1
|
Wang H, Yang J, Li X, Zhao H. Current state of immune checkpoints therapy for glioblastoma. Heliyon 2024; 10:e24729. [PMID: 38298707 PMCID: PMC10828821 DOI: 10.1016/j.heliyon.2024.e24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM), one of the most aggressive forms of brain cancer, has limited treatment options. Recent years have witnessed the remarkable success of checkpoint inhibitor immunotherapy across various cancer types. Against this backdrop, several clinical trials investigating checkpoint inhibitors for GBM are underway in multiple countries. Furthermore, the integration of immunotherapy with traditional treatment approaches is now emerging as a highly promising strategy. This review summarizes the latest advancements in checkpoint inhibitor immunotherapy for GBM treatment. We provide a concise yet comprehensive overview of current GBM immunotherapy options. Additionally, this review underscores combination strategies and potential biomarkers for predicting response and resistance in GBM immunotherapies.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jing Yang
- Department of Emergency Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Xiangjun Li
- School of medicine, Department of Breast surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
2
|
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X, Yang Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598. [PMID: 37674169 PMCID: PMC10481579 DOI: 10.1186/s12967-023-04437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the prominence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the comprehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. The combination of pathomics and radiomics has revolutionized the concept of a "digital biopsy". As genomics and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer further insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genomics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. This review presents a comprehensive summary of the research on important radiomics biomarkers for predicting the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the challenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance and value for comprehensive TME evaluation and cancer prognosis assessment.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of, Fudan University, Shanghai, 200011, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Xi
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
3
|
Vitiligo-specific soluble biomarkers as early indicators of response to immune checkpoint inhibitors in metastatic melanoma patients. Sci Rep 2022; 12:5448. [PMID: 35361879 PMCID: PMC8971439 DOI: 10.1038/s41598-022-09373-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors (CPIs) strongly improved the outcome of metastatic melanoma patients. However, not all the patients respond to treatment and identification of prognostic biomarkers able to select responding patients is currently of outmost importance. Considering that development of vitiligo-like depigmentation in melanoma patients represents both an adverse event of CPIs and a favorable prognostic factor, we analyzed soluble biomarkers of vitiligo to validate them as early indicators of response to CPIs. Fifty-seven metastatic melanoma patients receiving CPIs were enrolled and divided according to the best overall response to treatment. Patient sera were evaluated at pre-treatment and after 1 and 3 months of therapy. We found that basal CD25 serum levels were higher in stable and responding patients and remained higher during the first 3 months of CPI therapy compared to non-responders. CXCL9 was absent in non-responding patients before therapy beginning. Moreover, an increase of CXCL9 levels was observed at 1 and 3 months of therapy for all patients, although higher CXCL9 amounts were present in stable and responding compared to non-responding patients. Variations in circulating immune cell subsets was also analyzed, revealing a reduced number of regulatory T lymphocytes in responding patients. Altogether, our data indicate that a pre-existing and maintained activation of the immune system could be an indication of response to CPI treatment in melanoma patients.
Collapse
|
4
|
Gitto S, Natalini A, Antonangeli F, Di Rosa F. The Emerging Interplay Between Recirculating and Tissue-Resident Memory T Cells in Cancer Immunity: Lessons Learned From PD-1/PD-L1 Blockade Therapy and Remaining Gaps. Front Immunol 2021; 12:755304. [PMID: 34867987 PMCID: PMC8640962 DOI: 10.3389/fimmu.2021.755304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Gitto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
5
|
Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng 2021; 5:1038-1047. [PMID: 33903744 PMCID: PMC9102991 DOI: 10.1038/s41551-021-00712-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive microenvironment of solid tumours reduces the antitumour activity of chimeric antigen receptor T cells (CAR-T cells). Here, we show that the release-through the implantation of a hyaluronic acid hydrogel-of CAR-T cells targeting the human chondroitin sulfate proteoglycan 4, polymer nanoparticles encapsulating the cytokine interleukin-15 and platelets conjugated with the checkpoint inhibitor programmed death-ligand 1 into the tumour cavity of mice with a resected subcutaneous melanoma tumour inhibits the local recurrence of the tumour as well as the growth of distant tumours, through the abscopal effect. The hydrogel, which functions as a reservoir, facilitates the enhanced distribution of the CAR-T cells within the surgical bed, and the inflammatory microenvironment triggers platelet activation and the subsequent release of platelet-derived microparticles. The post-surgery local delivery of combination immunotherapy through a biocompatible hydrogel reservoir could represent a translational route for preventing the recurrence of cancers with resectable tumours.
Collapse
|
6
|
Buquicchio R, Mastrandrea V, Strippoli S, Quaresmini D, Guida M, Filotico R. Case Report: Autoimmune Pemphigus Vulgaris in a Patient Treated With Cemiplimab for Multiple Locally Advanced Cutaneous Squamous Cell Carcinoma. Front Oncol 2021; 11:691980. [PMID: 34540666 PMCID: PMC8444988 DOI: 10.3389/fonc.2021.691980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a rare and severe autoimmune blistering disorder affecting the skin and mucous membranes, characterized by the production of autoantibodies against two desmosomal adhesion proteins, desmoglein 1 and 3. In patients with advanced squamous cell carcinoma of the skin unfit for surgery and radiotherapy, immune check-point inhibitors, including the anti-Programmed Death-1 (PD-1) agent cemiplimab have been successfully employed proving relevant clinical outcomes. Cemiplimab is a monoclonal antibody capable of inhibiting PD-1 signalling that has recently been approved for the treatment of patients with metastatic or locally advanced cutaneous squamous cell carcinoma. Although the peculiar setting of advanced CSCC involving elderly patients, rare and unusual skin immune-related adverse events such as PV could be observed in cemiplimab treated patients. CASE REPORT A 95-year-old man without a history of autoimmune disease was treated with cemiplimab for multiple and advanced squamous cell carcinomas of the head obtaining a complete response to therapy. After seven cycles of cemiplimab administered every 21 days, the patient developed a mucocutaneous blistering eruption. Clinical diagnosis of PV was suspected on the basis of the diffuse involvement of trunk and extremities with large blisters and necrotic eschar. It was carried out an ELISA test, that showed high level of circulating antibodies against desmoglein 1, thus confirming the diagnosis of PV. For this reason, cemiplimab infusion was discontinued and complete resolution of skin lesions was obtained using oral prednisone 0,8 mg/kg/daily for four weeks. Once remission was achieved, a maintenance dose of 10 mg/day was administered, observing a good control of bullous disease and low value of desmoglein 1. Response to CSCC persisted also during cemiplimab discontinuation, until obtaining a complete remission still persisting at 9 months after the last cycle of therapy. CONCLUSION The case we observed is the first description of PV revealed from cemiplimab therapy, thus suggesting that cemiplimab could allow the arise of underlying autoimmune PV, through a mechanism both T and B-cell-mediated.
Collapse
Affiliation(s)
- Rosalba Buquicchio
- Dermato-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Valentina Mastrandrea
- Dermato-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Sabino Strippoli
- Melanoma and Rare Tumors Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Davide Quaresmini
- Melanoma and Rare Tumors Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Michele Guida
- Melanoma and Rare Tumors Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Raffaele Filotico
- Dermato-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| |
Collapse
|
7
|
Nguyen H, Shah K, Waguespack SG, Hu MI, Habra MA, Cabanillas ME, Busaidy NL, Bassett R, Zhou S, Iyer PC, Simmons G, Kaya D, Pitteloud M, Subudhi SK, Diab A, Dadu R. Immune checkpoint inhibitor related hypophysitis: diagnostic criteria and recovery patterns. Endocr Relat Cancer 2021; 28:419-431. [PMID: 33890870 PMCID: PMC8183642 DOI: 10.1530/erc-20-0513] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Data on the diagnosis, natural course and management of immune checkpoint inhibitor (ICI)-related hypophysitis (irH) are limited. We propose this study to validate the diagnostic criteria, describe characteristics and hormonal recovery and investigate factors associated with the occurrence and recovery of irH. A retrospective study including patients with suspected irH at the University of Texas MD Anderson Cancer Center from 5/2003 to 8/2017 was conducted. IrH was defined as: (1) ACTH or TSH deficiency plus MRI changes or (2) ACTH and TSH deficiencies plus headache/fatigue in the absence of MRI findings. We found that of 83 patients followed for a median of 1.75 years (range 0.6-3), the proposed criteria used at initial evaluation accurately identified 61/62 (98%) irH cases. In the irH group (n = 62), the most common presentation was headache (60%), fatigue (66%), central hypothyroidism (94%), central adrenal insufficiency (69%) and MRI changes (77%). Compared with non-ipilimumab (ipi) regimens, ipi has a stronger association with irH occurrence (P = 0.004) and a shorter time to irH development (P < 0.01). Thyroid, gonadal and adrenal axis recovery occurred in 24, 58 and 0% patients, respectively. High-dose steroids (HDS) or ICI discontinuation was not associated with hormonal recovery. In the non-irH group (n = 19), one patient had isolated central hypothyroidism and six had isolated central adrenal insufficiency. All remained on hormone therapy at the last follow-up. We propose a strict definition of irH that identifies the vast majority of patients. HDS and ICI discontinuation is not always beneficial. Long-term follow-up to assess recovery is needed.
Collapse
Affiliation(s)
- Ha Nguyen
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Komal Shah
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Steven G Waguespack
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Mimi I Hu
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Mouhammed Amir Habra
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Maria E Cabanillas
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Naifa L Busaidy
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Roland Bassett
- Division of Science, Department of Biostatistics, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Shouhao Zhou
- Division of Science, Department of Biostatistics, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Priyanka C Iyer
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Garrett Simmons
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Diana Kaya
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Marie Pitteloud
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K Subudhi
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Adi Diab
- Division of Cancer Medicine, Department of Melanoma Medical Oncology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Ramona Dadu
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas Anderson Cancer Center, Houston, Texas, USA
- Correspondence should be addressed to R Dadu;
| |
Collapse
|
8
|
Metzen M, Bruns M, Deppert W, Schumacher U. Infiltration of Immune Competent Cells into Primary Tumors and Their Surrounding Connective Tissues in Xenograft and Syngeneic Mouse Models. Int J Mol Sci 2021; 22:ijms22084213. [PMID: 33921688 PMCID: PMC8073739 DOI: 10.3390/ijms22084213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023] Open
Abstract
To fight cancer more efficiently with cell-based immunotherapy, more information about the cells of the immune system and their interaction with cancer cells in vivo is needed. Therefore paraffin wax embedded primary breast cancers from the syngeneic mouse WAP-T model and from xenografted tumors of breast, colon, melanoma, ovarian, neuroblastoma, pancreatic, prostate, and small cell lung cancer were investigated for the infiltration of immunocompetent cells by immunohistochemistry using antibodies against leukocyte markers. The following markers were used: CD45 as a pan-leukocyte marker, BSA-I as a dendritic cell marker, CD11b as an NK cell marker, and CD68 as a marker for macrophages. The labeled immune cells were attributed to the following locations: adjacent adipose tissue, tumor capsule, intra-tumoral septae, and cancer cells directly. In xenograft tumors, the highest score of CD45 and CD11b positive, NK, and dendritic cells were found in the adjacent adipose tissue, followed by lesser infiltration directly located at the cancer cells themselves. The detected numbers of CD45 positive cells differed between the tumor entities: few infiltrating cells in breast cancer, small cell lung cancer, neuroblastoma, a moderate infiltration in colon cancer, melanoma and ovarian cancer, strongest infiltration in prostate and pancreatic cancer. In the syngeneic tumors, the highest score of CD45 and CD11b positive, NK and dendritic cells were observed in the tumor capsule, followed by a lesser infiltration of the cancer tissue. Our findings argue for paying more attention to investigate how immune-competent cells can reach the tumor cells directly.
Collapse
Affiliation(s)
- Marlon Metzen
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Correspondence: ; Tel.: +49-(0)40-7410-52586; Fax: +49-(0)40-7410-55427
| | - Michael Bruns
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Wolfgang Deppert
- Heinrich-Pette-Institute, Department of Tumorvirology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| |
Collapse
|
9
|
Shin J, Phelan PJ, Gjoerup O, Bachovchin W, Bullock PA. Characterization of a single chain variable fragment of nivolumab that targets PD-1 and blocks PD-L1 binding. Protein Expr Purif 2021; 177:105766. [PMID: 32987122 PMCID: PMC7518118 DOI: 10.1016/j.pep.2020.105766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/28/2022]
Abstract
Activated T-cells express Programmed cell Death protein 1 (PD-1), a key immune checkpoint receptor. PD-1 functions primarily in peripheral tissues, where T cells may encounter tumor-derived immunosuppressive ligands. Monoclonal antibodies that disrupt the interaction between T-cell derived PD-1 and immunosuppressive ligands, such as PD-L1, have revolutionized approaches to cancer therapy. For instance, Nivolumab is a monoclonal Ab that targets human PD-1 and has played an important role in immune checkpoint therapy. Herein we report the purification and initial characterization of a ~27 kDa single chain variable fragment (scFv) of Nivolumab that targets human PD-1 and blocks binding by PD-L1. The possibility that the anti-PD-1 scFv can serve as both an anti-tumor agent and as an anti-viral agent is discussed. IMPORTANCE: The clinical significance of anti-PD-1 antibodies for treatment of a range of solid tumors is well documented (reviewed in [1-4]). In this report, we describe the results of studies that establish that an anti-PD-1 scFv purified from E. coli binds tightly to human PD-1. Furthermore, we demonstrate that upon binding, the anti-PD-1 scFv disrupts the interaction between PD-1 and PD-L1. Thus, the properties of this scFv, including its small size, stability and affinity for human PD-1, suggest that it has the potential to be a useful reagent in subsequent immunotherapeutic, diagnostic and anti-viral applications.
Collapse
Affiliation(s)
- Jong Shin
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Ole Gjoerup
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - William Bachovchin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
10
|
Clairambault J. Stepping From Modeling Cancer Plasticity to the Philosophy of Cancer. Front Genet 2020; 11:579738. [PMID: 33329717 PMCID: PMC7710795 DOI: 10.3389/fgene.2020.579738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jean Clairambault
- Laboratoire Jacques-Louis Lions, BC 187, Sorbonne Université, Paris, France
- Inria, Paris, France
| |
Collapse
|
11
|
Ai L, Chen J, Yan H, He Q, Luo P, Xu Z, Yang X. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3625-3649. [PMID: 32982171 PMCID: PMC7490077 DOI: 10.2147/dddt.s267433] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 inhibitors are a group of immune checkpoint inhibitors as front-line treatment of multiple types of cancer. However, the serious immune-related adverse reactions limited the clinical application of PD-1/PD-L1 monoclonal antibodies, despite the promising curative effects. Therefore, it is urgent to develop novel inhibitors, such as small molecules, peptides or macrocycles, targeting the PD-1/PD-L1 axis to meet the increasing clinical demands. Our review discussed the mechanism of action of PD-1/PD-L1 inhibitors and presented clinical trials of currently approved PD-1/PD-L1 targeted drugs and the incidence of related adverse reactions, helping clinicians pay more attention to them, better formulate their intervention and resolution strategies. At last, some new inhibitors whose patent have been published are listed, which provide development ideas and judgment basis for the efficacy and safety of novel PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Leilei Ai
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jian Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
12
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
13
|
PD-1 IC Inhibition Synergistically Improves Influenza A Virus-Mediated Oncolysis of Metastatic Pulmonary Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:190-204. [PMID: 32346609 PMCID: PMC7178321 DOI: 10.1016/j.omto.2020.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Recently, we showed that infection of primary lung tumor-bearing mice with oncolytic influenza A viruses (IAVs) led to strong virus-induced tumor cell lysis but also to restoration of immune competence of innate immune cells. Murine B16-F10 melanoma cells are known for their high lung tropism and progressive growth. As these cells are also highly permissive for IAVs, we analyzed their oncolytic and immunomodulatory efficiency against pulmonary B16-F10 lung metastases in vivo. IAV infection abrogated the melanoma-mediated immune suppression in the lung and induced a more than 50% cancer cell lysis. The oncolytic effect reached maximal efficacy 3 days post-infection, but it was not sustained over time. In order to maintain the virus-induced anti-tumor effect, mice with melanoma-derived lung cancers were treated in addition to influenza virus infection with an immune checkpoint inhibitor against programmed death-1 receptor (PD-1). The combined IAV and immune checkpoint inhibition (ICI) therapy resulted in a sustained anti-tumor efficacy, keeping the lung melanoma mass at day 12 of IAV infection still reduced by 50% over the control mice. In conclusion, ICI treatment strongly enhanced the oncolytic effect of influenza virus infection, suggesting that combined treatment is a promising approach against metastatic pulmonary melanoma.
Collapse
|
14
|
Kim YD, Park SM, Ha HC, Lee AR, Won H, Cha H, Cho S, Cho JM. HDAC Inhibitor, CG-745, Enhances the Anti-Cancer Effect of Anti-PD-1 Immune Checkpoint Inhibitor by Modulation of the Immune Microenvironment. J Cancer 2020; 11:4059-4072. [PMID: 32368288 PMCID: PMC7196255 DOI: 10.7150/jca.44622] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are well-known epigenetic regulators with therapeutic potential in various diseases. Recent studies have shown that HDACis are involved in immune-mediated anti-cancer effects and may modulate the activity of immunotherapy agents. CG-745, a histone deacetylase inhibitor, has shown anti-cancer effects in pancreatic cancer, colorectal cancer, and non-small cell lung cancer. However, the exact role of CG-745 within the immune system is largely unknown. In this study, we have shown that CG-745 induces microenvironment changes promoting anti-cancer effect of anti-PD-1 antibody in syngeneic mouse models. Specifically, CG-745 induces or extends IL-2 and IFN-γ expression with or without additional stimulation, and increases proliferation of cytotoxic T cells and NK cells, while inhibiting proliferation of regulatory T cells. The analysis of immune cell distribution in the tumor microenvironment and spleen reveals that CG-745 suppresses M2 macrophage polarization and decreases the myeloid-derived suppressor cells. Recent advances in immunotherapy highlight the anti-cancer effects of immune checkpoint inhibitor despite a relatively limited clinical benefit in the subset of patients. Our results indicate that CG-745 enables the synergistic effects of the immune checkpoint inhibitor combination therapy in various cancers by suppressing tumor microenvironment.
Collapse
Affiliation(s)
- Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sang-Min Park
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Heeyoung Won
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hyunju Cha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sangsook Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| |
Collapse
|
15
|
Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK Cell-Based Immunotherapies in Cancer. Immune Netw 2020; 20:e14. [PMID: 32395366 PMCID: PMC7192832 DOI: 10.4110/in.2020.20.e14] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the development of technologies that can transform immune cells into therapeutic modalities, immunotherapy has remarkably changed the current paradigm of cancer treatment in recent years. NK cells are components of the innate immune system that act as key regulators and exhibit a potent tumor cytolytic function. Unlike T cells, NK cells exhibit tumor cytotoxicity by recognizing non-self, without deliberate immunization or activation. Currently, researchers have developed various approaches to improve the number and anti-tumor function of NK cells. These approaches include the use of cytokines and Abs to stimulate the efficacy of NK cell function, adoptive transfer of autologous or allogeneic ex vivo expanded NK cells, establishment of homogeneous NK cell lines using the NK cells of patients with cancer or healthy donors, derivation of NK cells from induced pluripotent stem cells (iPSCs), and modification of NK cells with cutting-edge genetic engineering technologies to generate chimeric Ag receptor (CAR)-NK cells. Such NK cell-based immunotherapies are currently reported as being promising anti-tumor strategies that have shown enhanced functional specificity in several clinical trials investigating malignant tumors. Here, we summarize the recent advances in NK cell-based cancer immunotherapies that have focused on providing improved function through the use of the latest genetic engineering technologies. We also discuss the different types of NK cells developed for cancer immunotherapy and present the clinical trials being conducted to test their safety and efficacy.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Junghee Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Siyoung A Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jungwon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
17
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Goepfert K, Dinsart C, Rommelaere J, Foerster F, Moehler M. Rational Combination of Parvovirus H1 With CTLA-4 and PD-1 Checkpoint Inhibitors Dampens the Tumor Induced Immune Silencing. Front Oncol 2019; 9:425. [PMID: 31192129 PMCID: PMC6546938 DOI: 10.3389/fonc.2019.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
The recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human ex vivo melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab. The effect of this combination on activation of human T lymphocytes was demonstrated. Expression of CTLA-4, PD-1, and PD-L1 immune checkpoint proteins was upregulated in H-1PV-infected melanoma cells. Nevertheless, maturation of antigen presenting cells such as dendritic cells was triggered by H-1PV infected melanoma cells. Combining H-1PV with checkpoint inhibitors, ipilimumab enhanced TNFα release during maturation of dendritic cells; nivolumab increased the amount of IFNγ release. H-1PV mediated reduction of regulatory T cell activity was demonstrated by lower TGF-ß levels. The combination of ipilimumab and nivolumab resulted in a further decline of TGF-ß levels. Similar results were obtained regarding the activation of cytotoxic T cells. H-1PV infection alone and in combination with both checkpoint inhibitors caused strong activation of CTLs, which was reflected by an increased number of CD8+GranB+ cells and increased release of granzyme B, IFNγ, and TNFα. Our data support the concept of a treatment benefit from combining oncolytic H-1PV with the checkpoint inhibitors ipilimumab and nivolumab, with nivolumab inducing stronger effects on cytotoxic T cells, and ipilimumab strengthening T lymphocyte activity.
Collapse
Affiliation(s)
- Katrin Goepfert
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christiane Dinsart
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Moehler
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20081823. [PMID: 31013796 PMCID: PMC6515163 DOI: 10.3390/ijms20081823] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Telomerase, an enzyme responsible for the synthesis of telomeres, is activated in many cancer cells and is involved in the maintenance of telomeres. The activity of telomerase allows cancer cells to replicate and proliferate in an uncontrolled manner, to infiltrate tissue, and to metastasize to distant organs. Studies to date have examined the mechanisms involved in the survival of cancer cells as targets for cancer therapeutics. These efforts led to the development of telomerase inhibitors as anticancer drugs, drugs targeting telomere DNA, viral vectors carrying a promoter for human telomerase reverse transcriptase (hTERT) genome, and immunotherapy targeting hTERT. Among these novel therapeutics, this review focuses on immunotherapy targeting hTERT and discusses the current evidence and future perspectives.
Collapse
|
20
|
|
21
|
Cantara S, Bertelli E, Occhini R, Regoli M, Brilli L, Pacini F, Castagna MG, Toti P. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine 2019; 64:122-129. [PMID: 30762153 DOI: 10.1007/s12020-019-01865-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Anaplastic thyroid carcinoma (ATC) is a rare, highly aggressive form of thyroid cancer (TC) characterized by an aggressive behavior and poor prognosis, resulting in patients' death within a year. Standard treatments, such as chemo and radiotherapy, as well as tyrosine kinase inhibitors, are ineffective for ATC treatment. Cancer immunotherapy is one of the most promising research area in oncology. The PD-1/PD-L1 axis is of particular interest, in light of promising data showing a restoration of host immunity against tumors, with the prospect of long-lasting remissions. METHODS In this study, we evaluated PD-L1 expression in a large series of TCs (20 cases) showing a progressive dedifferentiation of the thyroid tumor from well differentiated TC to ATC, employing two different antibodies [R&D Systems and VENTANA PD-L1 (SP263) Rabbit Monoclonal Primary Antibody]. We also tested the anti PD-L1 mAb in an in vivo animal model. RESULTS We found that approximately 70-90% of ATC cases were positive for PD-L1 whereas normal thyroid and differentiated TC were negative. Moreover, all analyzed cases presented immunopositive staining in the endothelium of vessels within or in close proximity to the tumor, while normal thyroid vessels were negative. PD-L1 mAb was also effective in inhibiting ATC growth in an in vivo model. CONCLUSIONS These data suggest that immunotherapy may be a promising treatment specific for ATC suggesting the need to start with clinical TRIALs.
Collapse
Affiliation(s)
- Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Marì Regoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lucia Brilli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Furio Pacini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
22
|
Zhang M, Yang J, Hua W, Li Z, Xu Z, Qian Q. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy. Front Med 2019; 13:32-44. [PMID: 30680606 DOI: 10.1007/s11684-018-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Immunotherapy has become the fourth cancer therapy after surgery, chemotherapy, and radiotherapy. In particular, immune checkpoint inhibitors are proved to be unprecedentedly in increasing the overall survival rates of patients with refractory cancers, such as advanced melanoma, non-small cell lung cancer, and renal cell carcinoma. However, inhibitor therapies are only effective in a small proportion of patients with problems, such as side effects and high costs. Therefore, doctors urgently need reliable predictive biomarkers for checkpoint inhibitor therapies to choose the optimal therapies. Here, we review the biomarkers that can serve as potential predictors of the outcomes of immune checkpoint inhibitor treatment, including tumor-specific profiles and tumor microenvironment evaluation and other factors.
Collapse
Affiliation(s)
- Min Zhang
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China
| | - Jingwen Yang
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China
| | - Wenjing Hua
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China
| | - Zhong Li
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China
| | - Zenghui Xu
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China.
| | - Qijun Qian
- ShangHai Cell Therapy Group Co., Ltd., Shanghai, 201805, China.
| |
Collapse
|
23
|
Rippaus N, Taggart D, Williams J, Andreou T, Wurdak H, Wronski K, Lorger M. Metastatic site-specific polarization of macrophages in intracranial breast cancer metastases. Oncotarget 2018; 7:41473-41487. [PMID: 27203741 PMCID: PMC5173073 DOI: 10.18632/oncotarget.9445] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/10/2016] [Indexed: 11/25/2022] Open
Abstract
In contrast to primary tumors, the understanding of macrophages within metastases is very limited. In order to compare macrophage phenotypes between different metastatic sites, we established a pre-clinical mouse model of intracranial breast cancer metastasis in which cancer lesions develop simultaneously within the brain parenchyma and the dura. This mimics a situation that is commonly occurring in the clinic. Flow cytometry analysis revealed significant differences in the activation state of metastasis-associated macrophages (MAMs) at the two locations. Concurrently, gene expression analysis identified significant differences in molecular profiles of cancer cells that have metastasized to the brain parenchyma as compared to the dura. This included differences in inflammation-related pathways, NF-kB1 activity and cytokine profiles. The most significantly upregulated cytokine in brain parenchyma- versus dura-derived cancer cells was Lymphotoxin β and a gain-of-function approach demonstrated a direct involvement of this factor in the M2 polarization of parenchymal MAMs. This established a link between metastatic site-specific properties of cancer cells and the MAM activation state.
Collapse
Affiliation(s)
- Nora Rippaus
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| | - David Taggart
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| | - Jennifer Williams
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| | - Tereza Andreou
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| | - Heiko Wurdak
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| | | | - Mihaela Lorger
- Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, LS9 7TF Leeds, UK
| |
Collapse
|
24
|
Lin Z, Xu Y, Zhang Y, He Q, Zhang J, He J, Liang W. The prevalence and clinicopathological features of programmed death-ligand 1 (PD-L1) expression: a pooled analysis of literatures. Oncotarget 2017; 7:15033-46. [PMID: 26930715 PMCID: PMC4924769 DOI: 10.18632/oncotarget.7590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Background & Aims Programmed death-ligand 1 (PD-L1) has been recognized as a critical and promising target in therapies that direct immune escape of cancers. However, its association with aggressive clinicopathological features in solid tumors remains unclear. We investigated this question by synthesizing published articles. Methods Electronic databases were searched for relevant studies. Outcomes of interest included age, gender, tumor size, tumor size, lymph node metastasis and tumor cell differentiation. Results A total of 61 studies involving 17 types of malignancies were included. The overall expression rate of PD-L1 was 44.5% (95% CI, 37.5% to 51.6 %). Patients with regional lymph node metastases (OR 1.38; P < 0.01), large size tumor (OR 1.89; P < 0.01) or poor differentiated tumors (OR 1.71; P < 0.01) were associated with higher PD-L1 expression rate. However, no significant association was observed between young and elder patients (OR 1.04; P = 0.58), or male and female patients (OR 1.13; P = 0.06). A numerically higher PD-L1 expression rate was detected in polyclonal antibodies (57.2%) than monoclonal antibodies (39.6%). In addition, the PD-L1 expression rate reported by studies from Asian areas (52.3%) was numerically higher than those from non-Asian areas, namely Caucasians (32.7%). Conclusions This meta-analysis indicated that patients with larger tumors, regional lymph node metastases, or poor-differentiated tumors were associated with a higher PD-L1 expression rate; in addition the expression rate of PD-L1 in Asians might be higher than that of Caucasians. This information might be useful in screening candidates for relevant tests and treatments.
Collapse
Affiliation(s)
- Ziying Lin
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yutong Xu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxiong Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Medical Oncology of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianrong Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| |
Collapse
|
25
|
Li X, Li M, Lian Z, Zhu H, Kong L, Wang P, Yu J. Prognostic Role of Programmed Death Ligand-1 Expression in Breast Cancer: A Systematic Review and Meta-Analysis. Target Oncol 2017; 11:753-761. [PMID: 27422273 DOI: 10.1007/s11523-016-0451-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cancer therapies that target the PD-1/PD-L1 pathway are in ongoing phase I/II clinical trials for several tumor types. However, the prognostic value of PD-L1 expression in breast cancer is unclear. OBJECTIVE We assessed the prognostic role of PD-L1 expression in breast cancer. METHODS We searched Medline/PubMed for eligible studies of the association between PD-L1 expression and patient survival in breast cancer published before 7 December 2015. The effect size was the hazard ratio (HR) with 95 % confidence interval (CI) for overall survival (OS), recurrence-free survival (RFS) and metastasis-free survival (MFS). Odds ratios (OR) with 95 % CIs were also extracted to evaluate associations between PD-L1 expression and patient clinicopathological features. RESULTS We included five studies with 7,802 total patients in this meta-analysis. The pooled OR associated high PD-L1 expression with predictors of poor-prognosis: high tumor grade, negative ER status, negative PR status, positive HER2 status and lymphovascular invasion. High PD-L1 protein expression was associated with shorter OS (HR = 3.22, 95 % CI: 1.86-5.59; P < 0.0001), shorter RFS (HR = 1.38, 95 % CI: 1.03-1.86; P = 0.03) and shorter MFS (HR = 3.33, 95 % CI: 2.30-4.82; P < 0.00001); whereas high PD-L1 mRNA expression was associated with longer OS (HR = 0.86, 95 % CI: 0.75-1.00; P = 0.05) and longer RFS (HR = 0.57, 95 % CI: 0.36-0.91; P = 0.02). LIMITATIONS The findings of these studies were significantly heterogeneous; the results should be interpreted cautiously. CONCLUSION In breast cancer, high PD-L1 protein expression appears to be a negative prognostic factor, whereas high PD-L1 mRNA expression appears to be a favorable prognostic factor.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiation Oncology and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250000, China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250000, China
| | - Zhen Lian
- Department of Radiation Oncology and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250000, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250000, China
| | - Ping Wang
- Department of Radiation Oncology and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jinming Yu
- Department of Radiation Oncology and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250000, China.
| |
Collapse
|
26
|
Ostheimer C, Gunther S, Bache M, Vordermark D, Multhoff G. Dynamics of Heat Shock Protein 70 Serum Levels As a Predictor of Clinical Response in Non-Small-Cell Lung Cancer and Correlation with the Hypoxia-Related Marker Osteopontin. Front Immunol 2017; 8:1305. [PMID: 29093708 PMCID: PMC5651249 DOI: 10.3389/fimmu.2017.01305] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia mediates resistance to radio(chemo)therapy (RT) by stimulating the synthesis of hypoxia-related genes, such as osteopontin (OPN) and stress proteins, including the major stress-inducible heat shock protein 70 (Hsp70). Apart from its intracellular localization, Hsp70 is also present on the plasma membrane of viable tumor cells that actively release it in lipid vesicles with biophysical characteristics of exosomes. Exosomal Hsp70 contributes to radioresistance while Hsp70 derived from dying tumor cells can serve as a stimulator of immune cells. Given these opposing traits of extracellular Hsp70 and the unsatisfactory outcome of locally advanced lung tumors, we investigated the role of Hsp70 in the plasma of patients with advanced, non-metastasized non-small-cell lung cancer (NSCLC) before (T1) and 4–6 weeks after RT (T2) in relation to OPN as potential biomarkers for clinical response. Plasma levels of Hsp70 correlate with those of OPN at T1, and high OPN levels are significantly associated with a decreased overall survival (OS). Due to a therapy-induced reduction in viable tumor mass after RT Hsp70 plasma levels dropped significantly at T2 (p = 0.016). However, with respect to the immunostimulatory capacity of Hsp70 derived from dying tumor cells, patients with higher post-therapeutic Hsp70 levels showed a significantly better response to RT (p = 0.034) than those with lower levels at T2. In summary, high OPN plasma levels at T1 are indicative for poor OS, whereas elevated post-therapeutic Hsp70 plasma levels together with a drop of Hsp70 between T1 and T2, successfully predict favorable responses to RT. Monitoring the dynamics of Hsp70 in NSCLC patients before and after RT can provide additional predictive information for clinical outcome and therefore might allow a more rapid therapy adaptation.
Collapse
Affiliation(s)
- Christian Ostheimer
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sophie Gunther
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Matthias Bache
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Vordermark
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
27
|
Cutts A, Venn O, Dilthey A, Gupta A, Vavoulis D, Dreau H, Middleton M, McVean G, Taylor JC, Schuh A. Characterisation of the changing genomic landscape of metastatic melanoma using cell free DNA. NPJ Genom Med 2017; 2:25. [PMID: 29075515 PMCID: PMC5654504 DOI: 10.1038/s41525-017-0030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is characterised by complex somatically acquired genetic aberrations that manifest as intra-tumour and inter-tumour genetic heterogeneity and can lead to treatment resistance. In this case study, we characterise the genome-wide somatic mutation dynamics in a metastatic melanoma patient during therapy using low-input (50 ng) PCR-free whole genome sequencing of cell-free DNA from pre-treatment and post-relapse blood samples. We identify de novo tumour-specific somatic mutations from cell-free DNA, while the sequence context of single nucleotide variants showed the characteristic UV-damage mutation signature of melanoma. To investigate the behaviour of individual somatic mutations during proto-oncogene B-Raf -targeted and immune checkpoint inhibition, amplicon-based deep sequencing was used to verify and track frequencies of 212 single nucleotide variants at 10 distinct time points over 13 months of treatment. Under checkpoint inhibition therapy, we observed an increase in mutant allele frequencies indicating progression on therapy 88 days before clinical determination of non-response positron emission tomogrophy-computed tomography. We also revealed mutations from whole genome sequencing of cell-free DNA that were not present in the tissue biopsy, but that later contributed to relapse. Our findings have potential clinical applications where high quality tumour-tissue derived DNA is not available.
Collapse
Affiliation(s)
- Anthony Cutts
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Oliver Venn
- Lighthouse Cancer Diagnostics Ltd, Oxford, UK.,The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Dilthey
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avinash Gupta
- University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK
| | - Dimitris Vavoulis
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helene Dreau
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mark Middleton
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK.,Department of Haematology, Oxford University Hospital Trust, Oxford, UK
| |
Collapse
|
28
|
Miran T, Vogg ATJ, El Moussaoui L, Kaiser HJ, Drude N, von Felbert V, Mottaghy FM, Morgenroth A. Dual addressing of thymidine synthesis pathways for effective targeting of proliferating melanoma. Cancer Med 2017; 6:1639-1651. [PMID: 28608446 PMCID: PMC5504322 DOI: 10.1002/cam4.1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Here, we examined the potential of blocking the thymidine de novo synthesis pathways for sensitizing melanoma cells to the nucleoside salvage pathway targeting endogenous DNA irradiation. Expression of key nucleotide synthesis and proliferation enzymes thymidylate synthase (TS) and thymidine kinase 1 (TK1) was evaluated in differentiated (MITFhigh [microphthalmia‐associated transcription factor] IGR1) and invasive (MITFmediumIGR37) melanoma cells. For inhibition of de novo pathways cells were incubated either with an irreversible TS inhibitor 5‐fluoro‐2′‐deoxyuridine (FdUrd) or with a competitive dihydrofolate‐reductase (DHFR) inhibitor methotrexate (MTX). Salvage pathway was addressed by irradiation‐emitting thymidine analog [123/125I]‐5‐iodo‐4′‐thio‐2′‐deoxyuridine (123/125I‐ITdU). The in vivo targeting efficiency was visualized by single‐photon emission computed tomography. Pretreatment with FdUrd strongly increased the cellular uptake and the DNA incorporation of 125I‐ITdU into the mitotically active IGR37 cells. This effect was less pronounced in the differentiated IGR1 cells. In vivo, inhibition of TS led to a high and preferential accumulation of 123I‐ITdU in tumor tissue. This preclinical study presents profound rationale for development of therapeutic approach by highly efficient and selective radioactive targeting one of the crucial salvage pathways in melanomas.
Collapse
Affiliation(s)
- Tara Miran
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Andreas T J Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Laila El Moussaoui
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Hans-Jürgen Kaiser
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Natascha Drude
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Verena von Felbert
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany.,Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| |
Collapse
|
29
|
Marino N, Illingworth S, Kodialbail P, Patel A, Calderon H, Lear R, Fisher KD, Champion BR, Brown ACN. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes. PLoS One 2017; 12:e0177810. [PMID: 28542292 PMCID: PMC5436815 DOI: 10.1371/journal.pone.0177810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.
Collapse
Affiliation(s)
- Nalini Marino
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Sam Illingworth
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Prithvi Kodialbail
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Ashvin Patel
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Hugo Calderon
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Rochelle Lear
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Kerry D. Fisher
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Brian R. Champion
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Alice C. N. Brown
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| |
Collapse
|
30
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Jutz S, Hennig A, Paster W, Asrak Ö, Dijanovic D, Kellner F, Pickl WF, Huppa JB, Leitner J, Steinberger P. A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget 2017; 8:64892-64906. [PMID: 29029399 PMCID: PMC5630299 DOI: 10.18632/oncotarget.17615] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Blockade of the T cell coinhibitory molecules CTLA-4 and PD-1 has clinical utility to strengthen T cell responses. In addition to these immune checkpoints an ever-growing number of molecules has been implicated in generating coinhibitory signals in T cells. However, investigating coinhibitory molecules in primary human cells is complicated by the restricted expression and promiscuity of both coinhibitory receptors and their ligands. Here we have evaluated the potential of fluorescence-based transcriptional reporters based on the human Jurkat T cell line in conjunction with engineered T cell stimulator cell lines for investigating coinhibitory pathways. CTLA-4, PD-1, TIGIT, BTLA and 2B4 expressing reporter cells were generated and activated with T cell stimulator cells expressing cognate ligands of these molecules. All accessory molecules tested were functional in our reporter system. Engagement of CTLA-4, PD-1, BTLA and TIGIT by their ligands significantly inhibited T cell activation, whereas binding of 2B4 by CD48 resulted in enhanced responses. Mutational analysis revealed intracellular motifs that are responsible for BTLA mediated T cell inhibition and demonstrates potent reporter inhibition by CTLA-4 independent of cytoplasmic signaling motifs. Moreover, considerably higher IC50 values were measured for the CTLA-4 blocker Ipilimumab compared to the PD-1 antibody Nivolumab. Our findings show that coinhibitory pathways can be evaluated in Jurkat-based transcriptional reporters and yield novel insights on their function. Results obtained from this robust reductionist system can complement more time consuming and complex studies of such pathways in primary T cells.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ömer Asrak
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dejana Dijanovic
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Florian Kellner
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Gupta A, Gomes F, Lorigan P. The role for chemotherapy in the modern management of melanoma. Melanoma Manag 2017; 4:125-136. [PMID: 30190915 PMCID: PMC6094602 DOI: 10.2217/mmt-2017-0003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023] Open
Abstract
The treatment of malignant melanoma has changed beyond recognition in the last 7 years. Where previously single agent dacarbazine was often the only treatment used for advanced disease, now there are potentially multiple lines of treatment, based on immunotherapy and targeted treatment options, either as monotherapy or in combination. In this brave new world the question arises, does chemotherapy still have any relevance in the modern management of melanoma? In this review, we summarize the various chemotherapeutic options that have been trialled in melanoma to date, and discuss the role chemotherapy may still play in treating melanoma, potentially in combination with more novel agents, or in certain subtypes of melanoma.
Collapse
Affiliation(s)
- Avinash Gupta
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Fabio Gomes
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Paul Lorigan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Division of Molecular & Clinical Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
33
|
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 2017; 77:1783-1812. [PMID: 28292977 PMCID: PMC5392374 DOI: 10.1158/0008-5472.can-16-2929] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Humans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases, including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases, and even neuropsychiatric disorders. Thus, an interaction of microorganisms with the host immune system is required for a healthy body. Exposure to microorganisms from the moment we are born and appropriate microbiome assembly during childhood are essential for establishing an active immune system necessary to prevent disease later in life. Exposure to microorganisms educates the immune system, induces adaptive immunity, and initiates memory B and T cells that are essential to combat various pathogens. The correct microbial-based education of immune cells may be critical in preventing the development of autoimmune diseases and cancer. This review provides a broad overview of the importance of the host microbiome and accumulating knowledge of how it regulates and maintains a healthy human system. Cancer Res; 77(8); 1783-812. ©2017 AACR.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Emily Walsh
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kristen Batich
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute University College Cork, Cork, Ireland
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Korin Albert
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - John P Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | |
Collapse
|
34
|
Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol 2017; 11:279-289. [PMID: 28203054 PMCID: PMC5298817 DOI: 10.2147/opth.s89591] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy and arises from melanocytes in the iris, ciliary body, or choroid. Early diagnosis and local treatment is crucial, as survival correlates with primary tumor size. However, approximately 50% of patients will develop metastatic disease with 6-12 months' survival from metastatic diagnosis. Genomic analyses have led to the development of gene-expression profiles that effectively predict metastatic progression; unfortunately, no adjuvant therapy has been shown to prolong survival to date. New insights into the molecular biology of UM have found frequent activating mutations in genes encoding for the G-protein α-subunit, GNAQ and GNA11, and improved understanding of the downstream signaling pathways MAPK, PI3K/Akt, and Hippo have afforded an array of new targets for treatment of this disease. Studies are under way with rationally developed regimens targeting these pathways, and novel agents are under development. We review the diagnosis, management, and surveillance of primary UM and the adjuvant therapy trials under way.
Collapse
Affiliation(s)
| | - Nikita Dave
- Division of Hematology/Oncology, Columbia University Medical Center
| | | | - Brian P Marr
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center
- Department of Ophthalmology, Weill Cornell Medical College
| | - Richard D Carvajal
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Cao Y, Kakar P, Hossen MN, Wu MX, Chen X. Sustained epidermal powder drug delivery via skin microchannels. J Control Release 2017; 249:94-102. [PMID: 28132934 DOI: 10.1016/j.jconrel.2017.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
Abstract
Transdermal delivery of hydrophilic drugs is challenging. This study presents a novel sustained epidermal powder delivery technology (sEPD) for safe, efficient, and sustained delivery of hydrophilic drugs across the skin. sEPD is based on coating powder drugs into high-aspect-ratio, micro-coating channels (MCCs) followed by topical application of powder drug-coated array patches onto ablative fractional laser-generated skin MCs to deliver drugs into the skin. We found sEPD could efficiently deliver chemical drugs without excipients and biologics drugs in the presence of sugar excipients into the skin with a duration of ~12h. Interestingly the sEPD significantly improved zidovudine bioavailability by ~100% as compared to oral gavage delivery. sEPD of insulin was found to maintain blood glucose levels in normal range for at least 6h in chemical-induced diabetes mice, while subcutaneous injection failed to maintain blood glucose levels in normal range. sEPD of anti-programmed death-1 antibody showed more potent anti-tumor efficacy than intraperitoneal injection in B16F10 melanoma models. Tiny skin MCs and 'bulk' drug powder inside relatively deep MCCs are crucial to induce the sustained drug release. The improved bioavailability and functionality warrants further development of the novel sEPD for clinical use.
Collapse
Affiliation(s)
- Yan Cao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, United States
| | - Prateek Kakar
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, United States
| | - Md Nazir Hossen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, United States
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
36
|
Greil R, Hutterer E, Hartmann TN, Pleyer L. Reactivation of dormant anti-tumor immunity - a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal 2017; 15:5. [PMID: 28100240 PMCID: PMC5244547 DOI: 10.1186/s12964-016-0155-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
In favor of their outgrowth, cancer cells must resist immune surveillance and edit the immune response. Cancer immunoediting is characterized by fundamental changes in the cellular composition and the inflammatory cytokine profiles in the microenvironment of the primary tumor and metastatic niches, with an ever increasing complexity of interactions between tumor cells and the immune system. Recent data suggest that genetic instability and immunoediting are not necessarily disparate processes. Increasing mutational load may be associated with multiple neoepitopes expressed by the tumor cells and thus increased chances for the immune system to recognize and combat these cells. At the same time the immune system is more and more suppressed and exhausted by this process. Consequently, immune checkpoint modulation may have the potential to be most successful in genetically highly altered and usually extremely unfavorable types of cancer. Moreover, the fact that epitopes recognized by the immune system are preferentially encoded by passenger gene mutations opens windows of synergy in targeting cancer-specific signaling pathways by small molecules simultaneously with antibodies modifying T-cell activation or exhaustion. This review covers some aspects of the current understanding of the immunological basis necessary to understand the rapidly developing therapeutic endeavours in cancer treatment, the clinical achievements made, and raises some burning questions for translational research in this field.
Collapse
Affiliation(s)
- Richard Greil
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria. .,Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT) Study Group, Salzburg, Austria. .,Cancer Cluster Salzburg (CCS), Salzburg, Austria.
| | - Evelyn Hutterer
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Tanja Nicole Hartmann
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Lisa Pleyer
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT) Study Group, Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| |
Collapse
|
37
|
Linardou H, Gogas H. Toxicity management of immunotherapy for patients with metastatic melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:272. [PMID: 27563659 DOI: 10.21037/atm.2016.07.10] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Checkpoint inhibitors have revolutionized the treatment of patients with metastatic melanoma offering improved responses and significant survival benefit. These agents are now approved for the treatment of metastatic melanoma, squamous and non-squamous non-small cell lung cancer (NSCLC) and kidney cancer, while they are now being investigated in a range of other malignancies. In addition, another anti-PD-L1 monoclonal antibody (atezolizumab) was recently approved for urothelial cancer. Ipilimumab, an anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody and the anti-PD-1 agents nivolumab and pembrolizumab have followed large clinical development programs, therefore, information regarding their safety and toxicity profile is readily available. Unique toxicities have been observed, which stem from and relate to the immune activation by these agents and are thus termed as immune-related adverse events (irAEs). Clinicians and patients should be aware of this different toxicity profile, so as to promptly recognize, identify and manage symptoms related to irAEs. Indeed, clinical experience has shown that these immune events, when they are early recognized and timely managed, are mostly reversible otherwise they can evoke severe or even life-threatening situations. Several recommendations and guidelines have been developed for the management of irAEs and algorithms have been published based primarily on our knowledge from the ipilimumab trials.
Collapse
Affiliation(s)
- Helena Linardou
- First Department of Medical Oncology, Metropolitan Hospital, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
38
|
Potrony M, Carreras E, Aranda F, Zimmer L, Puig-Butille JA, Tell-Martí G, Armiger N, Sucker A, Giménez-Xavier P, Martínez-Florensa M, Carrera C, Malvehy J, Schadendorf D, Puig S, Lozano F. Inherited functional variants of the lymphocyte receptor CD5 influence melanoma survival. Int J Cancer 2016; 139:1297-302. [PMID: 27169428 DOI: 10.1002/ijc.30184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022]
Abstract
Despite the recent progress in treatment options, malignant melanoma remains a deadly disease. Besides therapy, inherited factors might modulate clinical outcome, explaining in part widely varying survival rates. T-cell effector function regulators on antitumor immune responses could also influence survival. CD5, a T-cell receptor inhibitory molecule, contributes to the modulation of antimelanoma immune responses as deduced from genetically modified mouse models. The CD5 SNPs rs2241002 (NM_014207.3:c.671C > T, p.Pro224Leu) and rs2229177 (NM_014207.3:c.1412C > T, p.Ala471Val) constitute an ancestral haplotype (Pro224-Ala471) that confers T-cell hyper-responsiveness and worsens clinical autoimmune outcome. The assessment of these SNPs on survival impact from two melanoma patient cohorts (Barcelona, N = 493 and Essen, N = 215) reveals that p.Ala471 correlates with a better outcome (OR= 0.57, 95% CI = 0.33-0.99, Adj. p = 0.043, in Barcelona OR = 0.63, 95% CI = 0.40-1.01, Adj. p = 0.051, in Essen). While, p.Leu224 was associated with increased melanoma-associated mortality in both cohorts (OR = 1.87, 95% CI = 1.07-3.24, Adj. p = 0.030 in Barcelona and OR = 1.84, 95% CI = 1.04-3.26, Adj. p = 0.037, in Essen). Furthermore survival analyses showed that the Pro224-Ala471 haplotype in homozygosis improved melanoma survival in the entire set of patients (HR = 0.27, 95% CI 0.11-0.67, Adj. p = 0.005). These findings highlight the relevance of genetic variability in immune-related genes for clinical outcome in melanoma.
Collapse
Affiliation(s)
- Miriam Potrony
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain
| | - Esther Carreras
- Grup D'Immunoreceptors Del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Aranda
- Grup D'Immunoreceptors Del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium, Heidelberg, Germany
| | - Joan-Anton Puig-Butille
- Melanoma Unit, Molecular Biology and Genetics Department, Hospital Clínic De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Gemma Tell-Martí
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Noelia Armiger
- Grup D'Immunoreceptors Del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium, Heidelberg, Germany
| | - Pol Giménez-Xavier
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Mario Martínez-Florensa
- Grup D'Immunoreceptors Del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Carrera
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium, Heidelberg, Germany
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic De Barcelona, IDIBAPS, Universitat De Barcelona, Barcelona, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Raras (CIBERER), Valencia, Spain
| | - Francisco Lozano
- Grup D'Immunoreceptors Del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Hospital Clínic De Barcelona, Barcelona, Spain.,Department of Cell Biology, Immunology and Neurosciences, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16:655-74. [PMID: 26855028 DOI: 10.1517/14712598.2016.1152256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) targeting checkpoint inhibitors have demonstrated clinical benefit in treating patients with cancer and have paved the way for additional immune-modulating mAbs such as those targeting costimulatory receptors. The full clinical utility of these agents, however, is hampered by immune-related adverse events (irAEs) that can occur during therapy. AREAS COVERED We first provide a general overview of tumor immunity, followed by a review of the two major classes of immunomodulatory mAbs being developed as cancer therapeutics: checkpoint inhibitors and costimulatory receptor agonists. We then discuss therapy-associated adverse events. Finally, we describe in detail the mechanisms driving their therapeutic activity, with an emphasis on interactions between antibody fragment crystallizable (Fc) domains and Fc receptors (FcR). EXPERT OPINION Given that Fc-FcR interactions appear critical in facilitating the ability of immunomodulatory mAbs to elicit both therapeutically useful as well as adverse effects, the engineering of mAbs that can effectively engage their targets while limiting interaction with FcRs might represent a promising future avenue for developing the next generation of immune-enhancing tumoricidal agents with increased safety and retention of efficacy.
Collapse
Affiliation(s)
- Joseph M Ryan
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | | | - Adam J Adler
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- a Department of Immunology , UConn Health , Farmington , CT , USA
| |
Collapse
|
40
|
Abstract
A few years ago therapeutic options in advanced melanoma were very limited and the prognosis was somber. Although recent progresses are far from providing a cure for advanced melanoma, yet these have kindled new hopes and searching for a cure does not seem unreasonable. Seven new medicines have been authorized in various regions of the world in the recent past in the therapy of advanced melanoma, over half of them acting by mechanisms involving the immune system of the host. The anti-CTLA-4 (cytotoxic T lymphocyte associated protein-4) ipilimumab has been followed by anti-PD1 (programmed death1) inhibitors, more effective and safer. Very recently, the first oncolytic immunotherapy, talimogene laherparepvec (T-VEC) has been authorized for placing on the market and a variety of combinations of the new therapies are currently being evaluated or considered. Besides, a plethora of other molecules and approaches, especially monoclonal antibodies, are in the preliminary phases of clinical investigation and are likely to bring new benefits for the treatment of this potentially fatal form of cancer.
Collapse
Affiliation(s)
- Robert Ancuceanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Faculty of Pharmacy, Bucharest, Romania
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, Bucharest, Romania
| |
Collapse
|