1
|
Camargo-Herrera V, Castellanos G, Rangel N, Jiménez-Tobón GA, Martínez-Agüero M, Rondón-Lagos M. Patterns of Chromosomal Instability and Clonal Heterogeneity in Luminal B Breast Cancer: A Pilot Study. Int J Mol Sci 2024; 25:4478. [PMID: 38674062 PMCID: PMC11049937 DOI: 10.3390/ijms25084478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN), defined by variations in the number or structure of chromosomes from cell to cell, is recognized as a distinctive characteristic of cancer associated with the ability of tumors to adapt to challenging environments. CIN has been recognized as a source of genetic variation that leads to clonal heterogeneity (CH). Recent findings suggest a potential association between CIN and CH with the prognosis of BC patients, particularly in tumors expressing the epidermal growth factor receptor 2 (HER2+). In fact, information on the role of CIN in other BC subtypes, including luminal B BC, is limited. Additionally, it remains unknown whether CIN in luminal B BC tumors, above a specific threshold, could have a detrimental effect on the growth of human tumors or whether low or intermediate CIN levels could be linked to a more favorable BC patient prognosis when contrasted with elevated levels. Clarifying these relationships could have a substantial impact on risk stratification and the development of future therapeutic strategies aimed at targeting CIN in BC. This study aimed to assess CIN and CH in tumor tissue samples from ten patients with luminal B BC and compare them with established clinicopathological parameters. The results of this study reveal that luminal B BC patients exhibit intermediate CIN and stable aneuploidy, both of which correlate with lymphovascular invasion. Our results also provide valuable preliminary data that could contribute to the understanding of the implications of CIN and CH in risk stratification and the development of future therapeutic strategies in BC.
Collapse
Affiliation(s)
- Valentina Camargo-Herrera
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Giovanny Castellanos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Guillermo Antonio Jiménez-Tobón
- Laboratorio de Patología, Hospital Universitario Mayor-Méderi, Bogotá 110311, Colombia;
- Grupo BIOmedUR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110231, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| |
Collapse
|
2
|
Ciesielski M, Szajewski M, Walczak J, Pęksa R, Lenckowski R, Supeł M, Zieliński J, Kruszewski WJ. Impact of chromosome 17 centromere copy number increase on patient survival and human epidermal growth factor receptor 2 expression in gastric adenocarcinoma. Oncol Lett 2020; 21:142. [PMID: 33552261 PMCID: PMC7798021 DOI: 10.3892/ol.2020.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
The accurate evaluation of human epidermal growth factor receptor 2 (HER2) status is essential for the appropriate use of targeted therapies. An increased number of chromosome 17 centromere enumeration probe (CEP17) signals may underrate fluorescence in situ hybridization (FISH) outcomes, resulting in false-negative or a false-equivocal HER2 status assessment. The aim of the present study was to assess the frequency of CEP17 copy number increase (CNI), its effects on HER2 protein expression (and the subsequent effects on tumor cells), and the survival outcomes of patients with gastric cancer. Archival primary tumor samples from 244 patients that underwent gastric resection for adenocarcinoma were retrieved for both HER2 protein expression analysis (using immunochemistry) and HER2 gene amplification (using FISH). The associations between HER2 status, CEP17 CNI and multiple clinicopathological parameters (including survival outcome), were assessed. The relationship between CEP17 CNI and HER2 protein upregulation was also investigated. CEP17 CNI was detected in 17.2% of cases, and a strong association between CEP17 CNI and HER2 upregulation was revealed. The impact of CEP17 CNI on survival did not reach statistical significance. Consequently, CEP17 CNI was discovered to be strongly associated with HER2 upregulation in tumor cells, which may characterize a critical issue in HER2 testing. Therefore, the eligibility for HER2-targeted agents in CEP17 CNI-positive patients warrants further recognition.
Collapse
Affiliation(s)
- Maciej Ciesielski
- Department of Oncological Surgery, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland.,Division of Propedeutics of Oncology, Medical University of Gdańsk, Gdańsk, Pomeranian Voivodship 80-210, Poland
| | - Mariusz Szajewski
- Department of Oncological Surgery, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland.,Division of Propedeutics of Oncology, Medical University of Gdańsk, Gdańsk, Pomeranian Voivodship 80-210, Poland
| | - Jakub Walczak
- Department of Oncological Surgery, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Pomeranian Voivodship 80-210, Poland
| | - Radosław Lenckowski
- Department of Pathomorphology, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland
| | - Małgorzata Supeł
- Department of Pathomorphology, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland
| | - Jacek Zieliński
- Department of Oncological Surgery, Medical University of Gdańsk, Gdańsk, Pomeranian Voivodship 80-210, Poland
| | - Wiesław Janusz Kruszewski
- Department of Oncological Surgery, Gdynia Centre of Oncology, Pomeranian Hospitals, Gdynia, Pomeranian Voivodship 81-519, Poland.,Division of Propedeutics of Oncology, Medical University of Gdańsk, Gdańsk, Pomeranian Voivodship 80-210, Poland
| |
Collapse
|
3
|
Lee K, Kim HJ, Jang MH, Lee S, Ahn S, Park SY. Centromere 17 copy number gain reflects chromosomal instability in breast cancer. Sci Rep 2019; 9:17968. [PMID: 31784614 PMCID: PMC6884473 DOI: 10.1038/s41598-019-54471-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Chromosomal instability (CIN) is known to be associated with prognosis and treatment response in breast cancer. This study was conducted to determine whether copy number gain of centromere 17 (CEP17) reflects CIN, and to evaluate the prognostic and predictive value of CIN in breast cancer. CIN status was determined by summing copy number gains of four centromeric probes (CEP1, CEP8, CEP11, and CEP16) based on fluorescence in situ hybridization and CIN scores were calculated using next generation sequencing data. High CIN was associated with adverse clinicopatholgical parameters of breast cancer. Among them, positive HER2 status, high Ki-67 index and CEP17 copy number gain were found to be independent predictors of high CIN. High CIN was associated with poor clinical outcome of the patients in the whole group, as well as in luminal/HER2-negative and HER2-positive subtypes. CEP17 copy number was significantly higher in the high-CIN-score group than in the low-CIN-score group. A positive linear correlation between the mean CEP17 copy number and the CIN score was found. In conclusion, CEP17 copy number was confirmed as a useful predictor for CIN in breast cancer, and high CIN was revealed as an indicator of poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Kyoungyul Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Kangwon, Republic of Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Min Hye Jang
- Department of Pathology, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
Ahn S, Woo JW, Lee K, Park SY. HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med 2019; 54:34-44. [PMID: 31693827 PMCID: PMC6986968 DOI: 10.4132/jptm.2019.11.03] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) protein overexpression and/or HER2 gene amplification is found in about 20% of invasive breast cancers. It is a sole predictive marker for treatment benefits from HER2 targeted therapy and thus, HER2 testing is a routine practice for newly diagnosed breast cancer in pathology. Currently, HER2 immunohistochemistry (IHC) is used for a screening test, and in situ hybridization is used as a confirmation test for HER2 IHC equivocal cases. Since the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines on HER2 testing was first released in 2007, it has been updated to provide clear instructions for HER2 testing and accurate determination of HER2 status in breast cancer. During HER2 interpretation, some pitfalls such as intratumoral HER2 heterogeneity and increase in chromosome enumeration probe 17 signals may lead to inaccurate assessment of HER2 status. Moreover, HER2 status can be altered after neoadjuvant chemotherapy or during metastatic progression, due to biologic or methodologic issues. This review addresses recent updates of ASCO/CAP guidelines and factors complicating in the interpretation of HER2 status in breast cancers.
Collapse
Affiliation(s)
- Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Won Woo
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Ren L, Liu J, Gou K, Xing C. Copy number variation and high expression of DNA topoisomerase II alpha predict worse prognosis of cancer: a meta-analysis. J Cancer 2018; 9:2082-2092. [PMID: 29937926 PMCID: PMC6010676 DOI: 10.7150/jca.23681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Increasing numbers of literatures have investigated the association between TOP2A and cancer prognosis. But the results of the relationship between the two were inconclusive. The aim of this meta-analysis was to elucidate whether TOP2A could predict prognosis of cancer. Materials and Methods: A systematically searching for potentially valuable literature was conducted through electronic databases containing PubMed and Web of Science. Hazard Ratio (HR) and their 95% confidence interval (CI) were used to assess the strength of association between TOP2A and cancer prognosis. Results: Finally twenty-five studies were included in this meta-analysis. High expression of TOP2A was associated with shorter disease free survival (DFS) of cancer prognosis compared with low expression of TOP2A (HR= 1.36, 95% CI= 1.18-1.57, P<0.001). Amplification of TOP2A gene showed no significant association with overall survival (OS), disease free survival (DFS) or relapse free survival (RFS) compared with non-amplification of TOP2A (OS: HR= 0.96, 95%CI= 0.75-1.22, P= 0.735; DFS: HR= 0.93, 95%CI= 0.70-1.23, P= 0.621; RFS: HR= 0.97, 95%CI= 0.71-1.34, P= 0.867). In the subgroup of regions, TOP2A amplification was associated with longer overall survival (HR= 0.66, 95%CI= 0.46-0.96, P= 0.029) in Australia. Alteration (amplification or deletion) of TOP2A gene demonstrated shorter survival according to OS and RFS compared with those with normal TOP2A status (OS: HR= 1.37, 95%CI= 1.22-1.55, P<0.001; RFS: HR= 1.26, 95%CI= 1.12-1.41, P<0.001). Conclusion: High TOP2A expression suggested significant relationship with worse cancer prognosis. Alteration (amplification or deletion) of TOP2A gene was also significantly related to shorter survival of cancer patients. Therefore, TOP2A might be used as an indicator for poor prognosis of cancer in the future.
Collapse
Affiliation(s)
| | | | | | - Chengzhong Xing
- Department of anorectal surgery, the First Affiliated Hospital of China Medical University
| |
Collapse
|
6
|
Matsuda Y, Suzuki A, Esaka S, Hamashima Y, Imaizumi M, Kinoshita M, Shirahata H, Kiso Y, Kojima H, Matsukawa M, Fujii Y, Ishikawa N, Aida J, Takubo K, Ishiwata T, Nishimura M, Arai T. Telomere length determined by the fluorescence in situ hybridisation distinguishes malignant and benign cells in cytological specimens. Cytopathology 2018; 29:262-266. [PMID: 29578263 DOI: 10.1111/cyt.12535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Telomeres are tandem repeats of TTAGGG at the end of eukaryotic chromosomes that play a key role in preventing chromosomal instability. The aim of the present study is to determine telomere length using fluorescence in situ hybridisation (FISH) on cytological specimens. METHODS Aspiration samples (n = 41) were smeared on glass slides and used for FISH. RESULTS Telomere signal intensity was significantly lower in positive cases (cases with malignancy, n = 25) as compared to negative cases (cases without malignancy, n = 16), and the same was observed for centromere intensity. The difference in DAPI intensity was not statistically significant. The ratio of telomere to centromere intensity did not show a significant difference between positive and negative cases. There was no statistical difference in the signal intensities of aspiration samples from ascites or pleural effusion (n = 23) and endoscopic ultrasound-guided FNA samples from the pancreas (n = 18). CONCLUSIONS The present study revealed that telomere length can be used as an indicator to distinguish malignant and benign cells in cytological specimens. This novel approach may help improve diagnosis for cancer patients.
Collapse
Affiliation(s)
- Y Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - A Suzuki
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - S Esaka
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Y Hamashima
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - M Imaizumi
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - M Kinoshita
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - H Shirahata
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Y Kiso
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - H Kojima
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - M Matsukawa
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Y Fujii
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - N Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - J Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - K Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - T Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - M Nishimura
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - T Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
7
|
Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, Hanse EA, Cuellar RAD, Grinkova YV, Langenfeld VW, Swedien DS, Stamschror JD, Alvarez J, Luna F, Galván A, Bae YK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Norris B, Flory CM, Schumacher RJ, O'Sullivan MG, Cao Q, Chu H, Lipscomb JD, Atkins WM, Gupta K, Kelekar A, Blair IA, Capdevila JH, Falck JR, Sligar SG, Poulos TL, Georg GI, Ambrose E, Potter DA. Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chem Biol 2017; 24:1259-1275.e6. [PMID: 28919040 PMCID: PMC5650512 DOI: 10.1016/j.chembiol.2017.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER+ mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.
Collapse
Affiliation(s)
- Zhijun Guo
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xia Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ting-Lan Chiu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Dafydd G Thomas
- Department of Pathology and Cancer Center, University of Michigan, Ann Arbor, MN, USA
| | - Eric A Hanse
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Wankhede Langenfeld
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel S Swedien
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin D Stamschror
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Juan Alvarez
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fernando Luna
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, UNAM, Mexico, Mexico
| | - Adela Galván
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, UNAM, Mexico, Mexico
| | | | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Beverly Norris
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Craig M Flory
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, St. Paul, MN, USA
| | - Qing Cao
- Division of Biostatistics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Haitao Chu
- Division of Biostatistics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kalpna Gupta
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Blair
- Department of Pharmacology, Center for Cancer Pharmacology and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge H Capdevila
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, TN, USA
| | - John R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern, Dallas, TX, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth Ambrose
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - David A Potter
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Lee K, Jang MH, Chung YR, Lee Y, Kang E, Kim SW, Kim YJ, Kim JH, Kim IA, Park SY. Prognostic significance of centromere 17 copy number gain in breast cancer depends on breast cancer subtype. Hum Pathol 2016; 61:111-120. [PMID: 27989787 DOI: 10.1016/j.humpath.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Increased copy number of chromosome enumeration probe (CEP) targeting centromere 17 is frequently encountered during HER2 in situ hybridization (ISH) in breast cancer. The aim of this study was to clarify the clinicopathologic significance of CEP17 copy number gain in a relatively large series of breast cancer patients. We analyzed 945 cases of invasive breast cancers whose HER2 fluorescence ISH reports were available from 2004 to 2011 at a single institution and evaluated the association of CEP17 copy number gain with clinicopathologic features of tumors and patient survival. We detected 186 (19.7%) cases of CEP17 copy number gain (CEP17≥3.0) among 945 invasive breast cancers. In survival analysis, CEP17 copy number gain was not associated with disease-free survival of the patients in the whole group. Nonetheless, it was found to be an independent adverse prognostic factor in the HER2-negative group but not in the HER2-positive group. In further subgroup analyses, CEP17 copy number gain was revealed as an independent poor prognostic factor in HER2-negative and hormone receptor-positive breast cancers, and it was associated with aggressive histologic variables including high T stage, high histologic grade, lymphovascular invasion, p53 overexpression, and high Ki-67 proliferative index. In conclusion, we found that elevated CEP17 count can serve as a prognostic marker in luminal/HER2-negative subtype of invasive breast cancer. We advocate the use of the dual-colored fluorescence ISH using CEP17 rather than the single-colored one because it gives additional valuable information on CEP17 copy number alterations.
Collapse
Affiliation(s)
- Kyuongyul Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pathology, Kangwon National University Hospital, Chuncheon, Kangwon 24289, Republic of Korea
| | - Min Hye Jang
- Department of Pathology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea
| | - Yul Ri Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yangkyu Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Eunyoung Kang
- Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sung-Won Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Yu Jung Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jee Hyun Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - In Ah Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea; Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea.
| |
Collapse
|
9
|
Bae YK, Choi JE, Kang SH, Lee SJ. Epithelial-Mesenchymal Transition Phenotype Is Associated with Clinicopathological Factors That Indicate Aggressive Biological Behavior and Poor Clinical Outcomes in Invasive Breast Cancer. J Breast Cancer 2015; 18:256-63. [PMID: 26472976 PMCID: PMC4600690 DOI: 10.4048/jbc.2015.18.3.256] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Cancer tissue may display a wide spectrum of expression phenotypes of epithelial-mesenchymal transition (EMT)-related proteins. The purpose of this study was to investigate the clinical significance of EMT phenotypes in breast cancer. METHODS We evaluated the expression pattern of the EMT-related proteins E-cadherin and fibronectin in samples from 1,495 patients with invasive breast carcinoma (IBC) on tissue microarrays using immunohistochemistry to investigate the clinical significance of EMT phenotypes in IBC. EMT phenotypes were divided into complete type (E-cadherin-negative/fibronectin-positive), incomplete type (hybrid type, E-cadherinpositive/fibronectin-positive; null type, E-cadherin-negative/fibronectin-negative), and wild-type (E-cadherin-positive/fibronectin-negative). We analyzed the correlation of EMT phenotype with clinicopathological factors and patient survival. RESULTS Loss of E-cadherin was observed in 302 patients (20.2%), and fibronectin was expressed in the cancer cells of 354 patients (23.7%). In total, 64 (4.3%), 290 (19.4%), 238 (15.9%), and 903 (60.4%) samples were categorized as complete, hybrid, null, and wild-type, respectively. The complete EMT phenotype exhibited significant associations with young age (p=0.017), advanced pT (p<0.001) and pN (p<0.001) stages, higher histological grade (p<0.001), lymphovascular invasion (p<0.001), and triple negativity (p<0.001). Patients with complete and hybrid EMT phenotypes had poorer overall survival (OS) and disease-free survival (DFS) than those with the wild-type phenotype (OS, p=0.001; DFS, p<0.001). In multivariate analysis, the hybrid EMT phenotype was an independent prognostic factor for DFS in patients with IBC (p=0.032). CONCLUSION EMT phenotypes exhibited significant associations with clinicopathological factors indicating aggressive biologic behavior and poor outcome in patients with IBC.
Collapse
Affiliation(s)
- Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung Eun Choi
- Department of Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Su Hwan Kang
- Department of Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
10
|
The Clinicopathologic and Prognostic Value of Altered Chromosome 17 Centromere Copy Number in HER2 Fish Equivocal Breast Carcinomas. PLoS One 2015; 10:e0132824. [PMID: 26161550 PMCID: PMC4498752 DOI: 10.1371/journal.pone.0132824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosome 17 centromere (CEP17) gain is frequently observed in breast cancer by fluorescence in situ hybridization (FISH). To address the biologic characteristics and clinical significance of CEP17 gain in a large population of breast cancer patients, we performed FISH on a series of 770 breast cancer tissues to evaluate the status of human epidermal growth factor receptor 2 (HER2) gene and CEP17 by immunohistochemistry (IHC) and FISH. Among the 770 specimens, 184 cases showed CEP17 gain (23.9%). Histological grade, nodal status, HER2 by IHC, Ki 67 index, and p53 expression were significantly different between CEP17 gain tumors and HER2-positive tumors. In contrast with HER2-negative tumors, CEP17 gain tumors showed higher histological grade, higher HER2 score by IHC, and higher Ki 67 index. The patients with CEP17 gain tumors had an intermediate survival between HER2-negative and HER2-positive patients. By comparison to HER2-negative and HER2-positive patients, survival in luminal B patients with CEP17 gain tumors also fell in between. In conclusion, CEP17 gain tumors show specific differences compared with HER2-negative and HER2-positive tumors in clinical parameters and prognosis.
Collapse
|
11
|
Sanguedolce F, Bufo P. HER2 assessment by silver in situ hybridization: where are we now? Expert Rev Mol Diagn 2015; 15:385-98. [PMID: 25578771 DOI: 10.1586/14737159.2015.992416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HER2 testing in breast and gastric cancer is critical not only as a prognostic tool but also as a predictive marker for response to the humanized monoclonal antibody trastuzumab. Currently, HER2 status is assessed on histological and cytological specimens by conventional validated methods such as immunohistochemistry and FISH, while bright-field in situ hybridization techniques, such as silver in situ hybridization and chromogenic in situ hybridization, may offer performance benefits over FISH. The major points are first, technical issues, advantages and disadvantages relevant to each methods, and their clinical implications and second, the well-known genetic heterogeneity of HER2, and the occurrence of polysomy of chromosome 17. This review aims to summarize the growing body of literature on the accuracy of bright-field in situ techniques, notably silver in situ hybridization, in assessing HER2 status, and to discuss the role of such methods in pathology practice.
Collapse
|
12
|
An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors. PLoS One 2014; 9:e82185. [PMID: 24475022 PMCID: PMC3903472 DOI: 10.1371/journal.pone.0082185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Different DNA aberrations processes can cause colorectal cancer (CRC). Herein, we conducted a comprehensive molecular characterization of 27 CRCs from Iranian patients. MATERIALS AND METHODS Array CGH was performed. The MSI phenotype and the methylation status of 15 genes was established using MSP. The CGH data was compared to two established lists of 41 and 68 cancer genes, respectively, and to CGH data from African Americans. A maximum parsimony cladogram based on global aberrations was established. RESULTS The number of aberrations seem to depend on the MSI status. MSI-H tumors displayed the lowest number of aberrations. MSP revealed that most markers were methylated, except RNF182 gene. P16 and MLH1 genes were primarily methylated in MSI-H tumors. Seven markers with moderate to high frequency of methylation (SYNE1, MMP2, CD109, EVL, RET, LGR and PTPRD) had very low levels of chromosomal aberrations. All chromosomes were targeted by aberrations with deletions more frequent than amplifications. The most amplified markers were CD248, ERCC6, ERGIC3, GNAS, MMP2, NF1, P2RX7, SFRS6, SLC29A1 and TBX22. Most deletions were noted for ADAM29, CHL1, CSMD3, FBXW7, GALNS, MMP2, NF1, PRKD1, SMAD4 and TP53. Aberrations targeting chromosome X were primarily amplifications in male patients and deletions in female patients. A finding similar to what we reported for African American CRC patients. CONCLUSION This first comprehensive analysis of CRC Iranian tumors reveals a high MSI rate. The MSI tumors displayed the lowest level of chromosomal aberrations but high frequency of methylation. The MSI-L were predominantly targeted with chromosomal instability in a way similar to the MSS tumors. The global chromosomal aberration profiles showed many similarities with other populations but also differences that might allow a better understanding of CRC's clinico-pathological specifics in this population.
Collapse
|
13
|
Fibronectin expression in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer. Hum Pathol 2013; 44:2028-37. [DOI: 10.1016/j.humpath.2013.03.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/15/2023]
|
14
|
Fountzilas G, Dafni U, Bobos M, Kotoula V, Batistatou A, Xanthakis I, Papadimitriou C, Kostopoulos I, Koletsa T, Tsolaki E, Televantou D, Timotheadou E, Koutras A, Klouvas G, Samantas E, Pisanidis N, Karanikiotis C, Sfakianaki I, Pavlidis N, Gogas H, Linardou H, Kalogeras KT, Pectasides D, Dimopoulos MA. Evaluation of the prognostic role of centromere 17 gain and HER2/topoisomerase II alpha gene status and protein expression in patients with breast cancer treated with anthracycline-containing adjuvant chemotherapy: pooled analysis of two Hellenic Cooperative Oncology Group (HeCOG) phase III trials. BMC Cancer 2013; 13:163. [PMID: 23537287 PMCID: PMC3621498 DOI: 10.1186/1471-2407-13-163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/20/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The HER2 gene has been established as a valid biological marker for the treatment of breast cancer patients with trastuzumab and probably other agents, such as paclitaxel and anthracyclines. The TOP2A gene has been associated with response to anthracyclines. Limited information exists on the relationship of HER2/TOP2A gene status in the presence of centromere 17 (CEP17) gain with outcome of patients treated with anthracycline-containing adjuvant chemotherapy. METHODS Formalin-fixed paraffin-embedded tumor tissue samples from 1031 patients with high-risk operable breast cancer, enrolled in two consecutive phase III trials, were assessed in a central laboratory by fluorescence in situ hybridization for HER2/TOP2A gene amplification and CEP17 gain (CEP17 probe). Amplification of HER2 and TOP2A were defined as a gene/CEP17 ratio of >2.2 and ≥2.0, respectively, or gene copy number higher than 6. Additionally, HER2, TopoIIa, ER/PgR and Ki67 protein expression was assessed by immunohistochemistry (IHC) and patients were classified according to their IHC phenotype. Treatment consisted of epirubicin-based adjuvant chemotherapy followed by hormonal therapy and radiation, as indicated. RESULTS HER2 amplification was found in 23.7% of the patients and TOP2A amplification in 10.1%. In total, 41.8% of HER2-amplified tumors demonstrated TOP2A co-amplification. The median (range) of HER2, TOP2A and CEP17 gain was 2.55 (0.70-45.15), 2.20 (0.70-26.15) and 2.00 (0.70-26.55), respectively. Forty percent of the tumors had CEP17 gain (51% of those with HER2 amplification). Adjusting for treatment groups in the Cox model, HER2 amplification, TOP2A amplification, CEP17 gain and HER2/TOP2A co-amplification were not associated with time to relapse or time to death. CONCLUSION HER2 amplification, TOP2A amplification, CEP17 gain and HER2/TOP2A co-amplification were not associated with outcome in high-risk breast cancer patients treated with anthracycline-based adjuvant chemotherapy. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12611000506998 and ACTRN12609001036202.
Collapse
Affiliation(s)
- George Fountzilas
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|