1
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
2
|
Turan A, Tarique M, Zhang L, Kazmi S, Ulker V, Tedla MG, Badal D, Yolcu ES, Shirwan H. Engineering Pancreatic Islets to Transiently Codisplay on Their Surface Thrombomodulin and CD47 Immunomodulatory Proteins as a Means of Mitigating Instant Blood-Mediated Inflammatory Reaction following Intraportal Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1971-1980. [PMID: 38709159 PMCID: PMC11160431 DOI: 10.4049/jimmunol.2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1β, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mohammad Tarique
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Lei Zhang
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Shadab Kazmi
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Vahap Ulker
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mebrahtu G Tedla
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Darshan Badal
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Esma S Yolcu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Haval Shirwan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Xu L, Wang X, Zhang T, Meng X, Zhao W, Pi C, Yang YG. Expression of a mutant CD47 protects against phagocytosis without inducing cell death or inhibiting angiogenesis. Cell Rep Med 2024; 5:101450. [PMID: 38508139 PMCID: PMC10983038 DOI: 10.1016/j.xcrm.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Chenchen Pi
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China; International Center of Future Science, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
4
|
Zhang T, Wang F, Xu L, Yang YG. Structural-functional diversity of CD47 proteoforms. Front Immunol 2024; 15:1329562. [PMID: 38426113 PMCID: PMC10902115 DOI: 10.3389/fimmu.2024.1329562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
The ubiquitously expressed transmembrane glycoprotein CD47 participates in various important physiological cell functions, including phagocytosis, apoptosis, proliferation, adhesion, and migration, through interactions with its ligands, including the inhibitory receptor signal regulatory protein α (SIRPα), secreted glycoprotein thrombospondin-1 (TSP-1), and integrins. Elevated expression of CD47 is observed in a wide range of cancer cells as a mechanism for evading the immune system, blocking the interaction between the CD47 and SIRPα is the most advanced and promising therapeutic approach currently investigated in multiple clinical trials. The widely held view that a single type of CD47 protein acts through membrane interactions has been challenged by the discovery of a large cohort of CD47 proteins with cell-, tissue-, and temporal-specific expression and functional profiles. These profiles have been derived from a single gene through alternative splicing and post-translational modifications, such as glycosylation, pyroglutamate modification, glycosaminoglycan modification, and proteolytic cleavage and, to some extent, via specific CD47 clustering in aging and tumor cells and the regulation of its subcellular localization by a pre-translational modification, alternative cleavage and polyadenylation (APA). This review explores the origins and molecular properties of CD47 proteoforms and their roles under physiological and pathological conditions, mentioning the new methods to improve the response to the therapeutic inhibition of CD47-SIRPα immune checkpoints, contributing to the understanding of CD47 proteoform diversity and identification of novel clinical targets and immune-related therapeutic candidates.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Feng Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
6
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Li Y, Wu Y, Federzoni EA, Wang X, Dharmawan A, Hu X, Wang H, Hawley RJ, Stevens S, Sykes M, Yang YG. CD47 cross-dressing by extracellular vesicles expressing CD47 inhibits phagocytosis without transmitting cell death signals. eLife 2022; 11:73677. [PMID: 36454036 PMCID: PMC9714967 DOI: 10.7554/elife.73677] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Transgenic CD47 overexpression is an encouraging approach to ameliorating xenograft rejection and alloresponses to pluripotent stem cells, and the efficacy correlates with the level of CD47 expression. However, CD47, upon ligation, also transmits signals leading to cell dysfunction or death, raising a concern that overexpressing CD47 could be harmful. Here, we unveiled an alternative source of cell surface CD47. We showed that extracellular vesicles, including exosomes, released from normal or tumor cells overexpressing CD47 (transgenic or native) can induce efficient CD47 cross-dressing on pig or human cells. Like the autogenous CD47, CD47 cross-dressed on cell surfaces is capable of interacting with SIRPα to inhibit phagocytosis. However, ligation of the autogenous, but not cross-dressed, CD47 induced cell death. Thus, CD47 cross-dressing provides an alternative source of cell surface CD47 that may elicit its anti-phagocytic function without transmitting harmful signals to the cells. CD47 cross-dressing also suggests a previously unidentified mechanism for tumor-induced immunosuppression. Our findings should help to further optimize the CD47 transgenic approach that may improve outcomes by minimizing the harmful effects of CD47 overexpression.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin UniversityChangchunChina,Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | - Yan Wu
- Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | | | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin UniversityChangchunChina
| | | | - Xiaoyi Hu
- Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | - Hui Wang
- Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | - Robert J Hawley
- Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | - Sean Stevens
- Lung Biotechnology PBCSilver SpringUnited States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical CenterNew YorkUnited States
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin UniversityChangchunChina,International Center of Future Science, Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Wang F, Liu Y, Zhang T, Gao J, Xu Y, Xie G, Zhao W, Wang H, Yang Y. Aging-associated changes in CD47 arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging. Aging Cell 2020; 19:e13224. [PMID: 32866348 PMCID: PMC7576236 DOI: 10.1111/acel.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
CD47 serves as a ligand for signaling regulatory protein α (SIRPα) and as a receptor for thrombospondin-1 (TSP-1). Although CD47, TSP-1, and SIRPα are thought to be involved in the clearance of aged red blood cells (RBCs), aging-associated changes in the expression and interaction of these molecules on RBCs have been elusive. Using direct stochastic optical reconstruction microscopy (dSTORM)-based imaging and quantitative analysis, we can report that CD47 molecules on young RBCs reside as nanoclusters with little binding to TSP-1, suggesting a minimal role for TSP-1/CD47 signaling in normal RBCs. On aged RBCs, CD47 molecules decreased in number but formed bigger and denser clusters, with increased ability to bind TSP-1. Exposure of aged RBCs to TSP-1 resulted in a further increase in the size of CD47 clusters via a lipid raft-dependent mechanism. Furthermore, CD47 cluster formation was dramatically inhibited on thbs1-/- mouse RBCs and associated with a significantly prolonged RBC lifespan. These results indicate that the strength of CD47 binding to its ligand TSP-1 is predominantly determined by the distribution pattern and not the amount of CD47 molecules on RBCs, and offer direct evidence for the role of TSP-1 in phagocytosis of aged RBCs. This study provides clear nanoscale pictures of aging-associated changes in CD47 distribution and TSP-1/CD47 interaction on the cell surface, and insights into the molecular basis for how these molecules coordinate to remove aged RBCs.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Yan‐Hou Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Jing Gao
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yangyue Xu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Guang‐Yao Xie
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Wen‐Jie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Hongda Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yong‐Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
- International Center of Future ScienceJilin UniversityChangchunChina
| |
Collapse
|
9
|
Zhang J, Tan SB, Guo ZG. CD47 decline in pancreatic islet cells promotes macrophage-mediated phagocytosis in type I diabetes. World J Diabetes 2020; 11:239-251. [PMID: 32547698 PMCID: PMC7284019 DOI: 10.4239/wjd.v11.i6.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type I diabetes (T1D) is characterized by insulin loss caused by inflammatory cells that excessively infiltrate and destroy the pancreas, resulting in dysregulation of tissue homeostasis, mechanobiological properties, and the immune response. The streptozotocin (STZ)-induced mouse model exhibits multiple features of human T1D and enables mechanistic analysis of disease progression. However, the relationship between the mechanochemical signaling regulation of STZ-induced T1D and macrophage migration and phagocytosis is unclear.
AIM To study the mechanochemical regulation of STZ-induced macrophage response on pancreatic beta islet cells to gain a clearer understanding of T1D.
METHODS We performed experiments using different methods. We stimulated isolated pancreatic beta islet cells with STZ and then tested the macrophage migration and phagocytosis.
RESULTS In this study, we discovered that the integrin-associated surface factor CD47 played a critical role in immune defense in the STZ-induced T1D model by preventing pancreatic beta islet inflammation. In comparison with healthy mice, STZ-treated mice showed decreased levels of CD47 on islet cells and reduced interaction of CD47 with signal regulatory protein α (SIRPα), which negatively regulates macrophage-mediated phagocytosis. This resulted in weakened islet cell immune defense and promoted macrophage migration and phagocytosis of target inflammatory cells. Moreover, lipopolysaccharide-activated human acute monocytic leukemia THP-1 cells also exhibited enhanced phagocytosis in the STZ-treated islets, and the aggressive attack of the inflammatory islets correlated with impaired CD47-SIRPα interactions. In addition, CD47 overexpression rescued the pre-labeled targeted cells.
CONCLUSION This study indicates that CD47 deficiency promotes the migration and phagocytosis of macrophages and provides mechanistic insights into T1D by associating the interactions between membrane structures and inflammatory disease progression.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Su-Bee Tan
- National Key Laboratory for Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
| |
Collapse
|
10
|
Tao HC, Chen KX, Wang X, Chen B, Zhao WO, Zheng Y, Yang YG. CD47 Deficiency in Mice Exacerbates Chronic Fatty Diet-Induced Steatohepatitis Through Its Role in Regulating Hepatic Inflammation and Lipid Metabolism. Front Immunol 2020; 11:148. [PMID: 32158445 PMCID: PMC7052326 DOI: 10.3389/fimmu.2020.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation is one of the hallmarks of non-alcoholic steatohepatitis. CD47 is a widely expressed transmembrane protein that signals through inhibitory receptor signal regulatory protein α (SIRPα) to inhibit macrophage activation and phagocytosis. In this study, we sought to investigate the role of CD47 in hepatosteatosis and fibrosis induced by a chronic high-fat diet (HFD), by comparing disease development in wild-type (WT) and CD47KO mice fed HFD for 40 weeks. The HFD induced remarkably more severe hepatic steatosis and fibrosis but less body weight gain and less subcutaneous fat accumulation in CD47KO mice compared to WT mice. Liver tissues from HFD-fed CD47KO mice exhibited enhanced inflammation characterized by increased proinflammatory cytokine production and increased nuclear factor-κB (NF-κB) activation compared to similarly fed WT mice. Although higher expression of apolipoproteins was observed in CD47KO mice compared to WT mice under a low-fat diet (LFD), HFD-fed WT and CD47KO mice showed comparably prominent downregulation of these apolipoprotein genes, suggesting that the marked difference observed in lipid accumulation and hepatosteatosis between these mice cannot be explained by changes in apolipoproteins. Like apolipoproteins, sirtuin 1 (SIRT1) and peroxisome proliferator activated receptor alpha (PPARα), which are involved in regulation of both lipid metabolism and inflammation, were more highly expressed in CD47KO than WT mice under LFD but more severely suppressed in CD47KO than in WT mice under HFD. Taken together, our results indicate that CD47 plays a significant role in the pathogenesis of HFD-induced hepatosteatosis and fibrosis through its role in regulation of inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Hui-Chao Tao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Ke-Xin Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Bo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Wai-Ou Zhao
- Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
11
|
Indirectly Activated Treg Allow Dominant Tolerance to Murine Skin-grafts Across an MHC Class I Mismatch After a Single Donor-specific Transfusion. Transplantation 2020; 104:1385-1395. [PMID: 32053573 DOI: 10.1097/tp.0000000000003173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tolerance induced in stringent animal transplant models using donor-specific transfusions (DST) has previously required additional immunological manipulation. Here, we demonstrate a dominant skin-allograft tolerance model induced by a single DST across an major histocompatibility class I mismatch in an unmanipulated B6 host. METHODS C57BL/6 (H-2) (B6) mice were injected intravenously with splenocytes from B6.C.H-2 (H-2k) (bm1) or F1 (B6 × bm1) mice before skin transplantation. Mice were transplanted 7 days postinjection with donor (bm1 or F1) and third-party B10.BR (H-2) skin grafts. RESULTS B6 hosts acutely rejected skin grafts from B6.C.H-2 (bm1) and F1 (B6 × bm1) mice. A single transfusion of F1 splenocytes into B6 mice without any additional immune modulation led to permanent acceptance of F1 skin grafts. This graft acceptance was associated with persistence of donor cells long-term in vivo. The more rapid removal of DST bm1 cells than F1 cells was reduced by natural killer-cell depletion. Tolerant grafts survived an in vivo challenge with naive splenocytes. Both CD4CD25 and CD4CD25 T cells from F1 DST treated B6 mice suppressed alloproliferation in vitro. Tolerance was associated with expansion of peripheral Foxp3CD4CD25 regulatory T cells (Treg) and increased forkhead box P3 (Foxp3) expression in tolerant grafts. In tolerant mice, Foxp3 Treg arises from the proliferation of indirectly activated natural Foxp3 Treg (nTreg) and depletion of Foxp3 Treg abrogates skin-graft tolerance. CONCLUSIONS This study demonstrates that the persistence of transfused semiallogeneic donor cells mismatched at major histocompatibility class I can enhance tolerance to subsequent skin allografts through indirectly expanded nTreg leading to dominant tolerance without additional immunological manipulation.
Collapse
|
12
|
Li Y, Zhang M, Wang X, Liu W, Wang H, Yang YG. Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nat Commun 2020; 11:581. [PMID: 31996683 PMCID: PMC6989506 DOI: 10.1038/s41467-019-14102-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2019] [Indexed: 01/28/2023] Open
Abstract
Cancer cells are poorly immunogenic and have a wide range of mutations, which makes them unsuitable for use in vaccination treatment. Here, we show that elimination of CD47, a ligand for the myeloid cell inhibitory receptor SIRPα, from tumor cells by genetic deletion or antibody blocking, significantly improves the effectiveness of the immune response to tumour cells. In both solid and hematopoietic mouse tumor models, vaccination with tumor cells or tumor antigen-expressing cells, that lack CD47 or were pre-coated with anti-CD47 antibodies, achieved an antitumor immune response. The efficacy of this approach was synergistically enhanced when used in combination with anti-PD-1 antibodies. The induction of antitumor responses depends on SIRPα+CD11c+ DCs, which exhibit rapid expansion following introduction of CD47-deficient tumor cells. Our results indicate that CD47-deficient whole tumor cells can induce antitumor responses.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin University, Changchun, China.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Mingyou Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin University, Changchun, China.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Hui Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, and Institute of Immunology, Jilin University, Changchun, China. .,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA. .,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China. .,International Center of Future Science, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, Li J, Zhu G, Liu F, Meng X, Song J, Sun X, Wang X, Liu S, Zhang S, Yang X, Song Y, Yang YG, Sun T. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9 + T cells. SCIENCE ADVANCES 2020; 6:eaax4690. [PMID: 32064335 PMCID: PMC6989134 DOI: 10.1126/sciadv.aax4690] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/20/2019] [Indexed: 05/22/2023]
Abstract
CCR9+ T cells have an increased potential to be activated and therefore may mediate strong antitumor responses. Here, we found, however, that CCL25, the only chemokine for CCR9+ cells, is not expressed in human or murine triple-negative breast cancers (TNBCs), raising a hypothesis that intratumoral delivery of CCL25 may enhance antitumor immunotherapy in TNBCs. We first determined whether this approach can enhance CD47-targeted immunotherapy using a tumor acidity-responsive nanoparticle delivery system (NP-siCD47/CCL25) to sequentially release CCL25 protein and CD47 small interfering RNA in tumor. NP-siCD47/CCL25 significantly increased infiltration of CCR9+CD8+ T cells and down-regulated CD47 expression in tumor, resulting in inhibition of tumor growth and metastasis through a T cell-dependent immunity. Furthermore, the antitumor effect of NP-siCD47/CCL25 was synergistically enhanced when used in combination with programmed cell death protein-1/programmed death ligand-1 blockades. This study offers a strategy to enhance immunotherapy by promoting CCR9+CD8+ T cell tumor infiltration.
Collapse
Affiliation(s)
- Hongmei Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Chenxi Wu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xuan Wu
- Institute of Translational Medicine, China Medical University, Liaoning, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jie Li
- Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jia Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xu Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shi Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xianzhu Yang
- Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanqiu Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- Corresponding author. (T.S.); (Y.S.); (Y.-G.Y.)
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- Corresponding author. (T.S.); (Y.S.); (Y.-G.Y.)
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- Corresponding author. (T.S.); (Y.S.); (Y.-G.Y.)
| |
Collapse
|
14
|
Chen M, Wang Y, Wang H, Sun L, Fu Y, Yang YG. Elimination of donor CD47 protects against vascularized allograft rejection in mice. Xenotransplantation 2019; 26:e12459. [PMID: 30136356 PMCID: PMC6387643 DOI: 10.1111/xen.12459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/05/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
CD47 is a ubiquitously expressed transmembrane glycoprotein that plays a complex role in regulation of cell survival and function. We have previously shown that the interspecies incompatibility of CD47 plays an important role in triggering rejection of cellular xenografts by macrophages. However, the role of CD47 in solid organ transplantation remains undetermined. Here, we explored this question in mouse models of heart allotransplantation. We observed that the lack of CD47 in donor hearts had no deleterious effect on graft survival in syngeneic or single MHC class I-mismatched recipients, in which both wild-type (WT) and CD47 knockout (CD47 KO) mouse hearts survived long term with no sign of rejection. Paradoxically, elimination of donor CD47 was beneficial for graft survival in signal MHC class II- and class I- plus class II-mismatched combinations, in which CD47 KO donor hearts showed significantly improved survival compared to WT donor hearts. Similarly, CD47 KO donor hearts were more resistant than WT hearts to humoral rejection in α1,3-galactosyltransferase-deficient mice. Moreover, a significant prolongation of WT allografts was observed in recipient mice treated with antibodies against a CD47 ligand thrombospondin-1 (TSP1) or with TSP1 deficiency, indicating that TSP1-CD47 signaling may stimulate vascularized allograft rejection. Thus, unlike cellular transplantation, donor CD47 expression may accelerate the rejection of vascularized allografts.
Collapse
Affiliation(s)
- Mo Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Yuantao Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yaowen Fu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
15
|
Eldesouky NA, Abo El Fetouh RM, Hafez AA, Gad A, Kamal MM. The expression of CD47 and its association with 2,3-DPG levels in stored leuco-reduced blood units. Transfus Clin Biol 2019; 26:279-283. [PMID: 30713045 DOI: 10.1016/j.tracli.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/04/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Red blood cell (RBC) aging in transfusion medicine is characterized by alteration of many biochemical and morphological integrity of the cell referred to as red cell storage lesion (RCSL), CD47 is a protective marker expressed on RBCs that salvage the cell from phagocytosis. 2,3-diphosphoglycerate (2,3-DPG) tends to have a greater affinity towards deoxygenated hemoglobin. Any oxygen unloading at tissue capillaries are facilitated by 2,3-DPG, and any alterations in its levels can significantly interfere with oxygen release. Alteration of both CD47 expression and 2,3-DPG levels during red cell storage may serve as markers in the development of RCSL. The aim of this study was to validate the impact of storage time and leuco-depletion on CD47 expression on the RBCs, which could be a prospective marker for detection of RBCs viability and to clarify if the changes in CD47 expression and 2,3-DPG levels are correlated during storage of Packed RBCs. SUBJECTS AND METHODS One hundred samples from Packed RBCs units were divided into two groups [Group 1 comprised unfiltered packed red cell units (n=50), whereas Group 2 included filtered "leuco-reduced" red cell units (n=50)]. Collection of samples was executed on days 0, 1 and 21. Each sample was measured for 2,3-DPG and alteration of CD47 expression on RBC using flow cytometry. RESULTS Decreased CD47 expression along the storage period was statistically significant in both groups (P<0.05). Interestingly, the expression of CD47 was significantly higher in group 2 than group 1 on day zero, 1st and 21st days (P<0.05). Additionally, a statistically significant decrease in 2,3-DPG level was detected at day 21 of storage in group 1 compared to group 2 with a P-value of <0.001. There was a significant positive correlation (r=0.570, P<0.001) between CD47 MFI on RBC during storage and the level of 2,3-DPG at day 21 from packed RBCs storage. CONCLUSION Older unfiltered RBC possesses lower expression of CD47 and low levels of 2,3-DPG, however filtration (leucoreduction) of RBCs units may help to retain considerable levels of 2,3-DPG and CD47 and hence sustains preservation of RBCs through reduction of phagocytosis.
Collapse
Affiliation(s)
- Nermeen A Eldesouky
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Ahmed Abdel Hafez
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa Gad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Maha M Kamal
- National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
16
|
Hu Y, Zhou H, Gao B, Wang G, Wang Y. Role of regulatory T cells in CD47/donor-specific transfusion-induced immune tolerance in skin-heart transplantation mice. Transpl Infect Dis 2018; 21:e13012. [PMID: 30320937 DOI: 10.1111/tid.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To explore the role of regulatory T (Treg ) cells in the establishment of immune tolerance induced by donor-specific transfusion (DST) in mice with skin-heart transplantation. METHODS C57BL/6 mice received DST of splenocytes from CD47+/+ or CD47-/- H-2bm1 mice or no DST 7 days before skin-heart transplantation from major histocompatibility complex class I-mismatched H-2bm1 donors. The number and proportion of Treg cells in graft and lymphoid organs were measured by flow cytometry (FACS) and immunohistochemistry (IHC). The inhibitory function of Treg cells and anti-donor T-cell responses were assessed by mixed lymphocyte reaction. RESULTS We observed that mean survival time (MST) of skin or heart graft was significantly longer in C57BL/6 mice which received DST from CD47+/+ H-2bm1 mice than from CD47-/- H-2bm1 mice. By FACS, we found that the number of Treg cells in spleen was increased significantly in mice which received CD47-/- DST compared to mice which received CD47+/+ DST. However, the percentages of Treg cells in total splenocytes and lymph node cells were significantly higher in mice that received CD47+/+ DST than mice which received CD47-/- DST. Immunohistochemistry showed an increased heart grafts infiltration of Treg cells in the recipients with CD47-/- DST, but not CD47+/+ DST. Supporting this, we found that donor T-cell proliferation was significantly suppressed in mice which received CD47+/+ DST compared to mice which received CD47-/- DST. There was no difference of inhibitory function of Treg cells between these two groups. CONCLUSION Our results indicated that CD47 expression on DST cells plays an important role in the induction of immune tolerance in mice with skin-heart transplantation. Increased percentage of Treg cells may contribute to immune tolerance induced by CD47+/+ DST.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Gang Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuantao Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Abstract
The principal focus of this paper is to consider the implications of head and neck transplantation surgery on the issue of personal identity. To this end, it is noted that the immune system has not only been established to impose a level of self-identity on bodily cells, it has also been implicated in mental development and the regulation of mental state. In this it serves as a paradigm for the mind as the product of cephalic and extracephalic systems. The importance of bodily systems in identity is then discussed in relation to phantom tissue syndrome. The data strongly indicate that, even if surgically successful, head and neck transplantation will result in the loss of the continuity of personal identity.
Collapse
|
18
|
Shahzad KA, Wan X, Zhang L, Pei W, Zhang A, Younis M, Wang W, Shen C. On-target and direct modulation of alloreactive T cells by a nanoparticle carrying MHC alloantigen, regulatory molecules and CD47 in a murine model of alloskin transplantation. Drug Deliv 2018; 25:703-715. [PMID: 29508634 PMCID: PMC6058602 DOI: 10.1080/10717544.2018.1447049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomimetic nanoparticles have been reported as immune modulators in autoimmune diseases and allograft rejections by numerous researchers. However, most of the therapeutics carrying antigens, toxins or cytokines underlay the mechanism of antigen presentation by cellular uptake of NPs through pinocytosis and phagocytosis. Few researches focus on the direct and antigen-specific modulation on T cells by NPs and combined use of multiple regulatory molecules. Here, polylactic-co-glycolic acid nanoparticles (PLGA-NPs) were fabricated as scaffold to cocoupling H-2Kb-Ig dimer, anti-Fas mAb, PD-L1-Fc, TGF-β and CD47-Fc for the generation of alloantigen-presenting and tolerance-inducing NPs, termed killer NPs and followed by i.v. injection into a single MHC-mismatched murine model of alloskin transplantation. Three infusions prolonged alloskin graft survival for 45 days; depleted most of H-2Kb alloreactive CD8+ T cells in peripheral blood, spleen and local graft, in an antigen-specific manner. The killer NPs circulated throughout vasculature into various organs and local allograft, with a retention time up to 30 h. They made contacts with CD8+ T cells to facilitate vigorous apoptosis, inhibit the activation and proliferation of alloreactive CD8+ T cells and induce regulatory T cells in secondary lymphoid organs, with the greatly minimized uptake by phagocytes. More importantly, the impairment of host overall immune function and visible organ toxicity were not found. Our results provide the first experimental evidence for the direct and on-target modulation on alloreactive T cells by the biodegradable 200-nm killer NPs via co-presentation of alloantigen and multiple regulatory molecules, thus suggest a novel antigen-specific immune modulator for allograft rejections.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Xin Wan
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Lei Zhang
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Weiya Pei
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Aifeng Zhang
- b Department of Pathology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Muhammad Younis
- c State Education Ministry's Key Laboratory of Development Genes and Human Disease, Institute of Life Sciences , Southeast University , Nanjing , Jiangsu , China
| | - Wei Wang
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Chuanlai Shen
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
19
|
Squires JE, Soltys KA, McKiernan P, Squires RH, Strom SC, Fox IJ, Soto-Gutierrez A. Clinical Hepatocyte Transplantation: What Is Next? CURRENT TRANSPLANTATION REPORTS 2017; 4:280-289. [PMID: 29732274 DOI: 10.1007/s40472-017-0165-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Significant recent scientific developments have occurred in the field of liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor hepatocytes and different cell sources have been studied extensively in the laboratory, in recent years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new disease indications and also immunological challenges that will require the incorporation of a fresh look and new experimental approaches. Recent findings Growth advantage and regenerative stimulus are necessary to allow donor hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that important obstacles to HT include optimizing engraftment and limited duration of effectiveness, with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular rejection monitoring, as well as new modalities to follow cellular graft function and near-to-clinical cell sources. Summary HT partially corrects genetic disorders for a limited period of time and has been associated with reversal of ALF. The main identified obstacles that remain to make HT a curative approach include improving engraftment rates, and methods for monitoring cellular graft function and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide insights into innovative approaches taken to overcome these obstacles.
Collapse
Affiliation(s)
- James E Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kyle A Soltys
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Patrick McKiernan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stephen C Strom
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
20
|
Gao L, Chen K, Gao Q, Wang X, Sun J, Yang YG. CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis. Oncotarget 2017; 8:22406-22413. [PMID: 27283989 PMCID: PMC5410232 DOI: 10.18632/oncotarget.9899] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
CD47 is a transmembrane protein that functions as a receptor for thrombospondin-1 (TSP1) and a ligand for inhibitory receptor signal-regulatory protein-α (SIRPα). Blocking the interaction between CD47 on tumor cells and SIRPα on macrophages has been shown to induce antitumor responses. Here we investigated the role of CD47 expression in tumor stroma in tumorigenesis by comparing tumor growth in wild-type (WT) and CD47-deficient mice after subcutaneous injection of syngeneic prostate cancer cells. We found that CD47 deficiency in tumor stromal endothelial cells enhances angiogenesis, leading to suppressed tumor necrosis formation and accelerated tumor progression. Tumors from CD47-deficient mice also showed improved vascular integrity and stability, as well as increased expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor 2 (VEGFR2) compared to those from WT mice. Moreover, reduced macrophage recruitment, likely due to decreased TSP1 production, was detected in tumors from CD47-deficient mice. Our results indicate that although treatment with antibody against CD47 induces antitumor immune responses by blocking the inhibitory CD47-SIRPα signaling, this treatment may also potentially promote tumor progression by blocking CD47 signaling in tumor stromal endothelial cells.
Collapse
Affiliation(s)
- Lu Gao
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Kexin Chen
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Qi Gao
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Xiaodan Wang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Jian Sun
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Yong-Guang Yang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China.,Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, USA
| |
Collapse
|
21
|
Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, Rothstein DM, Shlomchik WD, Matozaki T, Isenberg JS, Oberbarnscheidt MH, Danska JS, Lakkis FG. Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol 2017; 2:2/12/eaam6202. [PMID: 28783664 DOI: 10.1126/sciimmunol.aam6202] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Mice devoid of T, B, and natural killer (NK) cells distinguish between self and allogeneic nonself despite the absence of an adaptive immune system. When challenged with an allograft, they mount an innate response characterized by accumulation of mature, monocyte-derived dendritic cells (DCs) that produce interleukin-12 and present antigen to T cells. However, the molecular mechanisms by which the innate immune system detects allogeneic nonself to generate these DCs are not known. To address this question, we studied the innate response of Rag2-/- γc-/- mice, which lack T, B, and NK cells, to grafts from allogeneic donors. By positional cloning, we identified that donor polymorphism in the gene encoding signal regulatory protein α (SIRPα) is a key modulator of the recipient's innate allorecognition response. Donors that differed from the recipient in one or both Sirpa alleles elicited an innate alloresponse. The response was mediated by binding of donor SIRPα to recipient CD47 and was modulated by the strength of the SIRPα-CD47 interaction. Therefore, sensing SIRPα polymorphism by CD47 provides a molecular mechanism by which the innate immune system distinguishes between self and allogeneic nonself independently of T, B, and NK cells.
Collapse
Affiliation(s)
- Hehua Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew J Friday
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Warren D Shlomchik
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan
| | - Jeffrey S Isenberg
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada. .,Departments of Immunology and Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Wang W, Shahzad KA, Li M, Zhang A, Zhang L, Xu T, Wan X, Shen C. An Antigen-Presenting and Apoptosis-Inducing Polymer Microparticle Prolongs Alloskin Graft Survival by Selectively and Markedly Depleting Alloreactive CD8 + T Cells. Front Immunol 2017. [PMID: 28649247 PMCID: PMC5465244 DOI: 10.3389/fimmu.2017.00657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selectively depleting the pathogenic T cells is a fundamental strategy for the treatment of allograft rejection and autoimmune disease since it retains the overall immune function of host. The concept of killer artificial antigen-presenting cells (KaAPCs) has been developed by co-coupling peptide–major histocompatibility complex (pMHC) multimer and anti-Fas monoclonal antibody (mAb) onto the polymeric microparticles (MPs) to induce the apoptosis of antigen-specific T cells. But little information is available about its in vivo therapeutic potential and mechanism. In this study, polyethylenimine (PEI)-coated poly lactic-co-glycolic acid microparticle (PLGA MP) was fabricated as a cell-sized scaffold to covalently co-couple H-2Kb-Ig dimer and anti-Fas mAb for the generation of alloantigen-presenting and apoptosis-inducing MPs. Intravenous infusions of the biodegradable KaAPCs prolonged the alloskin graft survival for 43 days in a single MHC-mismatched murine model, depleted the most of H-2Kb-alloreactive CD8+ T cells in peripheral blood, spleen, and alloskin graft in an antigen-specific manner and anti-Fas-dependent fashion. The cell-sized KaAPCs circulated throughout vasculature into liver, kidney, spleen, lymph nodes, lung, and heart, but few ones into local allograft at early stage, with a retention time up to 36 h in vivo. They colocalized with CD8+ T cells in secondary lymphoid organs while few ones contacted with CD4+ T cells, B cells, macrophage, and dendritic cells, or internalized by phagocytes. Importantly, the KaAPC treatment did not significantly impair the native T cell repertoire or non-pathogenic immune cells, did not obviously suppress the overall immune function of host, and did not lead to visible organ toxicity. Our results strongly document the high potential of PLGA MP-based KaAPCs as a novel antigen-specific immunotherapy for allograft rejection and autoimmune disorder. The in vivo mechanism of alloinhibition, tissue distribution, and biosafety were also initially characterized, which will facilitate its translational studies from bench to bedside.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Miaochen Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Southeast University Medical School, Nanjing, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| |
Collapse
|
23
|
Anti‐CD45RB and donor‐specific spleen cells transfusion inhibition allograft skin rejection mediated by memory T cells. Immunol Cell Biol 2016; 95:189-197. [PMID: 27616751 DOI: 10.1038/icb.2016.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
|
24
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
25
|
Donor CD47 controls T cell alloresponses and is required for tolerance induction following hepatocyte allotransplantation. Sci Rep 2016; 6:26839. [PMID: 27230788 PMCID: PMC4882503 DOI: 10.1038/srep26839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
CD47-deficient hepatocyte transplantation induces rapid innate immune cell activation and subsequent associated graft loss in syngeneic recipients. However, the role of donor CD47 in regulation of T-cell alloresponses is poorly understood. We addressed this question by assessing OVA-specific immune responses in mice following hepatocyte transplantation from CD47-competent or -deficient OVA-transgenic donors. Compared to sham-operated controls, intrasplenic transplantation of CD47-deficient OVA+ hepatocytes significantly accelerated rejection of OVA+ skin grafted 7 days after hepatocyte transplantation. In contrast, mice receiving CD47-competent OVA+ hepatocytes showed prolonged and even indefinite survival of OVA+ skin allografts. T cells from mice receiving CD47-deficient, but not CD47-competent, OVA+ hepatocytes showed significantly enhanced responses to OVA+ stimulators compared to sham-operated controls. In contrast to the production of tolerogenic cytokines (IL-4 and IL-10) in the recipients of CD47-competent hepatocytes, mice receiving CD47-deficient hepatocytes showed elevated production of IFN-γ and IL-1α. Moreover, significant expansion of myeloid-derived suppressor cells was detected in the recipients of CD47-competent hepatocytes, which was required for tolerance induction in these mice. Thus, donor CD47 plays an important role in the control of T-cell alloresponses and tolerance induction following hepatocyte transplantation. Our data also suggest that intrasplenic hepatocyte transplantation may provide a means to induce allograft tolerance.
Collapse
|
26
|
Abstract
Vertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and providing costimulatory signals to T cells. How allografts activate APCs, however, is less clear, because allografts are presumably sterile. A widely accepted view is that inflammatory or 'danger' molecules released by dying graft cells at the time of transplantation trigger APC maturation and the T-cell response that follows. Alternatively, it has been proposed that the introduction of microbial products during the surgical procedure could also alert the innate immune system to the presence of the transplanted organ. Here, we review why these hypotheses fail to fully explain how the alloimmune response is initiated after transplantation and summarize evidence that recognition of allogeneic non-self by monocytes is a key event in triggering alloimmunity and graft rejection.
Collapse
Affiliation(s)
- Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
27
|
Oberbarnscheidt MH, Zeng Q, Li Q, Dai H, Williams AL, Shlomchik WD, Rothstein DM, Lakkis FG. Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 2014; 124:3579-89. [PMID: 24983319 DOI: 10.1172/jci74370] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022] Open
Abstract
Maturation of T cell-activating APCs directly links innate and adaptive immunity and is typically triggered by microbial infection. Transplantation of allografts, which are sterile, generates strong T cell responses; however, it is unclear how grafts induce APC maturation in the absence of microbial-derived signals. A widely accepted hypothesis is that dying cells in the graft release "danger" molecules that induce APC maturation and initiate the adaptive alloimmune response. Here, we demonstrated that danger signals associated with dying cells are not sufficient to initiate alloimmunity, but that recognition of allogeneic non-self by the innate immune system is required. In WT as well as in T cell-, B cell-, and innate lymphoid cell-deficient mice, allogeneic grafts elicited persistent differentiation of monocytes into mature DCs that expressed IL-12 and stimulated T cell proliferation and IFN-γ production. In contrast, syngeneic grafts in the same mice elicited transient and less pronounced differentiation of monocytes into DCs, which neither expressed IL-12 nor stimulated IFN-γ production. In a model in which T cell recognition is restricted to a single foreign antigen on the graft, rejection occurred only if the allogeneic non-self signal was also sensed by the host's innate immune system. These findings underscore the importance of innate recognition of allogeneic non-self by monocytes in initiating graft rejection.
Collapse
|
28
|
Wang S, Zhang X, Zhang L, Bryant J, Kheradmand T, Hering BJ, Miller SD, Luo X. Preemptive Tolerogenic Delivery of Donor Antigens for Permanent Allogeneic Islet Graft Protection. Cell Transplant 2014; 24:1155-65. [PMID: 24759564 DOI: 10.3727/096368914x681027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously developed a robust regimen for tolerance induction in murine models of islet cell transplantation using pre- and posttransplant infusions of donor splenocytes (SPs) treated with a chemical cross-linker ethylcarbodiimide (ECDI). However, the requirement for large numbers of fresh donor SPs for ECDI coupling impairs its clinical feasibility, and additionally, the compatibility of this tolerance regimen with commonly used immunosuppressive drugs is largely unknown. In the current study, we demonstrate that equivalent tolerance efficacy for islet cell transplantation can be successfully achieved not only with a significantly lower dose of ECDI-SPs than originally established but also with culture-expanded donor B-cells or with soluble donor antigens in the form of donor cell lysate, which is ECDI coupled to recipient SPs. We further demonstrate that tolerance induced by donor ECDI-SPs is dependent on a favorable apoptotic-to-necrotic cell ratio post-ECDI coupling and is not affected by a transient course of conventional immunosuppressive drugs including tacrolimus and mycophenolate mofetil. While splenic antigen-presenting cells of the recipient play an important role in mediating the tolerogenic effects of donor ECDI-SPs, splenectomized recipients can be readily tolerized and appear to employ liver Kupffer cells for uptaking and processing of the ECDI-SPs. We conclude that infusion of donor ECDI-SPs is a versatile tolerance strategy that has a high potential for adaptation to clinically feasible regimens for tolerance trials for human islet cell transplantation.
Collapse
Affiliation(s)
- Shusen Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
30
|
Wang Y, Wang H, Bronson R, Fu Y, Yang YG. Rapid dendritic cell activation and resistance to allotolerance induction in anti-CD154-treated mice receiving CD47-deficient donor-specific transfusion. Cell Transplant 2013; 23:355-63. [PMID: 23295133 DOI: 10.3727/096368912x661346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD47-SIRPα signaling plays an important role in regulating macrophage and dendritic cell (DC) activation. Here we investigated the role of CD47 expression on donor cells in tolerance induction by combined treatment with donor-specific transfusion (DST) plus anti-CD154 mAb in a mouse model of fully MHC-mismatched heart allotransplantation. The majority of BALB/c recipient mice that received anti-CD154 and CD47(+/+) B6 splenocytes (DST) showed indefinite donor heart survival (median survival time, MST > 150 days). Donor heart survival was improved in anti-CD154-treated BALB/c mice that received CD47(+/-) (MST = 90 days) or CD47(-/-) B6 DST (MST = 42 days) when compared to the nontreated (MST = 7 days) and anti-CD154 alone-treated (MST = 15 days) controls, but significantly reduced when compared to mice receiving anti-CD154 plus CD47(+/+) B6 DST. Recipient mice treated with anti-CD154 plus CD47(-/-) or CD47(+/-) DST also showed significantly increased antidonor, but not anti-third-party, MLR responses compared to those receiving anti-CD154 and CD47(+/+) DST. Furthermore, CD47(-/-) DST induced rapid activation of CD11c(hi)SIRPα(hi)CD8α(-) DCs via a mechanism independent of donor alloantigens. These results demonstrated that CD47 expression on donor cells is essential to the success of tolerance induction by combined therapy with DST and CD40/CD154 blockade.
Collapse
Affiliation(s)
- Yuantao Wang
- First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
31
|
Waern JM, Yuan Q, Rüdrich U, Becker PD, Schulze K, Strick-Marchand H, Huntington ND, Zacher BJ, Wursthorn K, DiSanto JP, Guzman CA, Manns MP, Ott M, Bock M. Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice. Hepatology 2012; 56:1479-88. [PMID: 22535707 DOI: 10.1002/hep.25816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Macrophages play an important role in the rejection of xenogeneic cells and therefore represent a major obstacle to generating chimeric mice with human xenografts that are useful tools for basic and preclinical medical research. The signal inhibitory regulatory protein α (SIRPα) receptor is a negative regulator of macrophage phagocytic activity and interacts in a species-specific fashion with its ligand CD47. Furthermore, SIRPα polymorphism in laboratory mouse strains significantly affects the extent of human CD47-mediated toleration of human xenotransplants. Aiming to minimize macrophage activity and thus optimize human cell engraftment in immunodeficient mice, we lentivirally transduced murine CD47 (Cd47) into human liver cells. Human HepG2 liver cells expressing Cd47 were less frequently contacted and phagocytosed by murine RAW264.7 macrophages in vitro than their Cd47-negative counterparts. For the generation of human-mouse chimeric livers in immunodeficient BALB-ΔRAG/γ(c) -uPA (urokinase-type plasminogen activator) mice, freshly thawed cryopreserved human hepatocytes were transduced with a lentiviral expression vector for Cd47 using a refined in vitro transduction protocol immediately before transplantation. In vivo, Cd47-positive human primary hepatocytes were selectively retained following engraftment in immunodeficient mice, leading to at least a doubling of liver repopulation efficiencies. CONCLUSION We conclude that ectopic expression of murine Cd47 in human hepatocytes selectively favors engraftment upon transplantation into mice, a finding that should have a profound impact on the generation of robust humanized small animal models. Moreover, dominance of ectopically expressed murine Cd47 over endogenous human CD47 should also widen the spectrum of immunodeficient mouse strains suitable for humanization.
Collapse
Affiliation(s)
- Johan M Waern
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review assesses the recent progress in xenograft rejection by innate immune responses, with a focus on innate cellular xenoreactivity. RECENT FINDINGS Current literature was reviewed for new insights into the role of innate cellular immunity in xenograft rejection. Increasing evidence confirms that vigorous innate immune cell activation is accounted for by a combination of xenoantigen recognition by activating receptors, and incompatibility in inhibitory receptor-ligand interactions. Although both innate humoral and cellular xenoimmune responses are predominantly elicited by preformed and induced xenoreactive antibodies in nonhuman primates following porcine xenotransplantation, innate immune cells can also be activated by xenografts in the absence of antibodies. The latter antibody-independent response will likely persist in recipients even when adaptive xenoimmune responses are suppressed. In addition to xenograft rejection by recipient innate immune cells, phagocytic cells within liver xenografts are also deleterious to recipients by causing thrombocytopenia. SUMMARY Strategies of overcoming innate immune responses are required for successful clinical xenotransplantation. In addition to developing better immunosuppressive and tolerance induction protocols, endeavors towards further genetic modifications of porcine source animals are ultimately important for successful clinical xenotransplantation.
Collapse
Affiliation(s)
- Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York 10032, USA
| | | |
Collapse
|
33
|
Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nat Med 2011; 18:135-42. [PMID: 22127134 DOI: 10.1038/nm.2597] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/08/2011] [Indexed: 11/08/2022]
Abstract
The presentation pathways by which allogeneic peptides induce graft-versus-host disease (GVHD) are unclear. We developed a bone marrow transplant (BMT) system in mice whereby presentation of a processed recipient peptide within major histocompatibility complex (MHC) class II molecules could be spatially and temporally quantified. Whereas donor antigen presenting cells (APCs) could induce lethal acute GVHD via MHC class II, recipient APCs were 100-1,000 times more potent in this regard. After myeloablative irradiation, T cell activation and memory differentiation occurred in lymphoid organs independently of alloantigen. Unexpectedly, professional hematopoietic-derived recipient APCs within lymphoid organs had only a limited capacity to induce GVHD, and dendritic cells were not required. In contrast, nonhematopoietic recipient APCs within target organs induced universal GVHD mortality and promoted marked alloreactive donor T cell expansion within the gastrointestinal tract and inflammatory cytokine generation. These data challenge current paradigms, suggesting that experimental lethal acute GVHD can be induced by nonhematopoietic recipient APCs.
Collapse
|
34
|
Wang C, Wang H, Ide K, Wang Y, Van Rooijen N, Ohdan H, Yang YG. Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPα capable of binding to human CD47. Cell Transplant 2011; 20:1915-20. [PMID: 21535911 DOI: 10.3727/096368911x566253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal regulatory protein α (SIRPα) is a critical immune inhibitory receptor on macrophages, and its interaction with CD47 prevents autologous phagocytosis. We have previously shown that pig CD47 does not interact with human SIRPα, and that human CD47 expression inhibits phagocytosis of porcine cells by human macrophages in vitro. In this study, we have investigated the potential of human CD47 expression to promote porcine cell survival in vivo. Human CD47-expressing and control porcine B-lymphoma cells were transplanted into T- and B-cell-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice that express SIRPα capable of interacting with human CD47. Only the human CD47-expressing porcine lymphoma cells survived and were able to form tumors in NOD/SCID mice; however, both the control and human CD47-expressing porcine cells survived in macrophage-depleted NOD/SCID mice. These results indicate that transgenic expression of human CD47 may provide an effective approach to inhibiting macrophage-mediated xenograft rejection in clinical xenotransplantation.
Collapse
Affiliation(s)
- Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Robust immune responses to xenografts remain a major obstacle to clinical translation of xenotransplantation, which could otherwise be a potential solution to the worldwide shortage of organ donors. The more vigorous xenograft rejection relative to allograft rejection is largely accounted for by the extensive genetic disparities between the donor and recipient. Xenografts activate host immunity not only by expressing immunogenic xenoantigens that provide the targets for immune recognition and rejection, but also by lacking ligands for the host immune inhibitory receptors. This review is focused on recent findings regarding the role of CD47, a ligand of an immune inhibitory receptor SIRPalpha, in xenograft rejection and induction of xenotolerance.
Collapse
Affiliation(s)
- Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|