1
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Savery D, Maniou E, Culshaw LH, Greene NDE, Copp AJ, Galea GL. Refinement of inducible gene deletion in embryos of pregnant mice. Birth Defects Res 2019; 112:196-204. [PMID: 31793758 PMCID: PMC7003956 DOI: 10.1002/bdr2.1628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
CreERT2‐mediated gene recombination is widely applied in developmental biology research. Activation of CreERT2 is typically achieved by injection of tamoxifen in an oily vehicle into the peritoneal cavity of mid‐gestation pregnant mice. This can be technically challenging and adversely impacts welfare. Here we characterize three refinements to this technique: Pipette feeding (not gavage) of tamoxifen, ex vivo CreERT2 activation in whole embryo culture and injection of cell‐permeable TAT‐Cre into Cre‐negative cultured embryos. We demonstrate that pipette feeding of tamoxifen solution to the mother on various days of gestation reliably activates embryonic CreERT2, illustrated here using β‐ActinCreERT2, Sox2CreERT2, TCreERT2, and Nkx1.2CreERT2. Pipette feeding of tamoxifen induces dose‐dependent recombination of Rosa26mTmG reporters when administered at E8.5. Activation of two neuromesodermal progenitor‐targeting Cre drivers, TCreERT2, and Nkx1.2CreERT2, produces comparable neuroepithelial lineage tracing. Dose‐dependent CreERT2 activation can also be achieved by brief exposure to 4OH‐tamoxifen in whole embryo culture, allowing temporal control of gene deletion and eliminating the need to treat pregnant mice. Rosa26mTmG reporter recombination can also be achieved regionally by injecting TAT‐Cre into embryonic tissues at the start of culture. This allows greater spatial control over Cre activation than can typically be achieved with endogenous CreERT2, for example by injecting TAT‐Cre on one side of the midline. We hope that our description and application of these techniques will stimulate refinement of experimental methods involving CreERT2 activation for gene deletion and lineage tracing studies. Improved temporal (ex vivo treatment) and spatial (TAT‐Cre injection) control of recombination will also allow previously intractable questions to be addressed.
Collapse
Affiliation(s)
- Dawn Savery
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Lucy H Culshaw
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
3
|
Lin CJ, Staiculescu MC, Hawes JZ, Cocciolone AJ, Hunkins BM, Roth RA, Lin CY, Mecham RP, Wagenseil JE. Heterogeneous Cellular Contributions to Elastic Laminae Formation in Arterial Wall Development. Circ Res 2019; 125:1006-1018. [PMID: 31590613 DOI: 10.1161/circresaha.119.315348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Elastin is an important ECM (extracellular matrix) protein in large and small arteries. Vascular smooth muscle cells (SMCs) produce the layered elastic laminae found in elastic arteries but synthesize little elastin in muscular arteries. However, muscular arteries have a well-defined internal elastic lamina (IEL) that separates endothelial cells (ECs) from SMCs. The extent to which ECs contribute elastin to the IEL is unknown. OBJECTIVE To use targeted elastin (Eln) deletion in mice to explore the relative contributions of SMCs and ECs to elastic laminae formation in different arteries. METHODS AND RESULTS We used SMC- and EC-specific Cre recombinase transgenes with a novel floxed Eln allele to focus gene inactivation in mice. Inactivation of Eln in SMCs using Sm22aCre resulted in depletion of elastic laminae in the arterial wall with the exception of the IEL and SMC clusters in the outer media near the adventitia. Inactivation of elastin in ECs using Tie2Cre or Cdh5Cre resulted in normal medial elastin and a typical IEL in elastic arteries. In contrast, the IEL was absent or severely disrupted in muscular arteries. Interruptions in the IEL resulted in neointimal formation in the ascending aorta but not in muscular arteries. CONCLUSIONS Combined with lineage-specific fate mapping systems, our knockout results document an unexpected heterogeneity in vascular cells that produce the elastic laminae. SMCs and ECs can independently form an IEL in most elastic arteries, whereas ECs are the major source of elastin for the IEL in muscular and resistance arteries. Neointimal formation at IEL disruptions in the ascending aorta confirms that the IEL is a critical physical barrier between SMCs and ECs in the large elastic arteries. Our studies provide new information about how SMCs and ECs contribute elastin to the arterial wall and how local elastic laminae defects may contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Chien-Jung Lin
- From the Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.).,Department of Internal Medicine, Cardiovascular Division (C.-J.L.)
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science (M.C.S., J.Z.H., J.E.W.)
| | - Jie Z Hawes
- Department of Mechanical Engineering and Materials Science (M.C.S., J.Z.H., J.E.W.)
| | - Austin J Cocciolone
- Departments of Biomedical Engineering (A.J.C.), Washington University, St. Louis, MO
| | - Bridget M Hunkins
- From the Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.)
| | - Robyn A Roth
- From the Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.)
| | - Chieh-Yu Lin
- Pathology and Immunology (C.-Y.L.), Washington University, St. Louis, MO
| | - Robert P Mecham
- From the Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.)
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science (M.C.S., J.Z.H., J.E.W.)
| |
Collapse
|
4
|
Wang Y, Wu H, Fontanet P, Codeluppi S, Akkuratova N, Petitpré C, Xue-Franzén Y, Niederreither K, Sharma A, Da Silva F, Comai G, Agirman G, Palumberi D, Linnarsson S, Adameyko I, Moqrich A, Schedl A, La Manno G, Hadjab S, Lallemend F. A cell fitness selection model for neuronal survival during development. Nat Commun 2019; 10:4137. [PMID: 31515492 PMCID: PMC6742664 DOI: 10.1038/s41467-019-12119-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/16/2019] [Indexed: 01/14/2023] Open
Abstract
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.
Collapse
Affiliation(s)
- Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Simone Codeluppi
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, Université de Strasbourg, Illkirch, France
| | - Anil Sharma
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fabio Da Silva
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Glenda Comai
- Stem Cells & Development - Institut Pasteur - CNRS UMR3738, 75015, Paris, France
| | - Gulistan Agirman
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Domenico Palumberi
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sten Linnarsson
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR 7288, 13288, Marseille, France
| | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Gioele La Manno
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Liu J, Sanes JR. Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion. J Neurosci 2017; 37:12247-12262. [PMID: 29114073 PMCID: PMC5729193 DOI: 10.1523/jneurosci.2098-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023] Open
Abstract
As neuronal dendrites develop, they acquire cell-type-specific features including characteristic size, shape, arborization, location and synaptic patterns. These features, in turn, are major determinants of type-specific neuronal function. Because neuronal diversity complicates the task of relating developmental programs to adult structure and function, we analyzed dendritic morphogenesis in a single retinal ganglion cell (RGC) type in mouse called J-RGC. We documented the emergence of five dendritic features that underlie J-RGC physiology: (1) dendritic field size, which approximate receptive field size; (2) dendritic complexity, which affects how J-RGCs sample space; (3) asymmetry, which contributes to direction-selectivity; (4) restricted lamination within the inner plexiform layer (IPL), which renders J-RGCs responsive to light decrements; and (5) distribution of synaptic inputs, which generate a color-opponent receptive field. We found dendritic growth in J-RGCs is accompanied by a refinement in dendritic self-crossing. Asymmetry arises by a combination of selective pruning and elaboration, whereas laminar restriction results from biased outgrowth toward the outermost IPL. Interestingly, asymmetry develops in a protracted dorsoventral wave, whereas lamination does so in a rapid centrifugal wave. As arbors mature, they acquire excitatory and inhibitory synapses, with the latter forming first and being concentrated in proximal dendrites. Thus, distinct mechanisms operate in different spatiotemporal dimensions of J-RGC dendritic patterning to generate the substrate for specific patterns of synaptogenesis. Finally, we asked whether the defining molecular signature of J-RGCs, the adhesion molecule JAM-B, regulates morphogenesis, and showed that it promotes dendro-dendritic interactions. Our results reveal multiple mechanisms that shape a dendritic arbor.SIGNIFICANCE STATEMENT Visual perception begins in the retina, where distinct types of retinal ganglion cells (RGCs) are tuned to specific visual features such as direction of motion. The features to which each RGC type responds are determined largely by the number and type of synaptic inputs it receives, and these, in turn, are greatly influenced by the size, shape, arborization pattern, and location of its dendrites. We analyzed dendritic morphogenesis in a functionally characterized RGC type, the J-RGC, demonstrating distinct mechanisms that operate in different dimensions to generate the dendritic scaffold and synaptic patterns for feature detection. Our work elucidates cellular and molecular mechanisms that shape dendritic arbors and synaptic distribution, enabling J-RGC connectivity and thus, function.
Collapse
Affiliation(s)
- Jinyue Liu
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, and
| |
Collapse
|
6
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
7
|
Xu Y, Evaristo C, Alegre ML, Gurbuxani S, Kee BL. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage. PLoS One 2015; 10:e0125211. [PMID: 25923440 PMCID: PMC4414598 DOI: 10.1371/journal.pone.0125211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.
Collapse
Affiliation(s)
- Yiying Xu
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cesar Evaristo
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Maria-Luisa Alegre
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara L. Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|