1
|
Jiang Y, Zhao Y, Liu Z, Fang JKH, Lai KP, Li R. Roles and mechanisms of fucoidan against dermatitis: A review. Int J Biol Macromol 2024; 279:135268. [PMID: 39233164 DOI: 10.1016/j.ijbiomac.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Fucoidan is a sulfate-containing polysaccharide derived from the cell walls of brown algae and marine invertebrates. Fucoidan is widely used for the treatment of various diseases owing to its various biological activities. Dermatitis is an inflammatory reaction that affects the skin. The primary clinical manifestations include atopic dermatitis (AD or eczema) and various subtypes of contact dermatitis. The treatment of dermatitis primarily improves symptoms and reduces inflammation. However, owing to individual variations, some patients have a poor prognosis or symptom recurrence after conventional treatment. Owing to the excellent anti-allergic and anti-inflammatory activities of the low cost nature compound fucoidan, its therapeutic effect in inflammatory diseases has recently attracted the attention of researchers. This article summarizes and analyzes the advantages and pharmacological mechanisms of fucoidan against dermatitis to provide a reference for the selection of drugs for the treatment of dermatitis.
Collapse
Affiliation(s)
- Yingqi Jiang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Yin Zhao
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Zhuoqing Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China.
| |
Collapse
|
2
|
Lee HH, Seong JY, Kang H, Cho H. Euglena gracilis Enhances Innate and Adaptive Immunity through Specific Expression of Dectin-1 in CP-Induced Immunosuppressed Mice. Nutrients 2024; 16:3158. [PMID: 39339758 PMCID: PMC11434765 DOI: 10.3390/nu16183158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Euglena gracilis (E. gracilis), a species of unicellular algae, can accumulate large amounts of β-1,3-glucan paramylon, a polysaccharide, in its cytoplasm and has recently attracted interest as a bioproduct due to its various health benefits. In this study, the immune-enhancing effect of E. gracilis powder (EP) was investigated in vitro and in vivo. METHODS In vitro, the production of NO and cytokines and the mechanism of the signaling pathway of β-1,3-glucan were identified in RAW264.7 cells. In vivo, cyclophosphamide-induced (CP-induced) immunosuppressed C57BL/6 female mice were orally administered with three different concentrations (100, 300, and 600 mg/kg) of EP daily. After 14 days, the organs and whole blood were collected from each animal for further study. RESULTS The weight loss of CP-treated mice was reversed by treatment with EP to levels comparable to those of control mice. In addition, the frequencies of NK1.1+, CD3+, CD4+, CD8+, and B220+ in immune cells isolated from the spleen were increased by EP treatment compared with water or RG. The secretion of TNF-α, IFN-γ, and IL-12 from splenocytes was also increased by EP treatment, as was the level of IgM in the serum of the mice. Finally, EP treatment specifically upregulated the expression of dectin-1 in the liver of CP-treated mice. CONCLUSIONS E. gracilis could be a good candidate for a natural immune stimulator in the innate and adaptive response by secreting TNF-α, IFN-γ, and IL-12 through stimulating dectin-1 expression on the surface of immune cells.
Collapse
Affiliation(s)
- Hwan Hee Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji-Yeon Seong
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
3
|
Kim S, Lee HH, Kang CH, Kang H, Cho H. Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide. Nutrients 2023; 15:1038. [PMID: 36839396 PMCID: PMC9961842 DOI: 10.3390/nu15041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
This study evaluates the immune-enhancing effects of Limosilactobacillus fermentum on cyclophosphamide (CP)-induced immunosuppression in BALB/c mice. In vitro, the expressions of pro-inflammatory cytokines and MAPK signaling molecules in Raw264.7 cells were analyzed by ELISA and Western blot analysis. Moreover, cell proliferation, surface receptor expression, and cytotoxicity of NK-92 cells were examined by Cell Counting Kit-8, CytoTox96 assay, and flow cytometry, respectively. To investigate the immune-enhancing effects of selected L. fermentum strains in vivo, these strains were orally administered to BALB/c mice for 2 weeks, and CP was intraperitoneally injected. Then, liver, spleen, and whole blood were isolated from each animal. Administration of single L. fermentum strains or their mixture sustained the spleen weight, the counts of white blood cells compared to non-fed group. Splenocyte proliferation and NK cytotoxicity were significantly increased in all L. fermentum-fed groups. The frequency of B220+ cells was also significantly enhanced in splenocytes isolated from L. fermentum groups. In addition, the production of cytokines (TNF-α, IFN-γ) and antibodies was recovered in splenocyte supernatants isolated from L. fermentum groups. In conclusion, L. fermentum could be a suitable functional food additive for immune-enhancing effect.
Collapse
Affiliation(s)
- SukJin Kim
- Department of Bio-Health Convergence Major, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Hwan Hee Lee
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Chang-Ho Kang
- Mediogen, Co., Ltd., Bio Valley 1-Ro, Jecheon-si 27159, Republic of Korea
| | - Hyojeung Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyosun Cho
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
4
|
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy. Mar Drugs 2023; 21:md21020128. [PMID: 36827169 PMCID: PMC9961398 DOI: 10.3390/md21020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges.
Collapse
|
5
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Zeng J, Luan F, Hu J, Liu Y, Zhang X, Qin T, Zhang X, Liu R, Zeng N. Recent research advances in polysaccharides from Undaria pinnatifida: Isolation, structures, bioactivities, and applications. Int J Biol Macromol 2022; 206:325-354. [PMID: 35240211 DOI: 10.1016/j.ijbiomac.2022.02.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
Undaria pinnatifida, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for edema, phlegm elimination and diuresis, and detumescence for more than 2000 years. Numerous studies have found that polysaccharides of U. pinnatifida play an indispensable role in the nutritional and medicinal value. The water extraction and alcohol precipitation method are the most used method. More than 40 U. pinnatifida polysaccharides (UPPs) were successfully isolated and purified from U. pinnatifida, whereas only few of them were well characterized. Pharmacological studies have shown that UPPs have high-order structural features and multiple biological activities, including anti-tumor, antidiabetic, immunomodulatory, antiviral, anti-inflammatory, antioxidant, anticoagulating, antithrombosis, antihypertension, antibacterial, and renoprotection. In addition, the structural characteristics of UPPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, structure-activity relationships and industrial application of UPPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of UPPs were also outlined. Furthermore, the clinical settings and structure-activity functions of UPPs were highlighted. Some research perspectives and challenges in the study of UPPs were also proposed.
Collapse
Affiliation(s)
- Jiuseng Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Jingwen Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yao Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Xiumeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Tiantian Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xia Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| |
Collapse
|
7
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
9
|
Park AY, Nafia I, Stringer DN, Karpiniec SS, Fitton JH. Fucoidan Independently Enhances Activity in Human Immune Cells and Has a Cytostatic Effect on Prostate Cancer Cells in the Presence of Nivolumab. Mar Drugs 2021; 20:12. [PMID: 35049864 PMCID: PMC8779234 DOI: 10.3390/md20010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.
Collapse
Affiliation(s)
- Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Imane Nafia
- Explicyte Immuno-Oncology, 33000 Bordeaux, France;
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
- RDadvisor, Hobart, TAS 7006, Australia
| |
Collapse
|
10
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
11
|
Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients 2021; 13:nu13082613. [PMID: 34444774 PMCID: PMC8398742 DOI: 10.3390/nu13082613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple health benefits have been ascribed to brown seaweeds that are used traditionally as dietary component mostly in Asia. This systematic review summarizes information on the impact of brown seaweeds or components on inflammation, and inflammation-related pathologies, such as allergies, diabetes mellitus and obesity. We focus on oral supplementation thus intending the use of brown seaweeds as food additives. Despite the great diversity of experimental systems in which distinct species and compounds were tested for their effects on inflammation and immunity, a remarkably homogeneous picture arises. The predominant effects of consumption of brown seaweeds or compounds can be classified into three categories: (1) inhibition of reactive oxygen species, known to be important drivers of inflammation; (2) regulation, i.e., in most cases inhibition of proinflammatory NF-κB signaling; (3) modulation of adaptive immune responses, in particular by interfering with T-helper cell polarization. Over the last decades, several inflammation-related diseases have increased substantially. These include allergies and autoimmune diseases as well as morbidities associated with lifestyle and aging. In this light, further development of brown seaweeds and seaweed compounds as functional foods and nutriceuticals might contribute to combat these challenges.
Collapse
|
12
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|