1
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Miyaoka M, Kikuti YY, Carreras J, Itou A, Ikoma H, Tomita S, Shiraiwa S, Ando K, Nakamura N. AID is a poor prognostic marker of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements. Pathol Int 2021; 72:35-42. [PMID: 34727403 DOI: 10.1111/pin.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Diffuse large B-cell lymphoma with MYC rearrangement is defined as double/triple-hit lymphoma (DHL/THL) or single-hit lymphoma (SHL) by the inclusion of the BCL2 and BCL6 rearrangements status. DHL/THL is called as "high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements" in the World Health Organization 2017 Classification of Tumors of Hematopoietic and Lymphoid Tissues. To find a prognostic biomarker of DHL/THL, we firstly examined 19 cases (molecular analysis series;10 cases of DHL/THL and 9 cases of SHL) with gene expression profile analysis. The gene expression profile analysis showed that the high expression of AICDA was associated with an adverse prognosis in DHL/THL, but not in SHL. Then, we evaluated immunohistochemical expression of AID, the protein product of AICDA, in 50 cases (molecular analysis series of 19 cases and additional immunohistochemistry series of 31 cases; 12 cases of DHL/THL and 19 cases of SHL) and confirmed that its expression was also associated with an adverse prognosis in DHL/THL. Therefore, AICDA and AID can be a predictor of an adverse clinical outcome in DHL/THL and immunohistochemistry of AID is useful to find DHL/THL-adverse prognosis group.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Atsushi Itou
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Haruka Ikoma
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sakura Tomita
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sawako Shiraiwa
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| |
Collapse
|
3
|
Alvarez-Gonzalez J, Yasgar A, Maul RW, Rieffer AE, Crawford DJ, Salamango DJ, Dorjsuren D, Zakharov AV, Jansen DJ, Rai G, Marugan J, Simeonov A, Harris RS, Kohli RM, Gearhart PJ. Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacol Transl Sci 2021; 4:1214-1226. [PMID: 34151211 DOI: 10.1021/acsptsci.1c00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 11/30/2022]
Abstract
Activation-induced deaminase (AID) not only mutates DNA within the immunoglobulin loci to generate antibody diversity, but it also promotes development of B cell lymphomas. To tame this mutagen, we performed a quantitative high-throughput screen of over 90 000 compounds to see if AID activity could be mitigated. The enzymatic activity was assessed in biochemical assays to detect cytosine deamination and in cellular assays to measure class switch recombination. Three compounds showed promise via inhibition of switching in a transformed B cell line and in murine splenic B cells. These compounds have similar chemical structures, which suggests a shared mechanism of action. Importantly, the inhibitors blocked AID, but not a related cytosine DNA deaminase, APOBEC3B. We further determined that AID was continually expressed for several days after B cell activation to induce switching. This first report of small molecules that inhibit AID can be used to gain regulatory control over base editors.
Collapse
Affiliation(s)
- Juan Alvarez-Gonzalez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Crawford
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Zhang C, Xie J, Li X, Luo J, Huang X, Liu L, Peng X. Alliin alters gut microbiota and gene expression of colonic epithelial tissues. J Food Biochem 2019; 43:e12795. [PMID: 31353605 DOI: 10.1111/jfbc.12795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Alliin is a natural organosulfur-containing phytochemical in garlic. It is possible that alliin can regulate the gut microbiota for its strong antimicrobial activity against many pathogens. Here, we assessed whether alliin impacts the distal small intestinal bacteria, hence the cecal microbiota, thus altering the gene expression of colonic epithelial tissues (CETs). Eighty mg/kg alliin was orally administered to rats for 14 days, and the 16S rDNA from small intestinal and cecal microbiota as well as mRNA from CETs were sequenced and analyzed. The results showed that alliin consumption affected microbiota composition in both the small intestine and cecum, although there was only one specific genus, Allobaculum that was significantly altered in the rat cecum. The altered composition of microbiota indirectly impacted 174 genes in the CETs. Specifically, five genes, including RT1-Ba, RT1-Bb, Cd80, Madcam1, and Aicda, indicated this consumption related to the intestinal immune network for IgA production. PRACTICAL APPLICATIONS: We firstly reported alliin consumption in vivo potentially affected the intestinal immunity of healthy rats by slightly alteration of microbiota composition in small intestine and cecum. The alteration subsequently amplified, resulting in the change of the colonic epithelial expression of several genes related to the intestinal immune network for IgA production. Hence, we suggested the alliin consumption may potentially affect the immune system of healthy individuals by alteration of gut microbiota and epithelial gene expression.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jinli Xie
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanwei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Expression of activation-induced cytidine deaminase is associated with a poor prognosis of diffuse large B cell lymphoma patients treated with CHOP-based chemotherapy. J Cancer Res Clin Oncol 2015; 142:27-36. [PMID: 26077666 DOI: 10.1007/s00432-015-2001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Activation-induced cytidine deaminase (AID) is involved in somatic hypermutation and class switch recombination processes in the antibody formation. The AID activity induces gene mutations and could be associated with transformation processes of B cells. Nevertheless, the relation between AID expression and the prognosis of B cell lymphoma patients remains uncharacterized. METHODS We examined expression levels of the AID gene in 89 lymph node specimens from lymphoma and non-lymphoma patients with Northern blot analysis and investigated an association with their survival. RESULTS The AID gene was preferentially expressed in B cell lymphoma in particular in diffuse large B cell lymphoma and follicular lymphoma. We confirmed AID protein expression in the mRNA-positive but not in the negative specimens with Western blot analysis and immunohistochemical staining. Survival of the patients treated with cyclophosphamide-/doxorubicin-/vincristine-/prednisone-based chemotherapy demonstrated that the prognosis of diffuse large B cell patients was unfavorable in the mRNA-positive group compared with the negative group, and that AID expression levels were correlated with the poor prognosis. In contrast, AID expression was not linked with the prognosis of follicular lymphoma patients. CONCLUSIONS AID expression is a predictive marker for an unfavorable outcome in DLBCL patients treated with the chemotherapy.
Collapse
|
6
|
Liu Z, Liu JQ, Shi Y, Zhu X, Liu Z, Li MS, Yu J, Wu LC, He Y, Zhang G, Bai XF. Epstein-Barr virus-induced gene 3-deficiency leads to impaired antitumor T-cell responses and accelerated tumor growth. Oncoimmunology 2015; 4:e989137. [PMID: 26140252 DOI: 10.4161/2162402x.2014.989137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) encoded protein can form heterodimers with IL-27P28, and IL-12P35 to form IL-27, and IL-35. However, IL-27 stimulates, whereas IL-35 inhibits antitumor T-cell responses. IL-27 also limits the Foxp3+ regulatory T cell (Treg) population, whereas IL-35 has been shown to expand Tregs and foster Treg suppressive functions. It remains unclear which group of forces are dominant during antitumor T-cell responses. In this study, we evaluated the tumor growth and antitumor T-cell responses in EBI3-deficient mice that lack both IL-27 and IL-35. We found that injecting B16 melanoma cells into EBI3-deficient C57BL/6 mice, or J558 plasmacytoma cells into EBI3-deficient BALB/c mice resulted in significantly increased tumor growth relative to those implanted in wild-type control mice. Tumors from EBI3-deficient mice contained significantly decreased proportions of CD8+ T cells and increased proportions of CD4+FoxP3+ Treg cells as compared to those from EBI3-intact mice. Tumor-infiltrating T cells from EBI3-deficient mice were impaired in their capacity to produce IFNγ. Phenotypically, Tregs from EBI3-deficient mice were highly suppressive and produced IL-10 in the tumor microenvironment. Depletion of Tregs or inactivation of the IL-10 pathway significantly abrogated tumor growth enhancement in Ebi3-/- mice. Finally, we showed that Ebi3-/- mice administered a melanoma vaccine failed to mount a CD8+ T-cell response and the vaccine failed to confer tumor rejection in EBI3-deficient mice. Taken together, these results suggest that Ebi3-/- mice show a phenotype of IL-27-deficiency rather than IL-35-deficiency during anti-tumor T-cell responses. Thus, our results suggest that endogenous IL-27 is critical for both spontaneous and vaccine-induced antitumor T-cell responses.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Yun Shi
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Xiaotong Zhu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Hepatobiliary Surgery; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Jianhua Yu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Lai-Chu Wu
- Davis Medical Center; Department of Molecular and Cellular Biochemistry; Ohio State University ; Columbus, OH USA
| | - Yukai He
- Cancer Immunology; Inflammation, and Tolerance Program; Georgia Regents University Cancer Center ; Augusta, GA USA
| | - Guoqiang Zhang
- Department of Thoracic Surgery; Xinqiao Hospital; Third Military Medical University ; Chongqing, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| |
Collapse
|
7
|
Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, Xu J, Basu S, Feng Y, Bai XF. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2415-23. [PMID: 23345334 DOI: 10.4049/jimmunol.1202535] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35-producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b(+)Gr1(+) myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag-specific CD8(+) T cell activation, differentiation, and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu Z, Liu JQ, Talebian F, Wu LC, Li S, Bai XF. IL-27 enhances the survival of tumor antigen-specific CD8+ T cells and programs them into IL-10-producing, memory precursor-like effector cells. Eur J Immunol 2013; 43:468-79. [PMID: 23225163 DOI: 10.1002/eji.201242930] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/29/2012] [Accepted: 11/22/2012] [Indexed: 11/07/2022]
Abstract
IL-27 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p40-related protein subunit, EBV-induced gene 3, and a p35-related subunit, p28. IL-27 functions through IL-27R and has been shown to have potent antitumor activity via activation of a variety of cellular components, including antitumor CD8(+) T-cell responses. However, the exact mechanisms of how IL-27 enhances antitumor CD8(+) T-cell responses remain unclear. Here we show that IL-27 significantly enhances the survival of activated tumor antigen-specific CD8(+) T cells in vitro and in vivo, and programs tumor antigen-specific CD8(+) T cells into memory precursor-like effector cells, characterized by upregulation of Bcl-6, SOCS3, Sca-1, and IL-10. While STAT3 activation and the CTL survival-enhancing effects can be independent of CTL IL-10 production, we show here that IL-27-induced CTL IL-10 production contributes to memory precursor cell phenotype induction, CTL memory, and tumor rejection. Thus, IL-27 enhances antitumor CTL responses via programming tumor antigen-specific CD8(+) T cells into a unique memory precursor type of effector cells characterized by a greater survival advantage. Our results have important implications for designing immunotherapy against human cancer.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
9
|
Miska J, Bas E, Devarajan P, Chen Z. Autoimmunity-mediated antitumor immunity: tumor as an immunoprivileged self. Eur J Immunol 2012; 42:2584-96. [PMID: 22777737 DOI: 10.1002/eji.201242590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2012] [Accepted: 06/20/2012] [Indexed: 11/09/2022]
Abstract
The association of autoimmunity with antitumor immunity challenges a paradigm of selective surveillance against tumors. Aided with well-characterized models of robust autoimmunity, we show that self-antigen-specific effector T (Teff) cell clones could eradicate tumor cells. However, a tumor microenvironment reinforced by Treg cells and myeloid-derived suppressor cells (MDSCs) presented a barrier to the autoimmune effectors, more so in tumors than in healthy tissues. This barrier required optimal CTLA4 expression in Teff cells. In a spontaneous model of breast cancer, subtle reductions in CTLA4 expression impeded tumor onset and progression, providing the first direct evidence that CTLA4 inhibits spontaneous tumor development. In an adoptive therapy model of lymphoma, self-antigen-specific Teff cells were potentiated by even a modest reduction of CTLA4. A subtle reduction of CTLA4 did not curtail Treg-cell suppression. Thus, Teff cells had an exquisite sensitivity to physiological levels of CTLA4 variations. However, both Treg and Teff cells were impacted by anti-CTLA4 antibody blockade. Therefore, whether CTLA4 impacts through Treg cells or Teff cells depends on its expression level. Overall, the results suggest that the tumor microenvironment represents an "immunoprivileged self" that could be overcome practically and at least partially by RNAi silencing of CTLA4 in Teff cells.
Collapse
Affiliation(s)
- Jason Miska
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
10
|
Wang LX, Talebian F, Liu JQ, Khattabi M, Yu L, Bai XF. IL-10 contributes to the suppressive function of tumour-associated myeloid cells and enhances myeloid cell accumulation in tumours. Scand J Immunol 2012; 75:273-81. [PMID: 22050574 DOI: 10.1111/j.1365-3083.2011.02662.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies have revealed that tumour-associated myeloid cells (TAMC) are one of the major sources of IL-10 in tumour-bearing mice. However, the significance of TAMC-derived IL-10 in tumour immunity is poorly understood. Here, we show that IL-10 blockade or IL-10 deficiency reduces the capacity of TAMC in suppressing the proliferation of P1A-specific CD8 T cells. In the spleen, IL-10-deficient and wild-type (WT) mice bearing large tumour burdens have similar TAMC populations. The tumours from IL-10-deficient mice, however, have reduced numbers of TAMC compared with tumours from their WT counterparts. IL-10⁻/⁻ RAG-2⁻/⁻ mice also had reduced numbers of TAMC compared with tumours from IL-10⁺/⁺ RAG-2⁻/⁻ mice; therefore, the reduction in TAMC in IL-10-deficient tumours was not because of adaptive immune response in tumours. Adoptively transferred tumour antigen-specific CD8 T cells expanded more efficiently within tumours in IL-10⁻/⁻ RAG-2⁻/⁻ mice than in tumours from IL-10⁺/⁺ RAG-2⁻/⁻ mice. Cytotoxic T lymphocyte adoptive transfer therapy prevented tumour evasion in IL-10⁻/⁻ RAG-2⁻/⁻ mice more efficiently than in IL-10⁺/⁺ RAG-2⁻/⁻ mice. Thus, IL-10 enhances the accumulation of myeloid cells in tumours, and TAMC-derived IL-10 suppresses the activation and expansion of tumour antigen-specific T cells.
Collapse
Affiliation(s)
- L-X Wang
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
11
|
Activation-induced cytidine deaminase (AID) linking immunity, chronic inflammation, and cancer. Cancer Immunol Immunother 2012; 61:1591-8. [PMID: 22527246 PMCID: PMC3427704 DOI: 10.1007/s00262-012-1255-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
Activation-induced cytidine deaminase (AID) is critically involved in class switch recombination and somatic hypermutation of Ig loci resulting in diversification of antibodies repertoire and production of high-affinity antibodies and as such represents a physiological tool to introduce DNA alterations. These processes take place within germinal centers of secondary lymphoid organs. Under physiological conditions, AID is expressed predominantly in activated B lymphocytes. Because of the mutagenic and recombinogenic potential of AID, its expression and activity is tightly regulated on different levels to minimize the risk of unwanted DNA damage. However, chronic inflammation and, probably, combination of other not-yet-identified factors are able to create a microenvironment sufficient for triggering an aberrant AID expression in B cells and, importantly, in non-B-cell background. Under these circumstances, AID may target also non-Ig genes, including cancer-related genes as oncogenes, tumor suppressor genes, and genomic stability genes, and modulate both genetic and epigenetic information. Despite ongoing progress, the complete understanding of fundamental aspects is still lacking as (1) what are the crucial factors triggering an aberrant AID expression/activity including the impact of Th2-driven inflammation and (2) to what extent may aberrant AID in human non-B cells lead to abnormal cell state associated with an increased rate of genomic alterations as point mutations, small insertions or deletions, and/or recurrent chromosomal translocations during solid tumor development and progression.
Collapse
|
12
|
Storck S, Aoufouchi S, Weill JC, Reynaud CA. AID and partners: for better and (not) for worse. Curr Opin Immunol 2011; 23:337-44. [PMID: 21439803 DOI: 10.1016/j.coi.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 01/27/2023]
Abstract
Post-rearrangement diversification of the antibody repertoire relies on a DNA editing factor, the cytidine deaminase AID. How B lymphocytes avoid generalized mutagenesis while expressing high levels of AID remained a long-standing question. Genome-wide studies of AID targeting combined to the discovery of several co-factors controlling its recruitment and its local activity shed new light on this enigma.
Collapse
Affiliation(s)
- Sébastien Storck
- Institut National de la Santé et de la Recherche Médicale Unité 783 Développement du système immunitaire, Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|