1
|
Lanza G, Mogavero MP, Lanuzza B, Tripodi M, Cantone M, Pennisi M, Bella R, Ferri R. A Topical Review on Transcranial Magnetic Stimulation in Restless Legs Syndrome. CURRENT SLEEP MEDICINE REPORTS 2024; 10:207-216. [DOI: 10.1007/s40675-024-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/26/2024]
|
2
|
Gutiérrez-Muto AM, Bestmann S, Sánchez de la Torre R, Pons JL, Oliviero A, Tornero J. The complex landscape of TMS devices: A brief overview. PLoS One 2023; 18:e0292733. [PMID: 38015924 PMCID: PMC10684101 DOI: 10.1371/journal.pone.0292733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The increasing application of TMS in research and therapy has spawned an ever-growing number of commercial and non-commercial TMS devices and technology development. New CE-marked devices appear at a rate of approximately one every two years, with new FDA-approved application of TMS occurring at a similar rate. With the resulting complex landscape of TMS devices and their application, accessible information about the technological characteristics of the TMS devices, such as the type of their circuitry, their pulse characteristics, or permitted protocols would be beneficial. We here present an overview and open access database summarizing key features and applications of available commercial and non-commercial TMS devices (http://www.tmsbase.info). This may guide comparison and decision making about the use of these devices. A bibliometric analysis was performed by identifying commercial and non-commercial TMS devices from which a comprehensive database was created summarizing their publicly available characteristics, both from a technical and clinical point of view. In this document, we introduce both the commercial devices and prototypes found in the literature. The technical specifications that unify these devices are briefly analysed in two separate tables: power electronics, waveform, protocols, and coil types. In the prototype TMS systems, the proposed innovations are focused on improving the treatment regarding the patient: noise cancellation, controllable parameters, and multiple stimulation. This analysis shows that the landscape of TMS is becoming increasingly fragmented, with new devices appearing ever more frequently. The review provided here can support development of benchmarking frameworks and comparison between TMS systems, inform the choice of TMS platforms for specific research and therapeutic applications, and guide future technology development for neuromodulation devices. This standardisation strategy will allow a better end-user choice, with an impact on the TMS manufacturing industry and a homogenisation of patient samples in multi-centre clinical studies. As an open access repository, we envisage the database to grow along with the dynamic development of TMS devices and applications through community-lead curation.
Collapse
Affiliation(s)
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - José L. Pons
- Legs and Walking Lab, Shirley Ryan Ability Laboratory (Formerly Rehabilitation Institute of Chicago), Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Antonio Oliviero
- Center for Clinical Neuroscience, Hospital Los Madroños, Brunete, Madrid, Spain
- Advanced Neurorehabilitation Unit, Hospital Los Madroños, Brunete, Madrid, Spain
| | - Jesús Tornero
- Center for Clinical Neuroscience, Hospital Los Madroños, Brunete, Madrid, Spain
| |
Collapse
|
3
|
Wang P, Guan X, Su X, Wu F, Xiu M. A pilot study to examine the association between COX-2 rs5275 polymorphism and the response to repetitive transcranial stimulation in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:56. [PMID: 37684257 PMCID: PMC10491610 DOI: 10.1038/s41537-023-00386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023]
Abstract
High frequency (HF)-rTMS has been shown to improve cognitive functions in patients with schizophrenia (SCZ). This study aimed to investigate whether COX-2 rs5275 variants were associated with cognitive improvements following rTMS treatment in patients with SCZ. Forty-eight hospitalized patients with SCZ were assigned to the neuronavigation HF-rTMS group and 28 patients to the sham group over left DLPFC for 1 month. Cognitive function was evaluated using the repeatable battery for the assessment of neuropsychological status (RBANS) at weeks 0 and 4. COX-2 rs5275 polymorphism was genotyped by a technician. At baseline, C allele carriers showed better cognitive performance relative to patients with TT homozygote. Additionally, C allele carriers had greater improvement in memory from the follow-up to baseline following rTMS stimulation, while patients with the TT genotype showed no significant improvement in memory index. More importantly, we found that COX-2 rs5275 was correlated with the response to rTMS after controlling for the covariates. This study data indicate that COX-2 rs5275 was associated with improvements in immediate memory after HF-rTMS treatment in patients with SCZ. rTMS shows an effect on memory only in C allele carriers, but not in those with the TT genotype.
Collapse
Affiliation(s)
- Pingping Wang
- Neurology Department, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiuru Su
- Hebei Rongjun Hospital, Baoding, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| |
Collapse
|
4
|
Nicoletti VG, Fisicaro F, Aguglia E, Bella R, Calcagno D, Cantone M, Concerto C, Ferri R, Mineo L, Pennisi G, Ricceri R, Rodolico A, Saitta G, Torrisi G, Lanza G, Pennisi M. Challenging the Pleiotropic Effects of Repetitive Transcranial Magnetic Stimulation in Geriatric Depression: A Multimodal Case Series Study. Biomedicines 2023; 11:biomedicines11030958. [PMID: 36979937 PMCID: PMC10046045 DOI: 10.3390/biomedicines11030958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.
Collapse
Affiliation(s)
- Vincenzo G Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eugenio Aguglia
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Carmen Concerto
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ludovico Mineo
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Riccardo Ricceri
- Stroke Unit, Neurology Unit, Department of Neuroscience, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Alessandro Rodolico
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Saitta
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Torrisi
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Lanza G, Fisicaro F, Cantone M, Pennisi M, Cosentino FII, Lanuzza B, Tripodi M, Bella R, Paulus W, Ferri R. Repetitive transcranial magnetic stimulation in primary sleep disorders. Sleep Med Rev 2023; 67:101735. [PMID: 36563570 DOI: 10.1016/j.smrv.2022.101735] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G. Rodolico-San Marco", Catania, Italy; Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
6
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
7
|
Su X, Liu H, Wang X, Pan X, Zhang X, Lu X, Zhao L, Chen Y, Shang Y, Wu F, Xiu M. Neuronavigated Repetitive Transcranial Stimulation Improves Neurocognitive Functioning in Veterans with Schizophrenia: A Possible Role of BDNF Polymorphism. Curr Neuropharmacol 2023; 21:142-150. [PMID: 35927806 PMCID: PMC10193754 DOI: 10.2174/1570159x20666220803154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
It has been reported in the previous literatures that high-frequency (HF) neuronavigated repetitive transcranial magnetic stimulation (rTMS) may improve neurocognitive functioning in patients with schizophrenia. Nonetheless, the heterogeneity of the research findings with regards to the effectiveness of HF-rTMS on the neurocognitive functioning in patients with schizophrenia greatly hinders its clinical application. The current study was designed to determine the predictive role of BDNF variants for neurocognitive improvements after rTMS administration in veterans with schizophrenia. 109 hospitalized veterans with schizophrenia were randomly allocated to active HF-rTMS (n=63) or sham stimulation (n=46) over left DLPFC for 4 consecutive weeks. Neurocognitive functions were assessed by using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and at the end of week 4. BDNF polymorphism was genotyped by the technicians. Compared with sham stimulation sessions, the immediate memory performance was significantly increased in active sessions after neuronavigated HF-rTMS administration. In addition, patients with the CC homozygotes demonstrated greater improvement of immediate memory after rTMS treatment, while T allele carriers showed no significant improvement in immediate memory domain relative to baseline performance of immediate memory. Our findings suggest that add-on neuronavigated HF-rTMS is beneficial on immediate memory only in patients with CC homozygotes, but not in T allele carriers. This pilot study provides further evidence for BDNF as a promise biomarker in predicting the clinical response to rTMS stimulation.
Collapse
Affiliation(s)
- Xiuru Su
- Hebei Province Veterians hospital, Baoding, China
| | - Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Xuan Wang
- Hebei Province Veterians hospital, Baoding, China
| | - Xiuling Pan
- Hebei Province Veterians hospital, Baoding, China
| | - Xuan Zhang
- Hebei Province Veterians hospital, Baoding, China
| | - Xinyan Lu
- Hebei Province Veterians hospital, Baoding, China
| | - Long Zhao
- Hebei Province Veterians hospital, Baoding, China
| | - Yingnan Chen
- Hebei Province Veterians hospital, Baoding, China
| | - Yujie Shang
- Hebei Province Veterians hospital, Baoding, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| |
Collapse
|
8
|
Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 2022; 12:17613. [PMID: 36266396 PMCID: PMC9584934 DOI: 10.1038/s41598-022-22245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Neurofeedback and transcranial Direct Current Stimulation (tDCS) are promising techniques for neuroenhancement of attentional performance. As far as we know no study compared both techniques on attentional performance in healthy participants. We compared tDCS and neurofeedback in a randomized, single-blind, controlled experiment assessing both behavioral (accuracy and time reaction) and electrophysiological (N1, P1, and P3 components) data of participants responding to the Attention Network Task (ANT). Eighty volunteers volunteered for this study. We adopted standard protocols for both techniques, i.e., a Sensorimotor Rhythm (SMR) protocol for neurofeedback and the right DLPFC anodal stimulation for tDCS, applied over nine sessions (two weeks). We did not find significant differences between treatment groups on ANT, neither at the behavioral nor at the electrophysiological levels. However, we found that participants from both neuromodulation groups, irrespective of if active or sham, reported attentional improvements in response to the treatment on a subjective scale. Our study adds another null result to the neuromodulation literature, showing that neurofeedback and tDCS effects are more complex than previously suggested and associated with placebo effect. More studies in neuroenhancement literature are necessary to fully comprehend neuromodulation mechanisms.
Collapse
|
9
|
Machado S, Sant’Ana LDO, Travassos B, Monteiro D. Anodal Transcranial Direct Current Stimulation Reduces Competitive Anxiety and Modulates Heart Rate Variability in an eSports Player. Clin Pract Epidemiol Ment Health 2022; 18:e174501792209270. [PMID: 37274860 PMCID: PMC10156019 DOI: 10.2174/17450179-v18-e2209270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/07/2023]
Abstract
Previous research has recently shown that high cognitive and somatic anxiety and low self-confidence, before and during sport competitions have a significant correlation with heart rate variability (HRV) changes and can reduce overall athletic performance. Therefore, interventions, such as transcranial direct current stimulation (tDCS), can be a potential tool to reduce psychophysiological anxiety-related and enhance athletic performance. We present a case of a male professional athlete of eSports. We explored the effects of a single session of anodal tDCS (a-tDCS) at 2mA over the dosrsolateral prefrontal cortex (DLPFC) on competitive anxiety and HRV assessed in baseline (BL), pre-tDCS, post-tDCS and post-game moments and compared between moments. Here, we found a decrease in somatic and cognitive anxiety, as well as an increase in self-confidence and in SDNN index in the post-tDCS moment compared with BL, pre-tDCS and post-game moments. These findings can be a result of an acute change in the attentional state, influencing the processing of threatening information essential for cognitive anxiety and of a self-regulatory process, which can regulate physiological arousal response, such as HRV.
Collapse
Affiliation(s)
- Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Sports Science, University of Beira Interior, Covilhã, 6201-001, Portugal
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados, 26325-020, Brazil
| | | | - Bruno Travassos
- Department of Sports Science, University of Beira Interior, Covilhã, 6201-001, Portugal
- Research Center in Sport, Health and Human Development (CIDESD), Vila Real 5000-558, Portugal
- Portugal Football School, Portuguese Football Federation, Cruz 1495-433, Quebrada, Portugal
| | - Diogo Monteiro
- Research Center in Sport, Health and Human Development (CIDESD), Vila Real 5000-558, Portugal
- Life Quality Research Center (CIEQV), Rio Maior, 2040-413, Portugal
- ESECS, Polytechnic of Leiria, Leiria, 2411-901, Portugal
| |
Collapse
|
10
|
Razza LB, da Silva PHR, Busatto GF, Duran FLDS, Pereira J, De Smet S, Klein I, Zanão TA, Luethi MS, Baeken C, Vanderhasselt MA, Buchpiguel CA, Brunoni AR. Brain Perfusion Alterations Induced by Standalone and Combined Non-Invasive Brain Stimulation over the Dorsolateral Prefrontal Cortex. Biomedicines 2022; 10:2410. [PMID: 36289672 PMCID: PMC9598449 DOI: 10.3390/biomedicines10102410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) interventions are promising for the treatment of psychiatric disorders. Notwithstanding, the NIBS mechanisms of action over the dorsolateral prefrontal cortex (DLPFC), a hub that modulates affective and cognitive processes, have not been completely mapped. We aimed to investigate regional cerebral blood flow (rCBF) changes over the DLPFC and the subgenual anterior cingulate cortex (sgACC) of different NIBS protocols using Single-Photon Emission Computed Tomography (SPECT). A factorial, within-subjects, double-blinded study was performed. Twenty-three healthy subjects randomly underwent four sessions of NIBS applied once a week: transcranial direct current stimulation (tDCS), intermittent theta-burst stimulation (iTBS), combined tDCS + iTBS and placebo. The radiotracer 99m-Technetium-ethylene-cysteine-dimer was injected intravenously during the NIBS session, and SPECT neuroimages were acquired after the session. Results revealed that the combination of tDCS + iTBS increased right sgACC rCBF. Cathodal and anodal tDCS increased and decreased DLPFC rCBF, respectively, while iTBS showed no significant changes compared to the placebo. Our findings suggest that the combined protocol might optimize the activity in the right sgACC and encourage future trials with neuropsychiatric populations. Moreover, mechanistic studies to investigate the effects of tDCS and iTBS over the DLPFC are required.
Collapse
Affiliation(s)
- Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Pedro Henrique Rodrigues da Silva
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Geraldo F. Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
| | - Fábio Luis de Souza Duran
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Izio Klein
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Tamires A. Zanão
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Matthias S. Luethi
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
- Department of Psychiatry (UZBrussel), Free University Brussels, 1090 Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Carlos Alberto Buchpiguel
- Divisão de Medicina Nuclear (LIM-43), Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
- Hospital Universitário, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
11
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in “real time” the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer’s disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
12
|
Lee JH, Kim MG, Kim DY, Shin HW, Kang H, Koo BS, Kim KK. Effectiveness of an integrative medicine approach to improve cognitive dysfunction and dementia: An observational study. Medicine (Baltimore) 2022; 101:e30301. [PMID: 36197176 PMCID: PMC9509052 DOI: 10.1097/md.0000000000030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Despite the urgent need to control dementia, an effective treatment has yet to be developed. Along with the Korean government's policy of cooperation between conventional medicine (CM) and Korean medicine (KM), integrative medical services for dementia patients are being provided. This study aimed to compare the integrative medical clinic (IMC) for dementia used by Dongguk University Hospitals (DUH) with other service models and to review the characteristics and treatment outcomes of patients who had visited DUH over the past 5 years. Patients' electronic medical records from May 2015 to June 2020 were searched and their data were analyzed to evaluate the IMC's service model. Patient demographic and clinical characteristics, diagnostic tests, and treatment patterns for CM and KM were collected. The proportion of patients who did not show worsening cognitive function was described in detail. A strength of the DUH integrative medicine clinic is its ability to manage both KM and CM patients in the same space at the same time. Among the 82 patients who visited the clinic during our study period, 56 remained for data analysis after we excluded patients who met the exclusion criteria; nineteen patients had diagnoses of mild cognitive impairment. Among collaboration patterns, the first visit to the IMC had the highest proportion (55.4%). Among diagnosed tests in CM, laboratory tests and neuropsychological tests were used the most. In KM, a heart rate variability test was frequently used. The most common CM treatment prescribed was anticonvulsants, with 22 patients (39.2%) receiving donepezil, whereas the most frequent KM treatments were acupuncture (82.1%) and herbal medicine (78.6%). Twelve patients were followed up with the Mini-Mental State Examination, and 8 demonstrated either no worsening or improved cognition (baseline Mini-Mental State Examination range: 21-26). All 8 patients had mild cognitive impairment including 6 with amnestic, multidomain impairment. This study searched for a way to improve cognitive dysfunction and dementia using an integrative approach, and it shows promising results for mild cognitive impairment. However, more precisely designed follow-up studies are needed to address the present work's limitations of a retrospective study design and a small sample size.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Woorisaam Oriental Medicine Clinic, Goyang, South Korea
| | - Man Gi Kim
- Department of Oriental Neuropsychiatry, Dongguk University Ilsan Korean Medicine Hospital, Goyang, South Korea
- Department of Oriental Neuropsychiatry, Graduate School of Dongguk University, Seoul, South Korea
| | - Do Yeun Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Hye-Won Shin
- UCI Memory Impairments and Neurological Disorders (UCI MIND), Irvine, CA, USA
- RIIID Medical Group of Irvine, Irvine, CA, USA
| | - Hakmook Kang
- Biostatistics and Center for Quantitative Sciences, Vanderbilt University, Nashville, TN, USA
| | - Byung Soo Koo
- Department of Oriental Neuropsychiatry, Dongguk University Ilsan Korean Medicine Hospital, Goyang, South Korea
- Department of Oriental Neuropsychiatry, Graduate School of Dongguk University, Seoul, South Korea
- *Correspondence: Byung Soo Koo, Department of Oriental Neuropsychiatry, Dongguk University Ilsan Korean Medicine Hospital, Goyang 10326, South Korea (e-mail: ) and Kwang Ki Kim, Department of Neurology, Dongguk University Ilsan Hospital, Goyang, 10326, South Korea (e-mail: )
| | - Kwang Ki Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, South Korea
- *Correspondence: Byung Soo Koo, Department of Oriental Neuropsychiatry, Dongguk University Ilsan Korean Medicine Hospital, Goyang 10326, South Korea (e-mail: ) and Kwang Ki Kim, Department of Neurology, Dongguk University Ilsan Hospital, Goyang, 10326, South Korea (e-mail: )
| |
Collapse
|
13
|
Kim H, Jung HR, Kim JB, Kim DJ. Autonomic Dysfunction in Sleep Disorders: From Neurobiological Basis to Potential Therapeutic Approaches. J Clin Neurol 2022; 18:140-151. [PMID: 35274834 PMCID: PMC8926769 DOI: 10.3988/jcn.2022.18.2.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Sleep disorder has been portrayed as merely a common dissatisfaction with sleep quality and quantity. However, sleep disorder is actually a medical condition characterized by inconsistent sleep patterns that interfere with emotional dynamics, cognitive functioning, and even physical performance. This is consistent with sleep abnormalities being more common in patients with autonomic dysfunction than in the general population. The autonomic nervous system coordinates various visceral functions ranging from respiration to neuroendocrine secretion in order to maintain homeostasis of the body. Because the cell population and efferent signals involved in autonomic regulation are spatially adjacent to those that regulate the sleep-wake system, sleep architecture and autonomic coordination exert effects on each other, suggesting the presence of a bidirectional relationship in addition to shared pathology. The primary goal of this review is to highlight the bidirectional and shared relationship between sleep and autonomic regulation. It also introduces the effects of autonomic dysfunction on insomnia, breathing disorders, central disorders of hypersomnolence, parasomnias, and movement disorders. This information will assist clinicians in determining how neuromodulation can have the greatest therapeutic effects in patients with sleep disorders.
Collapse
Affiliation(s)
- Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Hee Ra Jung
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- NeuroTx, Co., Ltd., Seoul, Korea
| |
Collapse
|
14
|
Zettin M, Bondesan C, Nada G, Varini M, Dimitri D. Transcranial Direct-Current Stimulation and Behavioral Training, a Promising Tool for a Tailor-Made Post-stroke Aphasia Rehabilitation: A Review. Front Hum Neurosci 2021; 15:742136. [PMID: 34987366 PMCID: PMC8722401 DOI: 10.3389/fnhum.2021.742136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Aphasia is an acquired language disorder resulting from damage to portions of the brain which are responsible for language comprehension and formulation. This disorder can involve different levels of language processing with impairments in both oral and written comprehension and production. Over the last years, different rehabilitation and therapeutic interventions have been developed, especially non-invasive brain stimulation (NIBS) techniques. One of the most used NIBS techniques in aphasia rehabilitation is the Transcranial Direct-Current Stimulation (tDCS). It has been proven to be effective in promoting a successful recovery both in the short and the long term after a brain injury. The main strength of tDCS is its feasibility associated with relatively minor side effects, if safely and properly administered. TDCS requires two electrodes, an anode and a cathode, which are generally placed on the scalp. The electrode montage can be either unipolar or bipolar. The main aim of this review is to give an overview of the state of the art of tDCS for the treatment of aphasia. The studies described included patients with different types of language impairments, especially with non-fluent aphasia and in several cases anomia. The effects of tDCS are variable and depend on several factors, such as electrode size and montage, duration of the stimulation, current density and characteristics of the brain tissue underneath the electrodes. Generally, tDCS has led to promising results in rehabilitating patients with acquired aphasia, especially if combined with different language and communication therapies. The selection of the appropriate approach depends on the patients treated and their impaired language function. When used in combination with treatments such as Speech and Language Therapy, Constraint Induced Aphasia Therapy or Intensive Action Treatment, tDCS has generally promoted a better recovery of the impaired functions. In addition to these rehabilitation protocols, Action Observation Therapy, such as IMITAF, appeared to contribute to the reduction of post-stroke anomia. The potential of combining such techniques with tDCS would would therefore be a possibility for further improvement, also providing the clinician with a new action and intervention tool. The association of a tDCS protocol with a dedicated rehabilitation training would favor a generalized long-term improvement of the different components of language.
Collapse
Affiliation(s)
- Marina Zettin
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Giulia Nada
- Department of Psychology, University of Turin, Turin, Italy
| | - Matteo Varini
- Department of Psychology, University of Turin, Turin, Italy
| | - Danilo Dimitri
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021. [PMID: 34914787 DOI: 10.1371/journal.pone.0261373.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
|
16
|
Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021. [PMID: 34062843 DOI: 10.3390/nu13051530.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
|
17
|
Fisicaro F, Lanza G, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Pennisi M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021; 13:nu13051530. [PMID: 34062843 PMCID: PMC8147364 DOI: 10.3390/nu13051530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
18
|
Fisicaro F, Lanza G, Pennisi M, Vagli C, Cantone M, Pennisi G, Ferri R, Bella R. Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021; 13:nu13020536. [PMID: 33562065 PMCID: PMC7916014 DOI: 10.3390/nu13020536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| |
Collapse
|
19
|
Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021. [PMID: 33562065 DOI: 10.3390/nu13020536.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
|
20
|
Lanza G, Fisicaro F, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Hadjivassiliou M, Pennisi M. Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021; 16:e0261373. [PMID: 34914787 PMCID: PMC8675755 DOI: 10.1371/journal.pone.0261373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- * E-mail:
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale, Napoli, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020. [PMID: 33322688 DOI: 10.3390/jpm10040274.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
|
22
|
Fisicaro F, Lanza G, Cantone M, Ferri R, Pennisi G, Nicoletti A, Zappia M, Bella R, Pennisi M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020; 10:jpm10040274. [PMID: 33322688 PMCID: PMC7768400 DOI: 10.3390/jpm10040274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo, 6-93100 Caltanissetta, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
23
|
Roshani Z, Kamrani AAA, Momtaz YA. Biopsychosocial Predictors of Cognitive Impairment in the Elderly: A Case-control Study. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216666200705234912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cognitive impairment is one of the most common diseases in the elderly.
Several studies have already been conducted to identify related factors, but few have explored all
the factors involved in the development of cognitive problems.
Objective:
The present study aimed to identify significant biopsychosocial predictors of cognitive
impairment.
Methods::
This case-control study was conducted on 535 elderly people referred to Shafa Clinic in
the city of Tehran in 2017. The biological factors including serum cholesterol, fasting blood sugar,
systolic and diastolic blood pressure, vitamin D, vitamin B12, serum folate, serum homocysteine,
height, and weight were measured. The psychological variable in this study was a history of depression
that was extracted from the medical records. Social network and social support were measured
by LSNS-6 and MOS-SSS questionnaires. The SPSS version 25 was used to analyze the data.
Results:
The mean age of the control group was 68.4 years (SD = 5.89) and of the case group was
71.5 years (SD = 7.37). The results of multiple logistic regression analysis showed age (AOR=1.05;
CI:1.089-1.016, p≤0.05,), Secondary education (AOR=0.51; CI:0.266-0.990, p<0.05,), Tertiary
education (AOR=0.41; CI:0.212-0.810, p<0.01,), hypertension (AOR=2.16; CI:3.671-1.266,
p<0.01) homocysteine level (AOR=1.09; CI:1.147-1.045, p<0.001,), Hypothyroidism (AOR=0.43;
CI: 0.226 0.820, p<0.001,), and depression (AOR=4.5; CI:7.163-2.822, p<0.001) to be significant
predictors of cognitive impairment.
Conclusion:
Results of this study showed that low education level, high blood pressure, high
level of homocysteine and depression likely increase the risk of cognitive impairment; also, it
was implied that timely screening can identify people at risk. The novelty of the present study is
that it used a combination of the biopsychosocial factors to predict unique predictors of cognitive
impairment.
Collapse
Affiliation(s)
- Zahra Roshani
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ahmad-Ali Akbari Kamrani
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yadollah Abolfathi Momtaz
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
24
|
Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients 2020. [PMID: 32408706 DOI: 10.3390/nu12051389.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies explored the effects of acetyl-L-carnitine (ALC) in dementia, suggesting a role in slowing down cognitive decline. Nevertheless, in 2003 a systematic review concluded there was insufficient evidence to recommend a clinical use, although a meta-analysis in the same year showed a significant advantage for ALC for clinical scales and psychometric tests. Since then, other studies have been published; however, a critical review is still lacking. We provide an update of the studies on ALC in primary and secondary dementia, highlighting the current limitations and translational implications. Overall, the role of ALC in dementia is still under debate. The underlying mechanisms may include restoring of cell membranes and synaptic functioning, enhancing cholinergic activity, promoting mitochondrial energy metabolism, protecting against toxins, and exerting neurotrophic effects. The effects of ALC on the gut-liver-brain axis seem to identify the category of patients in which the new insights contribute most to the mechanisms of action of ALC, likely being the liver metabolism and the improvement of hepatic detoxifying mechanisms the primary targets. In this framework, our research group has dealt with this topic, focusing on the ALC-related cross-talk mechanisms. Further studies with homogeneous sample and longitudinal assessment are needed before a systematic clinical application.
Collapse
|
25
|
Pennisi M, Lanza G, Cantone M, D’Amico E, Fisicaro F, Puglisi V, Vinciguerra L, Bella R, Vicari E, Malaguarnera G. Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients 2020; 12:E1389. [PMID: 32408706 PMCID: PMC7284336 DOI: 10.3390/nu12051389] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Several studies explored the effects of acetyl-L-carnitine (ALC) in dementia, suggesting a role in slowing down cognitive decline. Nevertheless, in 2003 a systematic review concluded there was insufficient evidence to recommend a clinical use, although a meta-analysis in the same year showed a significant advantage for ALC for clinical scales and psychometric tests. Since then, other studies have been published; however, a critical review is still lacking. We provide an update of the studies on ALC in primary and secondary dementia, highlighting the current limitations and translational implications. Overall, the role of ALC in dementia is still under debate. The underlying mechanisms may include restoring of cell membranes and synaptic functioning, enhancing cholinergic activity, promoting mitochondrial energy metabolism, protecting against toxins, and exerting neurotrophic effects. The effects of ALC on the gut-liver-brain axis seem to identify the category of patients in which the new insights contribute most to the mechanisms of action of ALC, likely being the liver metabolism and the improvement of hepatic detoxifying mechanisms the primary targets. In this framework, our research group has dealt with this topic, focusing on the ALC-related cross-talk mechanisms. Further studies with homogeneous sample and longitudinal assessment are needed before a systematic clinical application.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy; (M.P.); (F.F.); (G.M.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, Azienda Sanitaria Provinciale (ASP) Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (E.D.); (R.B.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy; (M.P.); (F.F.); (G.M.)
| | - Valentina Puglisi
- Department of Neurology, Azienda Socio-Sanitaria Territoriale (ASST) Cremona, Viale Concordia 1, 26100 Cremona, Italy; (V.P.); (L.V.)
| | - Luisa Vinciguerra
- Department of Neurology, Azienda Socio-Sanitaria Territoriale (ASST) Cremona, Viale Concordia 1, 26100 Cremona, Italy; (V.P.); (L.V.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (E.D.); (R.B.)
| | - Enzo Vicari
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy; (M.P.); (F.F.); (G.M.)
- Research Center “The Great Senescence”, University of Catania, Via Androne 83, 95124 Catania, Italy
| |
Collapse
|
26
|
Abstract
INTRODUCTION Stroke is among the most common causes of disability worldwide. Nonmotor symptoms of stroke are common and disabling. Many are treatable, and intervention improves the quality of life for stroke survivors. AREAS COVERED Here the author summarizes the evidence-based treatment of depression and other mood disorders, aphasia, hemispatial neglect, impairments of emotional communication and empathy, deficits in memory and other cognitive functions, sleep disorders, pain, fatigue, and seizures resulting from stroke. The author focuses on treatments supported by randomized controlled trials (RCTs), from the literature cited in Google Scholar, Embase, and Pubmed. EXPERT OPINION While behavioral rehabilitation is the most common intervention for many of the sequelae of stroke, relatively small RCTs support the use of noninvasive brain stimulation (transcranial direct current stimulation and transcranial direct current stimulation) and medications that facilitate neural plasticity and recovery. These noninvasive brain stimulation methods remain investigational for post-stroke symptoms. The strongest evidence for pharmacological intervention is in the domains of post-stroke mood disorders and epilepsy, but additional RCTs are needed to confirm the efficacy of selective serotonin reuptake inhibitors and other medications for improving recovery of cognition, language, and energy after stroke.
Collapse
Affiliation(s)
- Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University , Baltimore, MD, USA
| |
Collapse
|
27
|
Vinciguerra L, Lanza G, Puglisi V, Fisicaro F, Pennisi M, Bella R, Cantone M. Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020; 21:E2977. [PMID: 32340195 PMCID: PMC7215552 DOI: 10.3390/ijms21082977] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
Affiliation(s)
- Luisa Vinciguerra
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, 94018 Troina, Italy
| | - Valentina Puglisi
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, 93100 Caltanissetta, Italy;
| |
Collapse
|
28
|
Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020. [PMID: 32340195 DOI: 10.3390/ijms21082977.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
|