishment of the infections. Echinostoma caproni (Trematoda) is an intestinal trematode that has been extensively used as experimental model to investigate these factors. Depending on the host species. E. caproni is rapidly rejected or develops chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in a host in which the parasites develop chronic infections. These data may serve to get a better understanding of the factors determining the development of chronic intestinal infections. A total of 37 spots were identified differentially expressed. These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, mitochondrial and cytoskeletal proteins among others. This suggests that the changes in these processes in the intestinal mucosa may facilitate the development of chronic infections.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carla Muñoz-Antoli
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Bernard Fried
- Department of Biology, Lafayette College, Easton, Pennsylvania, United States of America
| | - J. Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
27
|
Argüeso P, Mauris J, Uchino Y. Galectin-3 as a regulator of the epithelial junction: Implications to wound repair and cancer. Tissue Barriers 2015; 3:e1026505. [PMID: 26451339 DOI: 10.1080/21688370.2015.1026505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
Epithelial cells are closely connected to each other and to the extracellular matrix by a set of adhesive contacts that provide tissues with unique barrier properties and play a prominent role in cell morphology, tissue physiology, and cell signaling. This review highlights advances made in understanding the contributions of galectin-3, a carbohydrate-binding protein with affinity toward β-galactosides, as a modulator of epithelial junction assembly and function. The interactions of galectin-3 within adhesive structures are discussed in relation to wound healing and tumor progression.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| | - Jerome Mauris
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| | - Yuichi Uchino
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| |
Collapse
|