1
|
Okamura T, Kitagawa N, Kitagawa N, Sakai K, Sumi M, Kobayashi G, Imai D, Matsui T, Hamaguchi M, Fukui M. Single-cell analysis reveals islet autoantigen's immune activation in type 1 diabetes patients. J Clin Biochem Nutr 2025; 76:64-84. [PMID: 39896168 PMCID: PMC11782777 DOI: 10.3164/jcbn.24-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
In this study, we used single-cell sequencing, which can comprehensively detect the type and number of transcripts per cell, to efficiently stimulate peripheral blood mononuclear cells of type 1 diabetic patients with overlapping peptides of GAD, IA-2, and insulin antigens, and performed gene expression analysis by single-cell variable-diversity-joining sequencing and T-cell receptor repertoire analysis. Twenty male patients with type 1 diabetes mellitus participating in the KAMOGAWA-DM cohort were included. Four of them were randomly selected for BD Rhapsody system after reacting peripheral blood mononuclear cells with overlapping peptides of GAD, IA-2, and insulin antigen. Peripheral blood mononuclear cells were clustered into CD8+ T cells, CD4+ T cells, granulocytes, natural killer cells, dendritic cells, monocytes, and B cells based on Seurat analysis. In the insulin group, gene expression of inflammatory cytokines was elevated in cytotoxic CD8+ T cells and Th1 and Th17 cells, and gene expression related to exhaustion was elevated in regulatory T cells. In T cell receptors of various T cells, the T cell receptor β chain was monoclonally increased in the TRBV28/TRBJ2-7 pairs. This study provides insights into the pathogenesis of type 1 diabetes and provides potential targets for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Diabetology, Kameoka Municipal Hospital, 1-1 Shinonoda, Shino-cho, Kameoka 621-8585, Japan
| | - Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kimiko Sakai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Madoka Sumi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Genki Kobayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Dan Imai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Matsui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Zelikson N, Ben S, Caspi M, Tarabe R, Shaleve Y, Pri-Paz Basson Y, Tayer-Shifman O, Goldberg E, Kivity S, Rosin-Arbesfeld R. Wnt signaling regulates chemokine production and cell migration of circulating human monocytes. Cell Commun Signal 2024; 22:229. [PMID: 38622714 PMCID: PMC11020454 DOI: 10.1186/s12964-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The β-catenin dependent canonical Wnt signaling pathway plays a crucial role in maintaining normal homeostasis. However, when dysregulated, Wnt signaling is closely associated with various pathological conditions, including inflammation and different types of cancer.Here, we show a new connection between the leukocyte inflammatory response and the Wnt signaling pathway. Specifically, we demonstrate that circulating human primary monocytes express distinct Wnt signaling components and are susceptible to stimulation by the classical Wnt ligand-Wnt-3a. Although this stimulation increased the levels of β-catenin protein, the expression of the classical Wnt-target genes was not affected. Intriguingly, treating circulating human monocytes with Wnt-3a induces the secretion of cytokines and chemokines, enhancing monocyte migration. Mechanistically, the enhanced monocyte migration in response to Wnt stimuli is mediated through CCL2, a strong monocyte-chemoattractant.To further explore the physiological relevance of these findings, we conducted ex-vivo experiments using blood samples of patients with rheumatic joint diseases (RJD) - conditions where monocytes are known to be dysfunctional. Wnt-3a generated a unique cytokine expression profile, which was significantly distinct from that observed in monocytes obtained from healthy donors.Thus, our results provide the first evidence that Wnt-3a may serve as a potent stimulator of monocyte-driven immune processes. These findings contribute to our understanding of inflammatory diseases and, more importantly, shed light on the role of a core signaling pathway in the circulation.
Collapse
Affiliation(s)
- Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaina Ben
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raneen Tarabe
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Shaleve
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Pri-Paz Basson
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oshrat Tayer-Shifman
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Goldberg
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaye Kivity
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Bruschi F, Pinto B, Fallahi P, Ferrari SM, Antonelli A. Increased neutrophil derived chemokines (CXCL10 and CCL2) in human trichinellosis as possible serological markers of the polarization of the immune response against the parasite. Cytokine 2023; 166:156205. [PMID: 37058963 DOI: 10.1016/j.cyto.2023.156205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Trichinella britovi is a widely distributed parasitic nematode, transmitted through ingestion of raw or poorly cooked meat containing muscle larvae. This helminth can regulate the host immune system during the early phase of infection. The immune mechanism mainly involves the interaction of Th1 and Th2 responses and related cytokines. Chemokines (C-X-C or C-C) and matrix metalloproteinases (MMPs) have also shown to be implicated in a number of parasitic infections, mainly malaria, neurocysticercosis, angiostronyloidosis, and schistosomiasis, but poor is known about their role in human Trichinella infection. We previously found that serum MMP-9 levels were significantly increased in T. britovi infected patients with relevant symptoms such as diarrhea, myalgia, and facial oedema, which makes these enzymes a potential reliable indicator of inflammation in trichinellosis patients. These changes were also observed in T. spiralis/T. pseudospiralis experimentally infected mice. No data are available about circulating levels of two pro-inflammatory chemokines, CXCL10 and CCL2, in trichinellosis patients with or w/o clinical signs of the infection. In this study, the association of serum level of CXCL10 and CCL2 with clinical outcome of T. britovi infection and their relation to MMP-9 were investigated. Patients (median age 49 ± 0.33 years) acquired infection by consuming raw sausages prepared with wild boar and pork meat. Sera were collected during the acute and the convalescent phases of the infection. A positive significant association (r = 0.61, p = 0.0004) was observed between MMP-9 and CXCL10 levels. The CXCL10 level significantly correlated with the severity of symptoms in patients being particularly higher in patients suffering diarrhea, myalgia, and facial oedema, thus suggesting a positive association of this chemokine with symptomatologic traits, especially myalgia (and increased LDH and CPK levels) (p < 0.005). No correlation was found between levels of CCL2 and the clinical symptoms.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| | - Barbara Pinto
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
5
|
Abstract
Neurocysticercosis (NCC) occurs following brain infection by larvae of the cestode Taenia solium. It is the leading cause of preventable epilepsy worldwide and therefore constitutes a critical health challenge with significant global relevance. Despite this, much is still unknown about many key pathogenic aspects of the disease, including how cerebral infection with T. solium results in the development of seizures. Over the past century, valuable mechanistic insights have been generated using both clinical studies and animal models. In this review, we critically assess model systems for investigating disease processes in NCC. We explore the respective strengths and weaknesses of each model and summarize how they have contributed to current knowledge of the disease. We call for the continued development of animal models of NCC, with a focus on novel strategies for understanding this debilitating but often neglected disorder.
Collapse
|
6
|
Prabhakaran V, Drevets DA, Ramajayam G, Manoj JJ, Anderson MP, Hanas JS, Rajshekhar V, Oommen A, Carabin H. Comparison of monocyte gene expression among patients with neurocysticercosis-associated epilepsy, Idiopathic Epilepsy and idiopathic headaches in India. PLoS Negl Trop Dis 2017. [PMID: 28622332 PMCID: PMC5489221 DOI: 10.1371/journal.pntd.0005664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Neurocysticercosis (NCC), a neglected tropical disease, inflicts substantial health and economic costs on people living in endemic areas such as India. Nevertheless, accurate diagnosis using brain imaging remains poorly accessible and too costly in endemic countries. The goal of this study was to test if blood monocyte gene expression could distinguish patients with NCC-associated epilepsy, from NCC-negative imaging lesion-free patients presenting with idiopathic epilepsy or idiopathic headaches. Methods/Principal findings Patients aged 18 to 51 were recruited from the Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, India, between January 2013 and October 2014. mRNA from CD14+ blood monocytes was isolated from 76 patients with NCC, 10 Recovered NCC (RNCC), 29 idiopathic epilepsy and 17 idiopathic headaches patients. A preliminary microarray analysis was performed on six NCC, six idiopathic epilepsy and four idiopathic headaches patients to identify genes differentially expressed in NCC-associated epilepsy compared with other groups. This analysis identified 1411 upregulated and 733 downregulated genes in patients with NCC compared to Idiopathic Epilepsy. Fifteen genes up-regulated in NCC patients compared with other groups were selected based on possible relevance to NCC, and analyzed by qPCR in all patients’ samples. Differential gene expression among patients was assessed using linear regression models. qPCR analysis of 15 selected genes showed generally higher gene expression among NCC patients, followed by RNCC, idiopathic headaches and Idiopathic Epilepsy. Gene expression was also generally higher among NCC patients with single cyst granulomas, followed by mixed lesions and single calcifications. Conclusions/Significance Expression of certain genes in blood monocytes can distinguish patients with NCC-related epilepsy from patients with active Idiopathic Epilepsy and idiopathic headaches. These findings are significant because they may lead to the development of new tools to screen for and monitor NCC patients without brain imaging. Taenia solium is a parasite normally transmitted between humans and pigs in areas with poor sanitation. Neurocysticercosis (NCC) occurs when humans are infected with larvae of T. solium that are shed with human feces and the larvae establish in the brain. NCC is often accompanied by neurological symptoms such as epilepsy. In fact, NCC causes approximately one-third of epilepsy cases in areas where T. solium is common. Unfortunately, diagnosis of NCC requires brain computerized tomography or magnetic resonance imaging, tools rarely accessible to people living where NCC is prevalent. This study tested whether genes expressed in blood monocytes, a type of white blood cell, could distinguish between people with epilepsy caused by NCC from those with epilepsy of unknown cause (idiopathic). We compared gene expression in people with NCC and epilepsy, people with idiopathic epilepsy, people cured of NCC and people without NCC or epilepsy but with headaches. We identified 15 genes which were expressed differently in the four different groups indicating that monocyte gene expression patterns in people with NCC and epilepsy are different than people with idiopathic epilepsy. These findings could lead to better understanding how humans respond to NCC and to diagnostic tests which would not require brain imaging.
Collapse
Affiliation(s)
| | - Douglas A. Drevets
- Dept. of Internal Medicine, University of Oklahoma HSC, and the VA Medical Center, Oklahoma City, United States of America
| | - Govindan Ramajayam
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Josephine J. Manoj
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Michael P. Anderson
- Dept. of Biostatistics and Epidemiology, University of Oklahoma HSC, Oklahoma City, United States of America
| | - Jay S. Hanas
- Dept. of Biochemistry and Dept. of Surgery, University of Oklahoma HSC, Oklahoma City, United States of America
| | - Vedantam Rajshekhar
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Anna Oommen
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Hélène Carabin
- Dept. of Biostatistics and Epidemiology, University of Oklahoma HSC, Oklahoma City, United States of America
- * E-mail:
| |
Collapse
|
7
|
Singh AK, Singh SK, Singh A, Gupta KK, Khatoon J, Prasad A, Rai RP, Gupta RK, Tripathi M, Husain N, Prasad KN. Immune response to Taenia solium cysticerci after anti-parasitic therapy. Int J Parasitol 2015; 45:749-59. [DOI: 10.1016/j.ijpara.2015.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/14/2015] [Accepted: 05/18/2015] [Indexed: 01/11/2023]
|
8
|
Garcia HH, Rodriguez S, Friedland JS. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol 2014; 36:388-96. [PMID: 24962350 DOI: 10.1111/pim.12126] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
The life cycle of Taenia solium, the pork tapeworm, is continuously closed in many rural settings in developing countries when free roaming pigs ingest human stools containing T. solium eggs and develop cysticercosis, and humans ingest pork infected with cystic larvae and develop intestinal taeniasis, or may also accidentally acquire cysticercosis by faecal-oral contamination. Cysticercosis of the human nervous system, neurocysticercosis, is a major cause of seizures and other neurological morbidity in most of the world. The dynamics of exposure, infection and disease as well as the location of parasites result in a complex interaction which involves immune evasion mechanisms and involutive or progressive disease along time. Moreover, existing data are limited by the relative lack of animal models. This manuscript revises the available information on the immunology of human taeniasis and cysticercosis.
Collapse
Affiliation(s)
- H H Garcia
- Department of Microbiology, School of Sciences and Center for Global Health - Tumbes, Universidad Peruana Cayetano Heredia, Lima, Peru; Cysticercosis Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | | | | | | |
Collapse
|
9
|
|
10
|
Reyes JL, González MI, Ledesma-Soto Y, Satoskar AR, Terrazas LI. TLR2 mediates immunity to experimental cysticercosis. Int J Biol Sci 2011; 7:1323-33. [PMID: 22110384 PMCID: PMC3221368 DOI: 10.7150/ijbs.7.1323] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/12/2022] Open
Abstract
Information concerning TLR-mediated antigen recognition and regulation of immune responses during helminth infections is scarce. TLR2 is a key molecule required for innate immunity and is involved in the recognition of a wide range of viruses, bacteria, fungi and parasites. Here, we evaluated the role of TLR2 in a Taenia crassiceps cysticercosis model. We compared the course of T. crassiceps infection in C57BL/6 TLR2 knockout mice (TLR2-/-) with that in wild type C57BL/6 (TLR2+/+) mice. In addition, we assessed serum antibody and cytokine profiles, splenic cellular responses and cytokine profiles and the recruitment of alternatively activated macrophages (AAMφs) to the site of the infection. Unlike wild type mice, TLR2-/- mice failed to produce significant levels of inflammatory cytokines in either the serum or the spleen during the first two weeks of Taenia infection. TLR2-/- mice developed a Th2-dominant immune response, whereas TLR2+/+ mice developed a Th1-dominant immune response after Taenia infection. The insufficient production of inflammatory cytokines at early time points and the lack of Th1-dominant adaptive immunity in TLR2-/- mice were associated with significantly elevated parasite burdens; in contrast, TLR2+/+ mice were resistant to infection. Furthermore, increased recruitment of AAMφs expressing PD-L1, PD-L2, OX40L and mannose receptor was observed in TLR2-/- mice. Collectively, these findings indicate that TLR2-dependent signaling pathways are involved in the recognition of T. crassiceps and in the subsequent activation of the innate immune system and production of inflammatory cytokines, which appear to be essential to limit infection during experimental cysticercosis.
Collapse
Affiliation(s)
- José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México-UNAM, Mexico
| | | | | | | | | |
Collapse
|
11
|
Clinical Manifestations, Diagnosis, and Treatment of Neurocysticercosis. Curr Neurol Neurosci Rep 2011; 11:529-35. [DOI: 10.1007/s11910-011-0226-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|