1
|
Thakore PI, Schnell A, Huang L, Zhao M, Hou Y, Christian E, Zaghouani S, Wang C, Singh V, Singaraju A, Krishnan RK, Kozoriz D, Ma S, Sankar V, Notarbartolo S, Buenrostro JD, Sallusto F, Patsopoulos NA, Rozenblatt-Rosen O, Kuchroo VK, Regev A. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H17 cells. Nat Immunol 2024; 25:1395-1410. [PMID: 39009838 DOI: 10.1038/s41590-024-01901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Alexandra Schnell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Linglin Huang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Maryann Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chao Wang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anvita Singaraju
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh Kumar Krishnan
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deneen Kozoriz
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venkat Sankar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
2
|
Lu X, Zhong L, Lindell E, Veanes M, Guo J, Zhao M, Salehi M, Swartling FJ, Chen X, Sjöblom T, Zhang X. Identification of ATF3 as a novel protective signature of quiescent colorectal tumor cells. Cell Death Dis 2023; 14:676. [PMID: 37833290 PMCID: PMC10576032 DOI: 10.1038/s41419-023-06204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death in the world. In most cases, drug resistance and tumor recurrence are ultimately inevitable. One obstacle is the presence of chemotherapy-insensitive quiescent cancer cells (QCCs). Identification of unique features of QCCs may facilitate the development of new targeted therapeutic strategies to eliminate tumor cells and thereby delay tumor recurrence. Here, using single-cell RNA sequencing, we classified proliferating and quiescent cancer cell populations in the human colorectal cancer spheroid model and identified ATF3 as a novel signature of QCCs that could support cells living in a metabolically restricted microenvironment. RNA velocity further showed a shift from the QCC group to the PCC group indicating the regenerative capacity of the QCCs. Our further results of epigenetic analysis, STING analysis, and evaluation of TCGA COAD datasets build a conclusion that ATF3 can interact with DDIT4 and TRIB3 at the transcriptional level. In addition, decreasing the expression level of ATF3 could enhance the efficacy of 5-FU on CRC MCTS models. In conclusion, ATF3 was identified as a novel marker of QCCs, and combining conventional drugs targeting PCCs with an option to target QCCs by reducing ATF3 expression levels may be a promising strategy for more efficient removal of tumor cells.
Collapse
Affiliation(s)
- Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lei Zhong
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, Sichuan, China
| | - Emma Lindell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Margus Veanes
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jing Guo
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maede Salehi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Holland SD, Ramer MS. Microglial activating transcription factor 3 upregulation: An indirect target to attenuate inflammation in the nervous system. Front Mol Neurosci 2023; 16:1150296. [PMID: 37033378 PMCID: PMC10076742 DOI: 10.3389/fnmol.2023.1150296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Activating Transcription Factor 3 (ATF3) is upregulated in reaction to several cellular stressors found in a wide range of pathological conditions to coordinate a transcriptional response. ATF3 was first implicated in the transcriptional reaction to axotomy when its massive upregulation was measured in sensory and motor neuron cell bodies following peripheral nerve injury. It has since been shown to be critical for successful axon regeneration in the peripheral nervous system and a promising target to mitigate regenerative failure in the central nervous system. However, much of the research to date has focused on ATF3's function in neurons, leaving the expression, function, and therapeutic potential of ATF3 in glia largely unexplored. In the immunology literature ATF3 is seen as a master regulator of the innate immune system. Specifically, in macrophages following pathogen or damage associated molecular pattern receptor activation and subsequent cytokine release, ATF3 upregulation abrogates the inflammatory response. Importantly, ATF3 upregulation is not exclusively due to cellular stress exposure but has been achieved by the administration of several small molecules. In the central nervous system, microglia represent the resident macrophage population and are therefore of immediate interest with respect to ATF3 induction. It is our perspective that the potential of inducing ATF3 expression to dampen inflammatory microglial phenotype represents an unexplored therapeutic target and may have synergistic benefits when paired with concomitant neuronal ATF3 upregulation. This would be of particular benefit in pathologies that involve both detrimental inflammation and neuronal damage including spinal cord injury, multiple sclerosis, and stroke.
Collapse
|
4
|
Liu Y, Zou L, Tang H, Li J, Liu H, Jiang X, Jiang B, Dong Z, Fu W. Single-Cell Sequencing of Immune Cells in Human Aortic Dissection Tissue Provides Insights Into Immune Cell Heterogeneity. Front Cardiovasc Med 2022; 9:791875. [PMID: 35433892 PMCID: PMC9008490 DOI: 10.3389/fcvm.2022.791875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inflammation plays an important role in the progression of sporadic aortic dissection (AD). Immune cells, especially macrophages, infiltrate the aorta and secrete inflammatory cytokines and matrix metalloproteinases to cause degradation of the extracellular matrix, thereby contributing to the pathogenesis of AD. However, the cellular heterogeneity within these immune cells has not been fully characterized. Methods We used single-cell RNA sequencing to profile the transcriptomes of all immune cells in AD tissue and normal aorta. Using magnetic-activated cell sorting gating on CD45, we obtained a higher resolution identification of the immune cell subsets in the aorta. Results We observed significant differences in the proportion of major immune cell subpopulations between AD and normal aorta tissues. Macrophages accounted for a higher percentage in the normal aorta, while the proportions of T cells, B cells and natural killer (NK) cells were all increased in AD tissues. Macrophage clusters that expanded in AD tissues originated primarily from circulating monocytes and expressed genes encoding proinflammatory cytokines and molecules involved in tissue repair. T and NK cells in AD tissues exhibited enhanced cytotoxic properties. A cluster of CD4+ T cells that had expanded in AD tissues was Th17-like and might contribute to the pathogenesis of AD. Cell–cell interaction analysis highlighted the increased communication between macrophages and T cells, which primarily regulated the costimulation of T cells. Conclusions Our study provides a comprehensive characterization of immune cells in the dissected aorta with an emphasis on the role of macrophages and T cells. The information from our study improves our understanding of immune mechanisms in AD formation and helps to identify additional useful targets for early diagnosis or therapy of AD.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lingwei Zou
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jie Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaolang Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiguo Fu
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Zhihui Dong
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Baohong Jiang
| |
Collapse
|
5
|
Zhang D, Yang H, Dong XL, Zhang JT, Liu XF, Pan Y, Zhang J, Xu JW, Wang ZH, Cui WJ, Dong L. TL1A/DR3 Axis, A Key Target of TNF-a, Augments the Epithelial–Mesenchymal Transformation of Epithelial Cells in OVA-Induced Asthma. Front Immunol 2022; 13:854995. [PMID: 35359966 PMCID: PMC8963920 DOI: 10.3389/fimmu.2022.854995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A), a member of the TNF family, exists in the form of membrane-bound (mTL1A) and soluble protein (sTL1A). TL1A binding its only known functional receptor death domain receptor 3 (DR3) affects the transmission of various signals. This study first proposed that the TL1A/DR3 axis was significantly upregulated in patients and mice with both asthma and high TNF-a expression and in TNF-a-stimulated epithelial Beas-2B cells. Two independent approaches were used to demonstrate that the TL1A/DR3 axis of mice was strongly correlated with TNF-a in terms of exacerbating asthmatic epithelial–mesenchymal transformation (EMT). First, high expression levels of EMT proteins (e.g., collagen I, fibronectin, N-cadherin, and vimentin) and TL1A/DR3 axis were observed when mice airways were stimulated by recombinant mouse TNF-a protein. Moreover, EMT protein and TL1A/DR3 axis expression synchronously decreased after mice with OVA-induced asthma were treated with infliximab by neutralizing TNF-a activity. Furthermore, the OVA-induced EMT of asthmatic mice was remarkably improved upon the deletion of the TL1A/DR3 axis by knocking out the TL1A gene. TL1A siRNA remarkably intervened EMT formation induced by TNF-a in the Beas-2B cells. In addition, EMT was induced by the addition of high concentrations of recombinant human sTL1A with the cell medium. The TL1A overexpression via pc-mTL1A in vitro remarkably increased the EMT formation induced by TNF-a. Overall, these findings indicate that the TL1A/DR3 axis may have a therapeutic role for asthmatic with high TNF-a level.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Li Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Tao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fei Liu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Zhang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jia-Wei Xu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Zi-Han Wang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Cui
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
- *Correspondence: Liang Dong,
| |
Collapse
|
6
|
Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, Miragaia R, Duddy G, Pramanik J, Yusa K, Lahesmaa R, Teichmann SA. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell 2019; 176:882-896.e18. [PMID: 30639098 PMCID: PMC6370901 DOI: 10.1016/j.cell.2018.11.044] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.
Collapse
Affiliation(s)
- Johan Henriksson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - Xi Chen
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ubaid Ullah
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ricardo Miragaia
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK; Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK.
| |
Collapse
|
7
|
Tripathi SK, Välikangas T, Shetty A, Khan MM, Moulder R, Bhosale SD, Komsi E, Salo V, De Albuquerque RS, Rasool O, Galande S, Elo LL, Lahesmaa R. Quantitative Proteomics Reveals the Dynamic Protein Landscape during Initiation of Human Th17 Cell Polarization. iScience 2018; 11:334-355. [PMID: 30641411 PMCID: PMC6330361 DOI: 10.1016/j.isci.2018.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Th17 cells contribute to the pathogenesis of inflammatory and autoimmune diseases and cancer. To reveal the Th17 cell-specific proteomic signature regulating Th17 cell differentiation and function in humans, we used a label-free mass spectrometry-based approach. Furthermore, a comprehensive analysis of the proteome and transcriptome of cells during human Th17 differentiation revealed a high degree of overlap between the datasets. However, when compared with corresponding published mouse data, we found very limited overlap between the proteins differentially regulated in response to Th17 differentiation. Validations were made for a panel of selected proteins with known and unknown functions. Finally, using RNA interference, we showed that SATB1 negatively regulates human Th17 cell differentiation. Overall, the current study illustrates a comprehensive picture of the global protein landscape during early human Th17 cell differentiation. Poor overlap with mouse data underlines the importance of human studies for translational research. Quantitative proteomics analysis of early human Th17 cell polarization The proteome and transcriptome highly correlate during early Th17 polarization Poor overlap of proteome profiles of human and mouse during early Th17 polarization The results underline the importance of human studies for translational research
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Tommi Välikangas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Doctoral Programme in Mathematics and Computer Sciences (MATTI), University of Turku, University Hill, FI-20014 Turku, Finland
| | - Ankitha Shetty
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Mohd Moin Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Elina Komsi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Verna Salo
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Rafael Sales De Albuquerque
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Laura L Elo
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland.
| |
Collapse
|
8
|
Soliman M, Andreeva K, Nasraoui O, Cooper NGF. A causal mediation model of ischemia reperfusion injury in the retina. PLoS One 2017; 12:e0187426. [PMID: 29121052 PMCID: PMC5679526 DOI: 10.1371/journal.pone.0187426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022] Open
Abstract
The goal of this study is to develop a model that explains the relationship between microRNAs, transcription factors, and their co-target genes. This relationship was previously reported in gene regulatory loops associated with 24 hour (24h) and 7 day (7d) time periods following ischemia-reperfusion injury in a rat's retina. Using a model system of retinal ischemia-reperfusion injury, we propose that microRNAs first influence transcription factors, which in turn act as mediators to influence transcription of genes via triadic regulatory loops. Analysis of the relative contributions of direct and indirect regulatory influences on genes revealed that a substantial fraction of the regulatory loops (69% for 24 hours and 77% for 7 days) could be explained by causal mediation. Over 40% of the mediated loops in both time points were regulated by transcription factors only, while about 20% of the loops were regulated entirely by microRNAs. The remaining fractions of the mediated regulatory loops were cooperatively mediated by both microRNAs and transcription factors. The results from these analyses were supported by the patterns of expression of the genes, transcription factors, and microRNAs involved in the mediated loops in both post-ischemic time points. Additionally, network motif detection for the mediated loops showed a handful of time specific motifs related to ischemia-reperfusion injury in a rat's retina. In summary, the effects of microRNAs on genes are mediated, in large part, via transcription factors.
Collapse
Affiliation(s)
- Maha Soliman
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States of America
| | - Kalina Andreeva
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States of America
| | - Olfa Nasraoui
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, United States of America
| | - Nigel G. F. Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
9
|
ATF3 negatively regulates cellular antiviral signaling and autophagy in the absence of type I interferons. Sci Rep 2017; 7:8789. [PMID: 28821775 PMCID: PMC5562757 DOI: 10.1038/s41598-017-08584-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 01/19/2023] Open
Abstract
Stringent regulation of antiviral signaling and cellular autophagy is critical for the host response to virus infection. However, little is known how these cellular processes are regulated in the absence of type I interferon signaling. Here, we show that ATF3 is induced following Japanese encephalitis virus (JEV) infection, and regulates cellular antiviral and autophagy pathways in the absence of type I interferons in mouse neuronal cells. We have identified new targets of ATF3 and show that it binds to the promoter regions of Stat1, Irf9, Isg15 and Atg5 thereby inhibiting cellular antiviral signaling and autophagy. Consistent with these observations, ATF3-depleted cells showed enhanced antiviral responses and induction of robust autophagy. Furthermore, we show that JEV replication was significantly reduced in ATF3-depleted cells. Our findings identify ATF3 as a negative regulator of antiviral signaling and cellular autophagy in mammalian cells, and demonstrate its important role in JEV life cycle.
Collapse
|
10
|
Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE, Ansari AZ. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. eLife 2017; 6:e19272. [PMID: 28186491 PMCID: PMC5349851 DOI: 10.7554/elife.19272] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or 'emergent' sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers. These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of ATF3 is best explained by considering many dimers in which it participates. Importantly, our compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of which only 20 were previously annotated with known bZIP motifs.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Devesh Bhimsaria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Unites States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
11
|
Activated Transcription Factor 3 in Association with Histone Deacetylase 6 Negatively Regulates MicroRNA 199a2 Transcription by Chromatin Remodeling and Reduces Endothelin-1 Expression. Mol Cell Biol 2016; 36:2838-2854. [PMID: 27573019 DOI: 10.1128/mcb.00345-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 01/18/2023] Open
Abstract
Previous studies showed that high levels of placenta growth factor (PlGF) correlated with increased plasma levels of endothelin-1 (ET-1), a potent vasoconstrictor, in sickle cell disease (SCD). PlGF-mediated transcription of the ET-1 gene occurs by activation of hypoxia inducible factor 1α (HIF-1α) and posttranscriptionally by microRNA 199a2 (miR-199a2), which targets the 3' untranslated region (UTR) of HIF-1α mRNA. However, relatively less is known about how PlGF represses the expression of miR-199a2 located in the DNM3 opposite strand (DNM3os) transcription unit. Here, we show that PlGF induces the expression of activated transcription factor 3 (ATF3), which, in association with accessory proteins (c-Jun dimerization protein 2 [JDP2], ATF2, and histone deacetylase 6 [HDAC6]), as determined by proteomic analysis, binds to the DNM3os promoter. Furthermore, we show that association of HDAC6 with ATF3 at its binding site in this promoter was correlated with repression of miR-199a2 transcription, as shown by DNM3os transcription reporter and chromatin immunoprecipitation (ChIP) assays. Tubacin, an inhibitor of HDAC6, antagonized PlGF-mediated repression of DNM3os/pre-miR-199a2 transcription with a concomitant reduction in ET-1 levels in cultured endothelial cells. Analysis of lung tissues from Berkeley sickle (BK-SS) mice showed increased levels of ATF3 and increased expression of ET-1. Delivery of tubacin to BK-SS mice significantly attenuated plasma ET-1 and PlGF levels. Our studies demonstrated that ATF3 in conjunction with HDAC6 acts as a transcriptional repressor of the DNM3os/miR-199a2 locus.
Collapse
|
12
|
Banerjee A, Thyagarajan K, Chatterjee S, Chakraborty P, Kesarwani P, Soloshchenko M, Al-Hommrani M, Andrijauskaite K, Moxley K, Janakiraman H, Scheffel MJ, Helke K, Armenson K, Palanisamy V, Rubinstein MP, Mayer EG, Cole DJ, Paulos CM, Christina-Voelkel-Johnson, Nishimura MI, Mehrotra S. Lack of p53 Augments Antitumor Functions in Cytolytic T Cells. Cancer Res 2016; 76:5229-5240. [PMID: 27466285 DOI: 10.1158/0008-5472.can-15-1798] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Repetitive stimulation of T-cell receptor (TCR) with cognate antigen results in robust proliferation and expansion of the T cells, and also imprints them with replicative senescence signatures. Our previous studies have shown that life-span and antitumor function of T cells can be enhanced by inhibiting reactive oxygen species (ROS) or intervening with ROS-dependent JNK activation that leads to its activation-induced cell death. Because tumor suppressor protein p53 is also a redox active transcription factor that regulates cellular ROS generation that triggers downstream factor-mediating apoptosis, we determined if p53 levels could influence persistence and function of tumor-reactive T cells. Using h3T TCR transgenic mice, with human tyrosinase epitope-reactive T cells developed on p53 knockout (KO) background, we determined its role in regulating antitumor T-cell function. Our data show that as compared with h3T cells, h3T-p53 KO T cells exhibited enhanced glycolytic commitment that correlated with increased proliferation, IFNγ secretion, cytolytic capacity, expression of stemness gene signature, and decreased TGF-β signaling. This increased effector function correlated to the improved control of subcutaneously established murine melanoma after adoptive transfer of p53-KO T cells. Pharmacological inhibition of human TCR-transduced T cells using a combination of p53 inhibitors also potentiated the T-cell effector function and improved persistence. Thus, our data highlight the key role of p53 in regulating the tumor-reactive T-cell response and that targeting this pathway could have potential translational significance in adoptive T-cell therapy. Cancer Res; 76(18); 5229-40. ©2016 AACR.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Mazen Al-Hommrani
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Kelly Moxley
- Department of Surgery, Oncology Institute, Loyola University, Maywood, IL 60153
| | | | - Matthew J Scheffel
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Kristi Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Kent Armenson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Viswanathan Palanisamy
- Department of Oral Health Research, Medical University of South Carolina, Charleston, SC 29425
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Elizabeth-Garrett Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Chrystal M Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
| | | | - Michael I Nishimura
- Department of Surgery, Oncology Institute, Loyola University, Maywood, IL 60153
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
13
|
Jensen K, Gallagher IJ, Kaliszewska A, Zhang C, Abejide O, Gallagher MP, Werling D, Glass EJ. Live and inactivated Salmonella enterica serovar Typhimurium stimulate similar but distinct transcriptome profiles in bovine macrophages and dendritic cells. Vet Res 2016; 47:46. [PMID: 27000047 PMCID: PMC4802613 DOI: 10.1186/s13567-016-0328-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of gastroenteritis in cattle and humans. Dendritic cells (DC) and macrophages (Mø) are major players in early immunity to Salmonella, and their response could influence the course of infection. Therefore, the global transcriptional response of bovine monocyte-derived DC and Mø to stimulation with live and inactivated S. Typhimurium was compared. Both cell types mount a major response 2 h post infection, with a core common response conserved across cell-type and stimuli. However, three of the most affected pathways; inflammatory response, regulation of transcription and regulation of programmed cell death, exhibited cell-type and stimuli-specific differences. The expression of a subset of genes associated with these pathways was investigated further. The inflammatory response was greater in Mø than DC, in the number of genes and the enhanced expression of common genes, e.g., interleukin (IL) 1B and IL6, while the opposite pattern was observed with interferon gamma. Furthermore, a large proportion of the investigated genes exhibited stimuli-specific differential expression, e.g., Mediterranean fever. Two-thirds of the investigated transcription factors were significantly differentially expressed in response to live and inactivated Salmonella. Therefore the transcriptional responses of bovine DC and Mø during early S. Typhimurium infection are similar but distinct, potentially due to the overall function of these cell-types. The differences in response of the host cell will influence down-stream events, thus impacting on the subsequent immune response generated during the course of the infection.
Collapse
Affiliation(s)
- Kirsty Jensen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Iain J Gallagher
- Health and Exercise Research Group, University of Stirling, Cottrell Building, Stirling, FK9 4LA, UK
| | - Anna Kaliszewska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Chen Zhang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Oluyinka Abejide
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.,Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Maurice P Gallagher
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Dirk Werling
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| |
Collapse
|
14
|
Nguyen CT, Luong TT, Lee SY, Kim GL, Pyo S, Rhee DK. ATF3 provides protection fromStaphylococcus aureusandListeria monocytogenesinfections. FEMS Microbiol Lett 2016; 363:fnw062. [DOI: 10.1093/femsle/fnw062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
|
15
|
Nguyen CT, Kim EH, Luong TT, Pyo S, Rhee DK. TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells. Mol Cells 2015; 38:58-64. [PMID: 25518930 PMCID: PMC4314132 DOI: 10.14348/molcells.2015.2231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 11/27/2022] Open
Abstract
Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.
Collapse
Affiliation(s)
| | - Eun-Hye Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Truc Thanh Luong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| |
Collapse
|
16
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
17
|
Nguyen CT, Kim EH, Luong TT, Pyo S, Rhee DK. ATF3 Confers Resistance to Pneumococcal Infection Through Positive Regulation of Cytokine Production. J Infect Dis 2014; 210:1745-54. [DOI: 10.1093/infdis/jiu352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Guo YE, Riley KJ, Iwasaki A, Steitz JA. Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol Cell 2014; 54:67-79. [PMID: 24725595 DOI: 10.1016/j.molcel.2014.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 11/25/2022]
Abstract
In marmoset T cells transformed by Herpesvirus saimiri (HVS), a viral U-rich noncoding (nc) RNA, HSUR 1, specifically mediates degradation of host microRNA-27 (miR-27). High-throughput sequencing of RNA after crosslinking immunoprecipitation (HITS-CLIP) identified mRNAs targeted by miR-27 as enriched in the T cell receptor (TCR) signaling pathway, including GRB2. Accordingly, transfection of miR-27 into human T cells attenuates TCR-induced activation of mitogen-activated protein kinases (MAPKs) and induction of CD69. MiR-27 also robustly regulates SEMA7A and IFN-γ, key modulators and effectors of T cell function. Knockdown or ectopic expression of HSUR 1 alters levels of these proteins in virally transformed cells. Two other T-lymphotropic γ-herpesviruses, AlHV-1 and OvHV-2, do not produce a noncoding RNA to downregulate miR-27 but instead encode homologs of miR-27 target genes. Thus, oncogenic γ-herpesviruses have evolved diverse strategies to converge on common targets in host T cells.
Collapse
Affiliation(s)
- Yang Eric Guo
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Kasandra J Riley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
19
|
Abstract
Expression of the activating transcription factor 3 (ATF3) gene is induced by Toll-like receptor (TLR) signaling. In turn, ATF3 protein inhibits the expression of various TLR-driven proinflammatory genes. Given its counter-regulatory role in diverse innate immune responses, we defined the effects of ATF3 on neutrophilic airway inflammation in mice. ATF3 deletion was associated with increased lipopolysaccharide (LPS)-driven airway epithelia production of CXCL1, but not CXCL2, findings concordant with a consensus ATF3-binding site identified solely in the Cxcl1 promoter. Unexpectedly, ATF3-deficient mice did not exhibit increased airway neutrophilia after LPS challenge. Bone marrow chimeras revealed a specific reduction in ATF3(-/-) neutrophil recruitment to wild-type lungs. In vitro, ATF3(-/-) neutrophils exhibited a profound chemotaxis defect. Global gene expression analysis identified ablated Tiam2 expression in ATF3(-/-) neutrophils. TIAM2 regulates cellular motility by activating Rac1-mediated focal adhesion disassembly. Notably, ATF3(-/-) and ATF3-sufficient TIAM2 knockdown neutrophils, both lacking TIAM2, exhibited increased focal complex area, along with excessive CD11b-mediated F-actin polymerization. Together, our data describe a dichotomous role for ATF3-mediated regulation of neutrophilic responses: inhibition of neutrophil chemokine production but promotion of neutrophil chemotaxis.
Collapse
|
20
|
Abstract
Molecular mechanisms guiding naïve T helper cell differentiation into functionally specified effector cells are intensively studied. The rapidly growing knowledge is mainly achieved by using mouse cells or disease models. Comparatively exiguous data is gathered from human primary cells although they provide the "ultimate model" for immunology in man, have been exploited in many original studies paving the way for the field, and can be analyzed more easily than ever with the help of modern technology and methods. As usage of mouse models is unavoidable in translational research, parallel human and mouse studies should be performed to assure the relevancy of the hypothesis created during the basic research. In this review, we give an overview on the status of the studies conducted with human primary cells aiming at elucidating the mechanisms instructing the priming of T helper cell subtypes. The special emphasis is given to the recent high-throughput studies. In addition, by comparing the human and mouse studies we intend to point out the regulatory mechanisms and questions which are lacking examination with human primary cells.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | | |
Collapse
|
21
|
Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML, Court N, Fremond C, Yeremeev V, Shebzukhov Y, Ryffel B, Nedospasov SA, Quesniaux VFJ, Jacobs M. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep 2013; 3:1809. [PMID: 23657146 PMCID: PMC3648802 DOI: 10.1038/srep01809] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
Tumour Necrosis Factor (TNF) is critical for host control of M. tuberculosis, but the relative contribution of TNF from innate and adaptive immune responses during tuberculosis infection is unclear. Myeloid versus T-cell-derived TNF function in tuberculosis was investigated using cell type-specific TNF deletion. Mice deficient for TNF expression in macrophages/neutrophils displayed early, transient susceptibility to M. tuberculosis but recruited activated, TNF-producing CD4+ and CD8+ T-cells and controlled chronic infection. Strikingly, deficient TNF expression in T-cells resulted in early control but susceptibility and eventual mortality during chronic infection with increased pulmonary pathology. TNF inactivation in both myeloid and T-cells rendered mice critically susceptible to infection with a phenotype resembling complete TNF deficient mice, indicating that myeloid and T-cells are the primary TNF sources collaborating for host control of tuberculosis. Thus, while TNF from myeloid cells mediates early immune function, T-cell derived TNF is essential to sustain protection during chronic tuberculosis infection.
Collapse
Affiliation(s)
- Nasiema Allie
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lönnberg T, Chen Z, Lahesmaa R. From a gene-centric to whole-proteome view of differentiation of T helper cell subsets. Brief Funct Genomics 2013; 12:471-82. [PMID: 24106101 PMCID: PMC3838199 DOI: 10.1093/bfgp/elt033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proper differentiation of naïve T helper cells into functionally distinct subsets is of critical importance to human health. Consequently, the process is tightly controlled by a complex intracellular signalling network. To dissect the regulatory principles of this network, immunologists have early on embraced system-wide transcriptomics tools, leading to identification of large panels of potential regulatory factors. In contrast, the use of proteomics approaches in T helper cell research has been notably rare, and to this date relatively few high-throughput datasets have been reported. Here, we discuss the importance of such research and envision the possibilities afforded by mass spectrometry-based proteomics in the near future.
Collapse
Affiliation(s)
- Tapio Lönnberg
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
23
|
Lehtimäki S, Lahesmaa R. Regulatory T Cells Control Immune Responses through Their Non-Redundant Tissue Specific Features. Front Immunol 2013; 4:294. [PMID: 24069022 PMCID: PMC3780303 DOI: 10.3389/fimmu.2013.00294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/07/2013] [Indexed: 01/11/2023] Open
Abstract
Regulatory T cells (Treg) are needed in the control of immune responses and to maintain immune homeostasis. Of this subtype of regulatory lymphocytes, the most potent are Foxp3 expressing CD4+ T cells, which can be roughly divided into two main groups; natural Treg cells (nTreg), developing in the thymus, and induced or adaptive Treg cells (iTreg), developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, non-redundant roles in the immune system, with nTreg cells mainly maintaining tolerance toward self-structures, and iTreg developing in response to externally delivered antigens or commensal microbes. In addition, Treg cells acquire tissue specific features and are adapted to function in the tissue they reside. This review will focus on some specific features of Treg cells in different compartments of the body.
Collapse
Affiliation(s)
- Sari Lehtimäki
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , Turku , Finland
| | | |
Collapse
|
24
|
Chen Z, Lönnberg T, Lahesmaa R. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets. Scand J Immunol 2013; 78:172-80. [PMID: 23679154 DOI: 10.1111/sji.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/11/2013] [Indexed: 01/22/2023]
Abstract
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.
Collapse
Affiliation(s)
- Z Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | |
Collapse
|
25
|
Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. Immunity 2013; 38:1271-84. [PMID: 23791644 DOI: 10.1016/j.immuni.2013.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Abstract
Naive CD4⁺ T cells can differentiate into specific helper and regulatory T cell lineages in order to combat infection and disease. The correct response to cytokines and a controlled balance of these populations is critical for the immune system and the avoidance of autoimmune disorders. To investigate how early cell-fate commitment is regulated, we generated the first human genome-wide maps of histone modifications that reveal enhancer elements after 72 hr of in vitro polarization toward T helper 1 (Th1) and T helper 2 (Th2) cell lineages. Our analysis indicated that even at this very early time point, cell-specific gene regulation and enhancers were at work directing lineage commitment. Further examination of lineage-specific enhancers identified transcription factors (TFs) with known and unknown T cell roles as putative drivers of lineage-specific gene expression. Lastly, an integrative analysis of immunopathogenic-associated SNPs suggests a role for distal regulatory elements in disease etiology.
Collapse
|
26
|
Tahvanainen J, Kyläniemi MK, Kanduri K, Gupta B, Lähteenmäki H, Kallonen T, Rajavuori A, Rasool O, Koskinen PJ, Rao KVS, Lähdesmäki H, Lahesmaa R. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J Biol Chem 2012; 288:3048-58. [PMID: 23209281 PMCID: PMC3561529 DOI: 10.1074/jbc.m112.361709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.
Collapse
Affiliation(s)
- Johanna Tahvanainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287:19242-54. [PMID: 22493490 DOI: 10.1074/jbc.m112.349936] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human MutS homologue 2 (hMSH2), a crucial element of the highly conserved DNA mismatch repair system, maintains genetic stability in the nucleus of normal cells. Our previous studies indicate that hMSH2 is ectopically expressed on the surface of epithelial tumor cells and recognized by both T cell receptor γδ (TCRγδ) and natural killer group 2 member D (NKG2D) on Vδ2 T cells. Ectopically expressed hMSH2 could trigger a γδ T cell-mediated cytolysis. In this study, we showed that oxidative stress induced ectopic expression of hMSH2 on human renal carcinoma cells. Under oxidative stress, both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways have been confirmed to mediate the ectopic expression of hMSH2 through the apoptosis-signaling kinase 1 (ASK1) upstream and activating transcription factor 3 (ATF3) downstream of both pathways. Moreover, renal carcinoma cell-derived interleukin (IL)-18 in oxidative stress was a prominent stimulator for ectopically induced expression of hMSH2, which was promoted by interferon (IFN)-γ as well. Finally, oxidative stress or pretreatment with IL-18 and IFN-γ enhanced γδ T cell-mediated cytolysis of renal carcinoma cells. Our results not only establish a mechanism of ectopic hMSH2 expression in tumor cells but also find a biological linkage between ectopic expression of hMSH2 and activation of γδ T cells in stressful conditions. Because γδ T cells play an important role in the early stage of innate anti-tumor response, γδ T cell activation triggered by ectopically expressed hMSH2 may be an important event in immunosurveillance for carcinogenesis.
Collapse
Affiliation(s)
- Chen Mo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
28
|
Lü A, Hu X, Xue J, Zhu J, Wang Y, Zhou G. Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii. FISH & SHELLFISH IMMUNOLOGY 2012; 32:273-283. [PMID: 22155693 DOI: 10.1016/j.fsi.2011.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 11/08/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Skin is considered the largest immunologically active organ, but its molecular mechanism remains unclear in fish. Here, Affymetrix Zebrafish GeneChip was used to assess gene expression in the skin of zebrafish (Danio rerio) infected with the bacterium Citrobacter freundii. The results showed that 229 genes were differentially expressed, of which 196 genes were upregulated and 33 genes were downregulated. Gene Ontology and KEGG pathway analyses indicated 88 genes significantly associated with skin immunity involved in complement activation and acute phase response, defense and immune response, response to stress and stimulus, antigen processing and presentation, cell adhesion and migration, platelet activation and coagulation factors, regulation of autophagy and apoptosis. When compared with transcriptional profiles of previously reported carp (Cyprinus carpio) skin, a similar innate immunity (e.g., interferon, lectin, heat shock proteins, complements), and several different acute phase proteins (transferrin, ceruloplasmin, vitellogenin and alpha-1-microglobulin, etc.) were detected in zebrafish skin. The validity of the microarray results was verified by quantitative real-time PCR analysis of nine representative genes. This is first report that skin play important roles in innate immune responses to bacterial infection, which contribute to understanding the defense mechanisms of the skin in fish.
Collapse
Affiliation(s)
- Aijun Lü
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, China.
| | | | | | | | | | | |
Collapse
|
29
|
The Splenic Response to Ischemic Stroke: Neuroinflammation, Immune Cell Migration, and Experimental Approaches to Defining Cellular Mechanisms. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Dimitrakopoulou K, Tsimpouris C, Papadopoulos G, Pommerenke C, Wilk E, Sgarbas KN, Schughart K, Bezerianos A. Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection. J Clin Bioinforma 2011; 1:27. [PMID: 22017961 PMCID: PMC3219564 DOI: 10.1186/2043-9113-1-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli. RESULTS We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data. CONCLUSIONS Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus.
Collapse
|
31
|
Feng CY, Rise ML. Identification and molecular cloning of Atlantic cod (Gadus morhua) activating transcription factor 3 (ATF3) transcript and its induction in spleen following intraperitoneal polyriboinosinic polyribocytidylic acid injection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:475-481. [PMID: 21684340 DOI: 10.1016/j.fsi.2011.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 05/30/2023]
Abstract
Activating transcription factor 3 (ATF3) participates in cellular processes to adapt to various extra- and intra-cellular changes including the modulation of immunity to prevent uncontrolled immune responses to pathogens. In teleost fishes, the involvement of ATF3 in immune response has not been documented. In this study, the putative Atlantic cod (Gadus morhua) ATF3 transcript was identified by performing rapid amplification of cDNA ends (RACE) based on unknown expressed sequence tags (ESTs) that are potentially inducible by polyriboinosinic polyribocytidylic acid (pIC, a synthetic double-stranded RNA viral mimic) in Atlantic cod. ATF3-like ESTs were the most abundant unknown transcript (i.e. lacking significant BLAST hits) generated from a previously constructed cDNA library enriched for pIC inducible transcripts in Atlantic cod spleen. The full-length cDNA of cod ATF3 consists of 2329 nucleotides with an open reading frame (ORF) of 735 bp encoding 244 amino acids. The deduced amino acid sequence of Atlantic cod ATF3 shares over 45% identity with its putative orthologs from other vertebrates. In addition, the presence of a conserved basic region leucine zipper (bZIP) domain in the deduced Atlantic cod ATF3-like protein further supports its identity as an ATF3 homolog. In the spleen of Atlantic cod challenged with intraperitoneal (IP) injections of pIC, the time-course transcript expression of ATF3 was studied using quantitative reverse transcription-polymerase chain reaction (QPCR). At 6 h following the pIC injection, the relative expression level of ATF3 mRNA was significantly up-regulated in comparison to a pre-injected control (61.9-fold) and its time-matched saline-injected control (97.3-fold). At 24 h following the pIC injection, the mRNA expression level of cod ATF3 had subsided and was no longer significantly different from its pre-injected control, but significantly higher (1.88-fold) than its time-matched saline-injected control. Collectively, these results suggest that ATF3 may be involved in the modulation of innate anti-viral response in Atlantic cod.
Collapse
Affiliation(s)
- Charles Y Feng
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
32
|
Hai T, Jalgaonkar S, Wolford CC, Yin X. Immunohistochemical detection of activating transcription factor 3, a hub of the cellular adaptive-response network. Methods Enzymol 2011; 490:175-94. [PMID: 21266251 DOI: 10.1016/b978-0-12-385114-7.00011-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals, including many of those that induce the unfolded protein response (UPR). Emerging evidence suggests that ATF3 is a hub of the cellular adaptive-response network and studies using various mouse models indicate that ATF3 plays a role in the pathogenesis of various diseases. One way to investigate the potential relevance of ATF3 to human diseases is to determine its expression in patient samples and test whether it correlates with disease progression or clinical outcomes. Due to the scarcity and preciousness of patient samples, methods that can detect ATF3 on archival tissue sections would greatly facilitate this research. In this chapter, we briefly review the roles of ATF3 in cellular adaptive-response and UPR, and then describe the detailed steps and tips that we developed based on general immunohistochemistry (IHC) protocols to detect ATF3 on paraffin embedded sections.
Collapse
Affiliation(s)
- Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
33
|
Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 2010; 15:1-11. [PMID: 21061913 PMCID: PMC6043823 DOI: 10.3727/105221610x12819686555015] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals. All members of this family share the basic region-leucine zipper (bZip) DNA binding motif and bind to the consensus sequence TGACGTCA in vitro. Previous reviews and an Internet source have covered the following topics: the nomenclature of ATF proteins, the history of their discovery, the potential interplays between ATFs and other bZip proteins, ATF3-interacting proteins, ATF3 target genes, and the emerging roles of ATF3 in cancer and immunity (see footnote 1). In this review, we present evidence and clues that prompted us to put forth the idea that ATF3 functions as a "hub" of the cellular adaptive-response network. We will then focus on the roles of ATF3 in modulating inflammatory response. Inflammation is increasingly recognized to play an important role for the development of many diseases. Putting this in the context of the hub idea, we propose that modulation of inflammation by ATF3 is a unifying theme for the potential involvement of ATF3 in various diseases.
Collapse
Affiliation(s)
- Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|