1
|
Iseki M, Hidano S, Kudo F, Takaki S. Control of germinal center B cell survival and IgE production by an adaptor molecule containing PH and SH2 domains, Aps/Sh2b2. Sci Rep 2024; 14:17767. [PMID: 39090233 PMCID: PMC11294469 DOI: 10.1038/s41598-024-68739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The germinal centers (GCs) are structure found within secondary lymphoid organs and are important for the antibody-producing response against foreign antigens. In GCs, antigen-specific B cells proliferate intensely, inducing immunoglobulin class switching. Recent studies have shown that GCs are also an important site for class switching to IgE, which is implicated in allergy. However, the mechanisms by which IgE production is regulated in GCs remain unclear. Here, we found impairment in IgE-specific production and a reduction of GC B cells after immunization in mice deficient in the Aps/Sh2b2 gene encoding the Lnk/Sh2b family adaptor protein Aps. GC B cells express higher levels of the Aps gene than non-GC B cells, and cell death of Aps-/- GC B cells is enhanced compared to wild-type GC B cells. An in vitro culture system with purified Aps-/- B cells induced the same level of IgE production and frequencies of IgE+ B cells as wild-type B cells. We found that Aps deficiency in B cells resulted in augmented depletion of IgE+ blasts by B cell receptor crosslinking with anti-CD79b antibodies compared to wild-type IgE+ cells. These results suggest that Aps regulates IgE production by controlling the survival of GC B cells and IgE+ plasma cells and may serve as a potential therapeutic target to control IgE production.
Collapse
Affiliation(s)
- Masanori Iseki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan.
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Shinya Hidano
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Fujimi Kudo
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Inohana, Chuo-Ku, Chiba, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| |
Collapse
|
2
|
Xu M, Ren J, Jia W, Wang S, Liu Y, Chen X, Shi J, Wang H. Regulation of B-1 cell numbers and B cell-mediated antibody production by Inpp4b. Scand J Immunol 2023; 98:e13309. [PMID: 37389566 DOI: 10.1111/sji.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
T and B lymphocytes are crucial players in cellular and humoral immune responses. The development, activation and differentiation of T and B lymphocytes are regulated by the best characterized PI3K-PI (3,4,5) P3-AKT phosphoinositide signalling pathway. As a branch of the phosphoinositide signalling pathway, the lipid phosphatase INPP4B inhibits AKT activation through degrading the phosphoinositide signalling messenger PI (3,4) P2. However, the role of Inpp4b in T and B lymphocytes remains elusive. Here, we reported that Inpp4b was highly expressed in human and murine T- and B-1 lymphocytes. Despite its higher expression in T lymphocytes, neither T cell development and homeostasis nor in vitro T cell activation and CD4+ T cell differentiation were altered upon loss of Inpp4b. Interestingly, combined direct phenotype analysis of Inpp4b conventional knockout mice and adoptive transfer studies revealed that ablation of Inpp4b intrinsically reduced peritoneal B-1 cells rather B-2 cells. Moreover, Inpp4b deficiency led to impaired thymus independent (TI) and thymus dependent (TD) antigens-induced antibody production. Further in vitro analysis revealed that CD40-mediated B cell proliferation was impaired upon ablation of Inpp4b. Our findings reveal that Inpp4b is required in regulating B-1 cell numbers and B cell-mediated antibody production.
Collapse
Affiliation(s)
- Meizhen Xu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- Clinical Laboratory Center, The First Hospital of Putian City, Putian, China
| | - Jinfeng Ren
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Wenyu Jia
- Department of dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Siyu Wang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Yuting Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xinzhu Chen
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Jianhong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Hui Wang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Hao L, Marshall AJ, Liu L. Bam32/DAPP1-Dependent Neutrophil Reactive Oxygen Species in WKYMVm-Induced Microvascular Hyperpermeability. Front Immunol 2020; 11:1028. [PMID: 32536926 PMCID: PMC7267069 DOI: 10.3389/fimmu.2020.01028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
B cell adaptor molecule of 32 kDa (Bam32), known as dual adapter for phosphotyrosine and 3-phosphoinositides 1 (DAPP1), has been implicated in regulating lymphocyte proliferation and recruitment during inflammation. However, its role in neutrophils during inflammation remains unknown. Using intravital microscopy, we examined the role of Bam32 in formyl peptide receptor agonist WKYMVm-induced permeability changes in post-capillary venules and assessed simultaneously neutrophil adhesion and emigration in cremaster muscles of Bam32-deficient (Bam32−/−) and wild-type (WT) control mice. We observed significantly reduced WKYMVm-induced microvascular hyperpermeability accompanied by markedly decreased neutrophil emigration in Bam32−/− mice. The Bam32-specific decrease in WKYMVm-induced hyperpermeability was neutrophil-dependent as this was verified in bone marrow transplanted chimeric mice. We discovered that Bam32 was critically required for WKYMVm-induced intracellular and extracellular production of reactive oxygen species (ROS) in neutrophils. Pharmacological scavenging of ROS eliminated the differences in WKYMVm-induced hyperpermeability between Bam32−/− and WT mice. Deficiency of Bam32 decreased WKYMVm-induced ERK1/2 but not p38 or JNK phosphorylation in neutrophils. Inhibition of ERK1/2 signaling cascade suppressed WKYMVm-induced ROS generation in WT neutrophils and microvascular hyperpermeability in WT mice. In conclusion, our study reveals that Bam32-dependent, ERK1/2-involving ROS generation in neutrophils is critical in WKYMVm-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Wang F, Luo L, Gu Z, Yang N, Wang L, Gao C. Integrative Analysis of Long Noncoding RNAs in Patients with Graft-versus-Host Disease. Acta Haematol 2020; 143:533-551. [PMID: 32289782 DOI: 10.1159/000505255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major cause of late non-recurrence mortality despite remarkable improvements in the field of allogeneic hematopoietic stem cell transplantation. Although recent studies have found that B-cell receptor (BCR)-activated B cells contribute to pathogenesis in cGVHD, the specific molecular mechanisms of B cells in this process remain unclear. METHODS In our study, human long noncoding RNA (lncRNA) microarrays and bioinformatic analysis were performed to identify different expressions of lncRNAs in peripheral blood B cells from cGVHD patients compared with healthy ones. The differential expression of lncRNA was confirmed in additional samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The microarray analysis revealed that 106 of 198 differentially expressed lncRNAs were upregulated and 92 were downregulated in cGVHD patients compared with healthy controls. Intergenic lncRNAs accounted for the majority of differentially expressed lncRNAs. A KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the differentially expressed mRNAs, which were coexpressed with lncRNA, between the cGVHD group and the healthy group were significantly enriched in the BCR signaling pathway. Further analysis of the BCR signaling pathway and its coexpression network identified three lncRNAs with the strongest correlation with BCR signaling and cGVHD, as well as a series of protein-coding genes and transcription factors associated with them. The three candidate lncRNAs were further validated in another group of cGVHD patients by qRT-PCR. CONCLUSIONS This is the first study on the correlation between lncRNA and cGVHD using lncRNA microarray analysis. Our study provides novel enlightenment in exploring the molecular pathogenesis of cGVHD.
Collapse
Affiliation(s)
- Feiyan Wang
- Medical School, Nankai University, Tianjin, China
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Hematology and Oncology, Laoshan Branch, Chinese PLA 401 Hospital, Qingdao, China
| | - Chunji Gao
- Medical School, Nankai University, Tianjin, China,
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,
| |
Collapse
|
6
|
Mosquera MJ, Kim S, Zhou H, Jing TT, Luna M, Guss JD, Reddy P, Lai K, Leifer CA, Brito IL, Hernandez CJ, Singh A. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. SCIENCE ADVANCES 2019; 5:eaav9788. [PMID: 30944865 PMCID: PMC6436937 DOI: 10.1126/sciadv.aav9788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/05/2019] [Indexed: 05/16/2023]
Abstract
Biomaterials-based nanovaccines, such as those made of poly(lactic-co-glycolic acid) (PLGA), can induce stronger immunity than soluble antigens in healthy wild-type mouse models. However, whether metabolic syndrome can influence the immunological responses of nanovaccines remains poorly understood. Here, we first show that alteration in the sensing of the gut microbiome through Toll-like receptor 5 (TLR5) and the resulting metabolic syndrome in TLR5 -/- mice diminish the germinal center immune response induced by PLGA nanovaccines. The PLGA nanovaccines, unexpectedly, further changed gut microbiota. By chronically treating mice with antibiotics, we show that disrupting gut microbiome leads to poor vaccine response in an obesity-independent manner. We next demonstrate that the low immune response can be rescued by an immunomodulatory Pyr-pHEMA nanogel vaccine, which functions through TLR2 stimulation, enhanced trafficking, and induced stronger germinal center response than alum-supplemented PLGA nanovaccines. The study highlights the potential for immunomodulation under gut-mediated metabolic syndrome conditions using advanced nanomaterials.
Collapse
Affiliation(s)
- Matthew J. Mosquera
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sungwoong Kim
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hao Zhou
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tina T. Jing
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Pooja Reddy
- Biological Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kristine Lai
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Cynthia A. Leifer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Christopher J. Hernandez
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
- Corresponding author.
| |
Collapse
|
7
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
8
|
Onyilagha C, Jia P, Jayachandran N, Hou S, Okwor I, Kuriakose S, Marshall A, Uzonna JE. The B cell adaptor molecule Bam32 is critically important for optimal antibody response and resistance to Trypanosoma congolense infection in mice. PLoS Negl Trop Dis 2015; 9:e0003716. [PMID: 25875604 PMCID: PMC4395458 DOI: 10.1371/journal.pntd.0003716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bam32, a 32 kDa adaptor molecule, plays important role in B cell receptor signalling, T cell receptor signalling and antibody affinity maturation in germinal centres. Since antibodies against trypanosome variant surface glycoproteins (VSG) are critically important for control of parasitemia, we hypothesized that Bam32 deficient (Bam32-/-) mice would be susceptible to T. congolense infection. METHODOLOGY/PRINCIPAL FINDINGS We found that T. congolense-infected Bam32-/- mice successfully control the first wave of parasitemia but then fail to control subsequent waves and ultimately succumb to their infection unlike wild type (WT) C57BL6 mice which are relatively resistant. Although infected Bam32-/- mice had significantly higher hepatomegaly and splenomegaly, their serum AST and ALT levels were not different, suggesting that increased liver pathology may not be responsible for the increased susceptibility of Bam32-/- mice to T. congolense. Using direct ex vivo flow cytometry and ELISA, we show that CD4+ T cells from infected Bam32-/- mice produced significantly increased amounts of disease-exacerbating proinflammatory cytokines (including IFN-γ, TNF-α and IL-6). However, the percentages of regulatory T cells and IL-10-producing CD4+ cells were similar in infected WT and Bam32-/- mice. While serum levels of parasite-specific IgM antibodies were normal, the levels of parasite-specific IgG, (particularly IgG1 and IgG2a) were significantly lower in Bam32-/- mice throughout infection. This was associated with impaired germinal centre response in Bam32-/- mice despite increased numbers of T follicular helper (Tfh) cells. Adoptive transfer studies indicate that intrinsic B cell defect was responsible for the enhanced susceptibility of Bam32-/- mice to T. congolense infection. CONCLUSIONS/SIGNIFICANCE Collectively, our data show that Bam32 is important for optimal anti-trypanosome IgG antibody response and suppression of disease-promoting proinflammatory cytokines and its deficiency leads to inability to control T. congolense infection in mice.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Jia
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nipun Jayachandran
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sen Hou
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shiby Kuriakose
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron Marshall
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jude E. Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
9
|
Srivastava N, Sudan R, Kerr WG. Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 2013; 4:288. [PMID: 24069021 PMCID: PMC3779868 DOI: 10.3389/fimmu.2013.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5)P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5'- and 3'-inositol poly-phosphatases SHIP1, SHIP2, and phosphatase and tensin homolog capable of targeting PI(3,4,5)P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5'-inositol poly-phosphatases SHIP1 and 2 can shunt PI(3,4,5)P3 to the rare but potent signaling phosphoinositide species PI(3,4)P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4)P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4)P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, NY , USA
| | | | | |
Collapse
|
10
|
Li H, Hou S, Wu X, Nandagopal S, Lin F, Kung S, Marshall AJ. The tandem PH domain-containing protein 2 (TAPP2) regulates chemokine-induced cytoskeletal reorganization and malignant B cell migration. PLoS One 2013; 8:e57809. [PMID: 23460911 PMCID: PMC3583899 DOI: 10.1371/journal.pone.0057809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/26/2013] [Indexed: 11/25/2022] Open
Abstract
The intracellular signaling processes controlling malignant B cell migration and tissue localization remain largely undefined. Tandem PH domain-containing proteins TAPP1 and TAPP2 are adaptor proteins that specifically bind to phosphatidylinositol-3,4-bisphosphate, or PI(3,4)P2, a product of phosphoinositide 3-kinases (PI3K). While PI3K enzymes have a number of functions in cell biology, including cell migration, the functions of PI(3,4)P2 and its binding proteins are not well understood. Previously we found that TAPP2 is highly expressed in primary leukemic B cells that have strong migratory capacity. Here we find that SDF-1-dependent migration of human malignant B cells requires both PI3K signaling and TAPP2. Migration in a transwell assay is significantly impaired by pan-PI3K and isoform-selective PI3K inhibitors, or by TAPP2 shRNA knockdown (KD). Strikingly, TAPP2 KD in combination with PI3K inhibitor treatment nearly abolished the migration response, suggesting that TAPP2 may contribute some functions independent of the PI3K pathway. In microfluidic chamber cell tracking assays, TAPP2 KD cells show reduction in percentage of migrating cells, migration velocity and directionality. TAPP2 KD led to alterations in chemokine-induced rearrangement of the actin cytoskeleton and failure to form polarized morphology. TAPP2 co-localized with the stable F-actin-binding protein utrophin, with both molecules reciprocally localizing against F-actin accumulated at the leading edge upon SDF-1 stimulation. In TAPP2 KD cells, Rac was over-activated and localized to multiple membrane protrusions, suggesting that TAPP2 may act in concert with utrophin and stable F-actin to spatially restrict Rac activation and reduce formation of multiple membrane protrusions. TAPP2 function in cell migration is also apparent in the more complex context of B cell migration into stromal cell layers – a process that is only partially dependent on PI3K and SDF-1. In summary, this study identified TAPP2 as a novel regulator of malignant B cell migration and a potential therapeutic intervention target.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
12
|
Abstract
Germinal centers (GCs) are sites of rapid B-cell proliferation and somatic mutation. These ovoid structures develop within the center of follicles and grow to a stereotypic size. The cell migration and interaction dynamics underlying GC B-cell selection events are currently under intense scrutiny. In recent study, we identified a role for a migration inhibitory receptor, S1PR2, in promoting GC B-cell confinement to GCs. S1PR2 also dampens Akt activation and deficiency in S1PR2 or components of its signaling pathway result in a loss of growth control in chronically stimulated mucosal GCs. Herein, we detail present understanding of S1PR2 and S1P biology as it pertains to GC B cells and place this information in the context of a current model of GC function.
Collapse
Affiliation(s)
- Jesse A Green
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0414, USA
| | | |
Collapse
|
13
|
Zhang TT, Makondo KJ, Marshall AJ. p110δ Phosphoinositide 3-Kinase Represses IgE Switch by Potentiating BCL6 Expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:3700-8. [DOI: 10.4049/jimmunol.1103302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abstract
The discovery that Bcl-6 was the transcriptional regulator of follicular helper T (Tfh) cells completed the recognition of this population as an effector subset specialized in the provision of help to B cells. Improved reagents and recent models that allow tracking of Bcl-6-expressing T cells have revealed that the decision to become a Tfh cell occurs soon after T cells are primed by dendritic cells and start dividing, before interaction with B cells. The latter are important for sustaining Bcl-6 expression. Bcl-6 coordinates a signaling program that changes expression or function of multiple guidance receptors, leading to Tfh cell localization within germinal centers. This program is not unique to CD4(+) helper T cells; FoxP3(+) regulatory T cells and NKT cells co-opt the follicular differentiation pathway to enter the follicle and become specialized follicular cells. This review will focus on recent insights into the early events that determine Tfh cell differentiation.
Collapse
|
15
|
Ortner D, Grabher D, Hermann M, Kremmer E, Hofer S, Heufler C. The adaptor protein Bam32 in human dendritic cells participates in the regulation of MHC class I-induced CD8+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3972-8. [PMID: 21930970 DOI: 10.4049/jimmunol.1003072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is strongly induced during the maturation of dendritic cells (DC). Most known functions of Bam32 are related to the signaling of the B cell receptor for Ag. Because DC do not express receptors specific for Ags, we aim at characterizing the role of Bam32 in human monocyte-derived DC in this study. Our results show that binding of allogeneic T cells to mature DC causes accumulation of Bam32 on the contact sites and that this translocation is mimicked by Ab-mediated engagement of MHC class I. Silencing of Bam32 in mature monocyte-derived DC results in an enhanced proliferation of CD8(+) T cells in an Ag-specific T cell proliferation assay. Further studies identify galectin-1 as an intracellular binding partner of Bam32. Regulating immune responses via regulatory T cell (Treg) modulation is one of the many immunological activities attributed to galectin-1. Therefore, we assayed mixed leukocyte reactions for Treg expansion and found fewer Treg in reactions stimulated with DC silenced for Bam32 compared to reactions stimulated with DC treated with a nontarget control. Based on our findings, we propose a role for Bam32 in the signaling of MHC class I molecules in professional Ag-presenting DC for the regulation of CD8(+) T cell activation. It is distinct from that of MHC class I recognized by CD8(+) T cells leading to target [corrected] cell death. Thus, our data pinpoint a novel level of T cell regulation that may be of biological relevance.
Collapse
Affiliation(s)
- Daniela Ortner
- Department of Dermatology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Al-Alwan M, Hou S, Zhang TT, Makondo K, Marshall AJ. Bam32/DAPP1 promotes B cell adhesion and formation of polarized conjugates with T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6961-9. [PMID: 20495066 DOI: 10.4049/jimmunol.0904176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell Ag receptors function in both signaling activation of Ag-specific cells and in collecting specific Ag for presentation to T lymphocytes. Signaling via PI3K is required for BCR-mediated activation and Ag presentation functions; however, the relevant downstream targets of PI3K in B cells are incompletely defined. In this study, we have investigated the roles of the PI3K effector molecule Bam32/DAPP1 in BCR signaling and BCR-mediated Ag presentation functions. In mouse primary B cells, Bam32 was required for efficient activation of the GTPase Rac1 and downstream signaling to JNK, but not activation of BLNK, phospholipase C gamma2, or calcium responses. Consistent with a role of this adaptor in Rac-mediated cytoskeletal rearrangement, Bam32 was required for BCR-induced cell adhesion and spreading responses on ICAM-1 or fibronectin-coated surfaces. The function of Bam32 in promoting Rac activation and adhesion required tyrosine 139, a known site of phosphorylation by Lyn kinase. After BCR crosslinking by Ag, Bam32-deficient B cells are able to carry out the initial steps of Ag endocytosis and processing, but show diminished ability to form Ag-specific conjugates with T cells and polarize F-actin at the B-T interface. As a result, Bam32-deficient B cells were unable to efficiently activate Ag-specific T cells. Together, these results indicate that Bam32 serves to integrate PI3K and Src kinase signaling to promote Rac-dependent B cell adhesive interactions important for Ag presentation function.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|