1
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Bugbee E, Wang AA, Gommerman JL. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14:1188750. [PMID: 37600781 PMCID: PMC10435745 DOI: 10.3389/fimmu.2023.1188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Collapse
|
3
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Marks KE, Cho K, Stickling C, Reynolds JM. Toll-like Receptor 2 in Autoimmune Inflammation. Immune Netw 2021; 21:e18. [PMID: 34277108 PMCID: PMC8263214 DOI: 10.4110/in.2021.21.e18] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.
Collapse
Affiliation(s)
- Kathryne E Marks
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kaylin Cho
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joseph M Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
5
|
Even-Or O, Avniel-Polak S, Barenholz Y, Nussbaum G. The cationic liposome CCS/C adjuvant induces immunity to influenza independently of the adaptor protein MyD88. Hum Vaccin Immunother 2020; 16:3146-3154. [PMID: 32401698 PMCID: PMC8641586 DOI: 10.1080/21645515.2020.1750247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional non-living vaccines are often least effective in the populations that need them most, such as neonates and elderly adults. Vaccine adjuvants are one approach to boost the immunogenicity of antigens in populations with reduced immunity. Ideally, vaccine adjuvants will increase the seroconversion rates across the population, lead to stronger immune responses, and enable the administration of fewer vaccine doses. We previously demonstrated that a cationic liposomal formulation of the commercial influenza split virus vaccine (CCS/C-HA) enhanced cellular and humoral immunity to the virus, increased seroconversion rates, and improved survival after live virus challenge in a preclinical model, as compared to the commercial vaccine as is (F-HA). We now evaluated vaccine efficacy in different strains and sexes of mice and determined the role of innate immunity in the mechanism of action of the CCS/C adjuvant by testing the response of mice deficient in Toll-like receptors or the TLR/IL-1 adaptor protein MyD88 following immunization with CCS/C-HA vs. F-HA. Although TLR2- and TLR4-deficient mice responded to F-HA immunization, F-HA immunization failed to engender a significant immune response in the absence of MyD88. In contrast, immunization with the CCS/C-HA vaccine overcame the requirement for MyD88 in the response to the commercial vaccine and improved the immune responses and seroconversion rates in all strains of mice tested, including those deficient in TLR2 and TLR4.
Collapse
Affiliation(s)
- Orli Even-Or
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shani Avniel-Polak
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
6
|
Noorbakhsh SM, Razavi A, Moghadam NB, Saadat P, Hoseini M, Aghazadeh Z, Mobini M, Oraei M, Mirshafiey A. Effects of guluronic acid (G2013) on gene expression of TLR2, TLR4, MyD88, TNF-α and CD52 in multiple sclerosis under in vitro conditions. Immunopharmacol Immunotoxicol 2019; 41:586-590. [DOI: 10.1080/08923973.2019.1672179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Beladi Moghadam
- Department of Neurology, Shahid Beheshti Universiry of Medical Science, Tehran, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institue, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Hoseini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Development of a Novel Backbone Cyclic Peptide Inhibitor of the Innate Immune TLR/IL1R Signaling Protein MyD88. Sci Rep 2018; 8:9476. [PMID: 29930295 PMCID: PMC6013495 DOI: 10.1038/s41598-018-27773-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022] Open
Abstract
MyD88 is a cytoplasmic adaptor protein that plays a central role in signaling downstream of the TLRs and the IL1R superfamily. We previously demonstrated that MyD88 plays a critical role in EAE, the murine model of multiple sclerosis, and showed that the MyD88 BB-loop decoy peptide RDVLPGT ameliorates EAE. We now designed and screened a library of backbone cyclized peptides based on the linear BB loop peptide, to identify a metabolically stable inhibitor of MyD88 that retains the binding properties of the linear peptide. We identified a novel cyclic peptide protein mimetic that inhibits inflammatory responses to TLR ligands, and NFκB activation in response to IL-1 activation. The inhibitor, c(MyD 4-4), is metabolically stable in comparison to the linear peptide, blocks MyD88 in a specific manner, and inhibits MyD88 function by preventing MyD88 dimerization. Finally, treatment of mice with c(MyD 4-4) reduced the severity of clinical disease in the murine EAE model of multiple sclerosis. Thus, modulation of MyD88-dependent signaling using c(MyD 4-4) is a potential therapeutic strategy to lower innate immune inflammation in autoimmune CNS disease.
Collapse
|
8
|
Abstract
Multiple sclerosis (MS) is an inflammatory disorder targeting the central nervous system (CNS). The relapsing-remitting phase of MS is largely driven by peripheral activation of autoreactive T-helper (Th) 1 and Th17 lymphocytes. In contrast, compartmentalized inflammation within the CNS, including diffuse activation of innate myeloid cells, characterizes the progressive phase of MS, the most debilitating phase that currently lacks satisfactory treatments. Recently, bryostatin-1 (bryo-1), a naturally occurring, CNS-permeable compound with a favorable safety profile in humans, has been shown to act on antigen-presenting cells to promote differentiation of lymphocytes into Th2 cells, an action that might benefit Th1-driven inflammatory conditions such as MS. In the present study, we show that bryo-1 provides marked benefit in mice with experimental autoimmune encephalomyelitis (EAE), an experimental MS animal model. Preventive treatment with bryo-1 abolishes the onset of neurologic deficits in EAE. More strikingly, bryo-1 reverses neurologic deficits after EAE onset, even when treatment is initiated at a late stage of disease when peak adaptive immunity has subsided. Treatment with bryo-1 in vitro promotes an anti-inflammatory phenotype in antigen-presenting dendritic cells, macrophages, and to a lesser extent, lymphocytes. These findings suggest the potential for bryo-1 as a therapeutic agent in MS, particularly given its established clinical safety. Furthermore, the benefit of bryo-1, even in late treatment of EAE, combined with its targeting of innate myeloid cells suggests therapeutic potential in progressive forms of MS.
Collapse
|
9
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
10
|
Dishon S, Cohen SJ, Cohen IR, Nussbaum G. Inhibition of Myeloid Differentiation Factor 88 Reduces Human and Mouse T-Cell Interleukin-17 and IFNγ Production and Ameliorates Experimental Autoimmune Encephalomyelitis Induced in Mice. Front Immunol 2017; 8:615. [PMID: 28611775 PMCID: PMC5447018 DOI: 10.3389/fimmu.2017.00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Myeloid differentiation factor 88 (MyD88) recruits signaling proteins to the intracellular domain of receptors belonging to the toll-like/interleukin-1 (IL-1) receptor superfamily. Mice lacking MyD88 are highly susceptible to infectious diseases, but tend to resist experimentally induced autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and manifest diminished allograft rejection. We reasoned that inhibition of MyD88 should influence the cytokine profile of responding T cells by blocking costimulatory molecule expression by antigen-presenting cells (APCs) and by inhibiting T-cell responses to IL-18. We now report that inhibition of MyD88 in human APCs led to decreased IFNγ and IL-17 production and a shift to IL-4 production by responding T cells in a mixed lymphocyte reaction. Direct inhibition of Myd88 in mouse and human T cells also reduced their production of IFNγ in response to IL-12/IL-18 stimulation. Finally, systemic MyD88 antagonism significantly reduced the clinical manifestations of EAE in mice. Thus, MyD88 appears to be a key factor in determining T cell phenotype and represents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Shira Dishon
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Shmuel J Cohen
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
11
|
Wu W, Shao J, Lu H, Xu J, Zhu A, Fang W, Hui G. Guard of delinquency? A role of microglia in inflammatory neurodegenerative diseases of the CNS. Cell Biochem Biophys 2015; 70:1-8. [PMID: 24633457 DOI: 10.1007/s12013-014-9872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are believed to play an important role in the pathogenesis of several neurodegenerative disorders, including multiple sclerosis. Studies demonstrate complex functions of activated microglia that can lead to either beneficial or detrimental outcomes, depending on the form and the timing of activation. Combined with genetic and environmental factors, overactivation and dysregulation of microglia cause progressive neurotoxic consequences which involve a vicious cycle of neuron injury and unregulated neuroinflammation. Thus, modulation of microglial activation appears to be a promising new therapeutic target. While current therapies do attempt to block activation of microglia, they indiscriminately inhibit inflammation thus also curbing beneficial effects of inflammation and delaying recovery. Multiple signaling cascades, often cross-talking, are involved in every step of microglial activation. One of the key challenges is to understand the molecular mechanisms controlling cytokine expression and phagocytic activity, as well as cell-specific consequences of dysregulated cytokine expression. Further, a better understanding of how the integration of multiple cytokine signals influences the function or activity of individual microglia remains an important research objective to identify potential therapeutic targets for clinical intervention to promote repair.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Krumbholz M, Meinl E. B cells in MS and NMO: pathogenesis and therapy. Semin Immunopathol 2014; 36:339-50. [PMID: 24832354 DOI: 10.1007/s00281-014-0424-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 12/28/2022]
Abstract
B linage cells are versatile players in multiple sclerosis (MS) and neuromyelitis optica/neuromyelitis optica spectrum disorder (NMO). New potential targets of autoantibodies have been described recently. Pathogenic mechanisms extend further to antigen presentation and cytokine production, which are increasingly recognized as therapeutic targets. In addition to pro-inflammatory effects of B cells, they may act also as anti-inflammatory via production of interleukin (IL)-10, IL-35, and other mechanisms. Definition of regulatory B cell subsets is an ongoing issue. Recent studies have provided evidence for a loss of B cell self-tolerance in MS. An immunogenetic approach demonstrated exchange of B cell clones between CSF and blood. The central nervous system (CNS) of MS patients fosters B cell survival, at least partly via BAFF and APRIL. The unexpected increase of relapses in a trial with a soluble BAFF/APRIL receptor (atacicept) suggests that this system is involved in MS, but with features that are not yet understood. In this review, we further discuss evidence for B cell and Ig contribution to human MS and NMO pathogenesis, pro-inflammatory and regulatory B cell effector functions, impaired B cell immune tolerance, the B cell-fostering microenvironment in the CNS, and B cell-targeted therapeutic interventions for MS and NMO, including CD20 depletion (rituximab, ocrelizumab, and ofatumumab), anti-IL6-R (tocilizumab), complement-blocking (eculizumab), inhibitors of AQP4-Ig binding (aquaporumab, small molecular compounds), and BAFF/BAFF-R-targeting agents.
Collapse
Affiliation(s)
- Markus Krumbholz
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University of Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany,
| | | |
Collapse
|
13
|
Bartlett A, Buhlmann JE, Stone J, Lim B, Barrington RA. Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:3605-13. [PMID: 23997211 DOI: 10.4049/jimmunol.1202892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphopenic hosts offer propitious microenvironments for expansion of autoreactive B and T cells. Despite this, many lymphopenic hosts do not develop autoimmune disease, suggesting that additional factors are required for breaching self-tolerance in the setting of lymphopenia. Mice deficient in guanine nucleotide exchange factor Rasgrp1 develop a lymphoproliferative disorder with features of human systemic lupus erythematosus. Early in life, Rasgrp1-deficient mice have normal B cell numbers but are T lymphopenic, leading to defective homeostatic expansion of CD4 T cells. To investigate whether B cell-intrinsic mechanisms also contribute to autoimmunity, Rasgrp1-deficient mice were bred to mice containing a knockin autoreactive BCR transgene (564Igi), thereby allowing the fate of autoreactive B cells to be assessed. During B cell development, the frequency of receptor-edited 564Igi B cells was reduced in Rasrp1-deficient mice compared with Rasgrp1-sufficient littermate control mice, suggesting that tolerance was impaired. In addition, the number of 564Igi transitional B cells was increased in Rasgrp1-deficient mice compared with control mice. Immature 564Igi B cells in bone marrow and spleen lacking RasGRP1 expressed lower levels of Bim mRNA and protein, suggesting that autoreactive B cells elude clonal deletion during development. Concomitant with increased serum autoantibodies, Rasgrp1-deficient mice developed spontaneous germinal centers at 8-10 wk of age. The frequency and number of 564Igi B cells within these germinal centers were significantly increased in Rasgrp1-deficient mice relative to control mice. Taken together, these studies suggest that autoreactive B cells lacking Rasgrp1 break central and peripheral tolerance through both T cell-independent and -dependent mechanisms.
Collapse
Affiliation(s)
- Amber Bartlett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688
| | | | | | | | | |
Collapse
|
14
|
The innate immune adaptor MyD88 is dispensable for spontaneous autoimmune demyelination in a mouse model of multiple sclerosis. J Neuroimmunol 2013; 255:60-9. [DOI: 10.1016/j.jneuroim.2012.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/02/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
|
15
|
Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. THE JOURNAL OF IMMUNOLOGY 2012; 188:3188-98. [PMID: 22368274 DOI: 10.4049/jimmunol.1103354] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201-2178, USA
| | | | | | | | | |
Collapse
|
16
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
17
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Regulatory role of resveratrol on Th17 in autoimmune disease. Int Immunopharmacol 2010; 11:310-8. [PMID: 20708723 DOI: 10.1016/j.intimp.2010.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 02/07/2023]
Abstract
The immune system is balanced with cells that respond to microbes by developing into effector cells and cells that regulate the activity of effector cells. In many immune responses a subset of effector T cells termed Th17 are necessary for complete immunity because the cytokine IL-17 that they produce is critical to elimination of the pathogen. However, the activity of Th17 must be balance with development of regulatory T cells termed T(regs). Usually, when the activity of the effector cells is excessive and not balanced by regulatory cells of the immune system, there is the increased risk for development of autoimmune diseases. Therefore in many autoimmune diseases the activity of Th17 exceeds that of T(regs). Therapeutics for treatment of autoimmune diseases such as Multiple Sclerosis (MS) have focused upon immunosuppression, immunomodulation, or even immunoablation of effector cells such as Th17 followed by hematopoietic stem cell transplantation. Very few approaches have attempted to therapeutically increase immune regulatory cells such as T(regs) in the treatment of autoimmune disease. This review will focus upon the potential `or the use of resveratrol, a natural plant compound that has already been shown to be a potent anti-inflammatory compound, as a complementary therapeutic for MS that increases the activity of T(regs) even though it also increases development of Th17.
Collapse
|
19
|
Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/TH1 paradigm. Ann Anat 2010; 192:179-93. [DOI: 10.1016/j.aanat.2010.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
20
|
Aumeunier A, Grela F, Ramadan A, Pham Van L, Bardel E, Gomez Alcala A, Jeannin P, Akira S, Bach JF, Thieblemont N. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 2010; 5:e11484. [PMID: 20628601 PMCID: PMC2900205 DOI: 10.1371/journal.pone.0011484] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/11/2010] [Indexed: 01/07/2023] Open
Abstract
Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies.
Collapse
Affiliation(s)
- Aude Aumeunier
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Françoise Grela
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | - Linh Pham Van
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Emilie Bardel
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | | | - Shizuo Akira
- Department of Host Defense, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
21
|
Yates MA, Li Y, Chlebeck PJ, Offner H. GPR30, but not estrogen receptor-alpha, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunol 2010; 11:20. [PMID: 20403194 PMCID: PMC2864220 DOI: 10.1186/1471-2172-11-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/19/2010] [Indexed: 01/21/2023] Open
Abstract
Background Remission of multiple sclerosis during periods of high ovarian hormone secretion (such as pregnancy) has led to a great deal of interest in the potential for estrogens to treat autoimmune disease. Previous work has established that 17β-estradiol can inhibit onset of experimental autoimmune encephalomyelitis (EAE), while ethinyl estradiol (EE) can reduce the severity of established disease. In the current study, the influence of estrogen receptor-α (ERα) and the G-protein coupled estrogen receptor (GPR30 or GPER) on EE's ability to treat EAE was explored. Results EE reduced disease severity in wild-type and ERα knockout (ERKO) mice, but did not alter disease in the GPR30KO group. Production of anti-inflammatory IL-10 increased in EE-ERKO mice (which showed reduced disease) but not in EE-GPR30KO mice (who did not have improved disease). Conclusions Differential production of IL-10 following EE treatment in ERKO and GPR30KO animals may be responsible for the distinctly different effects on disease severity. Increased IL-10 in ERKO-EE compared to ERKO-Controls is likely to be an important factor in reducing established disease. The inability of EE to reduce disease in GPR30KO mice indicates an important but still undefined role for GPR30 in regulating immune reactivity.
Collapse
Affiliation(s)
- Melissa A Yates
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | | | | | | |
Collapse
|