1
|
Meroni PL, Borghi MO, Raschi E, Grossi C, Lonati PA, Bodio C, Da Via A, Curreli D, Cecchini G. TO SHOw how we have been ENgaged in the APS FiELD (What we learned on APS collaborating with Professor Yehuda Shoenfeld). Autoimmun Rev 2024; 23:103613. [PMID: 39216616 DOI: 10.1016/j.autrev.2024.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The present review reports the history of our scientific collaboration with Professor Shoenfeld's group. The collaboration started at the end of the 80s and was mainly focused on studies on the pathogenetic mechanisms of the anti-phospholipid syndrome (APS). Following the initial collaborative studies on antibodies against endothelium in systemic autoimmune vasculitis, we were able to use a similar strategy in APS. This line of research has resulted in the characterization of beta 2 glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) as mechanisms capable of mediating an endothelial perturbation crucial for the pathogenesis of APS. Thanks to these studies, the collaboration has led to the characterization of the membrane receptors for β2GPI and the cellular signaling resulting from antibody binding. This mechanism has also been shown to mediate the aPL effect on other cell types involved in APS pathogenesis. Finally, the exchange of information made it possible to replicate and extend the setting of animal models of the syndrome, which proved to be valuable tools for understanding the pathogenesis of the syndrome. It has been a long story recently refueled by common studies on the similarity of pro-inflammatory and pro-coagulant endotheliopathy in APS and in COVID-19.
Collapse
Affiliation(s)
- Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Elena Raschi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Grossi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paola Adele Lonati
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Caterina Bodio
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Arianna Da Via
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Daniele Curreli
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Germana Cecchini
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Giannakopoulos B, Krilis SA. Domain 5 of Beta 2 glycoprotein I: Friend or foe in health? Context matters. Clin Immunol 2024; 265:110282. [PMID: 38917928 DOI: 10.1016/j.clim.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Beta 2 glycoprotein I (β2GPI) is the major autoantigen in the antiphospholipid syndrome, an autoimmune disorder characterized by thrombotic and obstetric complications. The autoantibodies that target beta 2 glycoprotein I are pathogenic and contribute to disease pathogenesis. The β2GPI molecule is composed of 5 domains that are numbered 1 through to 5. Autoantibodies bind mainly to domain 1 whereas the majority of the biological functions of the β2GPI molecule in diverse processes such as apoptotic cell clearance, complement regulation, lipopolysaccharide clearance and anticoagulation have been localised to domain 5 and its unique biochemistry, reviewed in this article. The role of purified domain 5 peptide as a potential therapeutic agent in APS and ischemia reperfusion injury is discussed.
Collapse
Affiliation(s)
- Bill Giannakopoulos
- Faculty of Medicine and Health, University of New South Wales, St George and Sutherland Campus, Level 2, Pitney Building, Kogarah, Sydney, NSW 2217, Australia; Department of Rheumatology, St George Public Hospital, Kogarah, Sydney, 2217, Australia.
| | - Steven A Krilis
- Faculty of Medicine and Health, University of New South Wales, St George and Sutherland Campus, Level 2, Pitney Building, Kogarah, Sydney, NSW 2217, Australia; Department of Infectious Diseases, Immunology, and Sexual Health, St George Public Hospital, Kogarah, Sydney 2217, Australia.
| |
Collapse
|
3
|
Feng W, Qiao J, Tan Y, Liu Q, Wang Q, Yang B, Yang S, Cui L. Interaction of antiphospholipid antibodies with endothelial cells in antiphospholipid syndrome. Front Immunol 2024; 15:1361519. [PMID: 39044818 PMCID: PMC11263079 DOI: 10.3389/fimmu.2024.1361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous thrombosis and recurrent miscarriages as the main clinical manifestations. Due to the complexity of its mechanisms and the diversity of its manifestations, its diagnosis and treatment remain challenging issues. Antiphospholipid antibodies (aPL) not only serve as crucial "biomarkers" in diagnosing APS but also act as the "culprits" of the disease. Endothelial cells (ECs), as one of the core target cells of aPL, bridge the gap between the molecular level of these antibodies and the tissue and organ level of pathological changes. A more in-depth exploration of the relationship between ECs and the pathogenesis of APS holds the potential for significant advancements in the precise diagnosis, classification, and therapy of APS. Many researchers have highlighted the vital involvement of ECs in APS and the underlying mechanisms governing their functionality. Through extensive in vitro and in vivo experiments, they have identified multiple aPL receptors on the EC membrane and various intracellular pathways. This article furnishes a comprehensive overview and summary of these receptors and signaling pathways, offering prospective targets for APS therapy.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
4
|
Root-Bernstein R. From Co-Infections to Autoimmune Disease via Hyperactivated Innate Immunity: COVID-19 Autoimmune Coagulopathies, Autoimmune Myocarditis and Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:ijms24033001. [PMID: 36769320 PMCID: PMC9917907 DOI: 10.3390/ijms24033001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5). SARS-CoV-2 mainly activates the virus-associated innate receptors TLR3, TLR7, TLR8, NLRP3, RIG-1 and MDA-5. Severe COVID-19, however, is characterized by additional activation of TLR1, TLR2, TLR4, TLR5, TLR6, NOD1 and NOD2, which are primarily responsive to bacterial antigens. The innate activation patterns in autoimmune coagulopathies, myocarditis and Kawasaki disease, or MIS-C, mimic those of severe COVID-19 rather than SARS-CoV-2 alone suggesting that autoimmunity follows combined SARS-CoV-2-bacterial infections. Viral and bacterial receptors are known to synergize to produce the increased inflammation required to support autoimmune disease pathology. Additional studies demonstrate that anti-bacterial antibodies are also required to account for known autoantigen targets in COVID-19 autoimmune complications.
Collapse
|
5
|
Moutsopoulos HM. In Memoriam: Pierre Youinou. Autoimmun Rev 2023; 22:103229. [PMID: 36332887 DOI: 10.1016/j.autrev.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res 2022; 220:35-47. [PMID: 36265412 PMCID: PMC9525243 DOI: 10.1016/j.thromres.2022.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hema Kothari
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
7
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
8
|
Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB. Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake. Toxicol Res (Camb) 2020; 9:493-508. [PMID: 32905138 DOI: 10.1093/toxres/tfaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats' stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2'-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Haitham H Abd
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Abdelsalam Abuzreda
- Department of Health, Safety and Environment (HSE), Arabian Gulf Oil Company (AGOCO), Benghazi, Libya
| | - Nadhom Assaf
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amenh B Yousif
- Department of Family and Community Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| |
Collapse
|
9
|
Patsouras M, Tsiki E, Karagianni P, Vlachoyiannopoulos PG. The role of thrombospondin-1 in the pathogenesis of antiphospholipid syndrome. J Autoimmun 2020; 115:102527. [PMID: 32709480 DOI: 10.1016/j.jaut.2020.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Antiphospholipid syndrome (APS) is an acquired thrombophilia characterized by recurrent thrombosis and/or pregnancy morbidity, in the presence of antibodies to β2 glycoprotein-I (β2GPI), prothrombin or Lupus anticoagulant (LA). Anti-β2GPI antibodies recognize complexes of β2GPI dimers with CXCL4 chemokine and activate platelets. Thrombospondin 1 (TSP-1) is secreted by platelets and exhibits prothrombotic and proinflammatory properties. Therefore, we investigated its implication in APS. METHODS Plasma from APS patients (n = 100), Systemic Lupus Erythematosus (SLE) (n = 27) and healthy donors (HD) (n = 50) was analyzed for TSP-1, IL-1β, IL-17A and free active TGF-β1 by ELISA. Human Umbilical Vein Endothelial Cells (HUVECs) and HD monocytes were treated with total HD-IgG or anti-β2GPI, β2GPI and CXCL4 and CD4+ T-cells were stimulated by monocyte supernatants. TSP-1, IL-1β, IL-17A TGF-β1 levels were quantified by ELISA and Real-Time PCR. RESULTS Higher plasma levels of TSP-1 and TGF-β1, which positively correlated each other, were observed in APS but not HDs or SLE patients. Patients with arterial thrombotic events or those undergoing a clinical event had the highest TSP-1 levels. These patients also had detectable IL-1β, IL-17A in their plasma. HD-derived monocytes and HUVECs stimulated with anti-β2GPI-IgG-β2GPI-CXCL4 secreted the highest TSP-1 and IL-1β levels. Supernatants from anti-β2GPI-β2GPI-CXCL4 treated monocytes induced IL-17A expression from CD4+ T-cells. Transcript levels followed a similar pattern. CONCLUSIONS TSP-1 is probably implicated in the pathogenesis of APS. In vitro cell treatments along with high TSP-1 levels in plasma of APS patients suggest that high TSP-1 levels could mark a prothrombotic state and an underlying inflammatory process.
Collapse
Affiliation(s)
- M Patsouras
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - E Tsiki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Karagianni
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - P G Vlachoyiannopoulos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
10
|
Patsouras M, Karagianni P, Kogionou P, Vlachoyiannopoulos P. Differential CpG methylation of the promoter of interleukin 8 and the first intron of tissue factor in Antiphospholipid syndrome. J Autoimmun 2019; 102:159-166. [DOI: 10.1016/j.jaut.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
11
|
News and meta-analysis regarding anti-Beta 2 glycoprotein I antibodies and their determination. Clin Immunol 2019; 205:106-115. [DOI: 10.1016/j.clim.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
|
12
|
Velásquez M, Rojas M, Abrahams VM, Escudero C, Cadavid ÁP. Mechanisms of Endothelial Dysfunction in Antiphospholipid Syndrome: Association With Clinical Manifestations. Front Physiol 2018; 9:1840. [PMID: 30627104 PMCID: PMC6309735 DOI: 10.3389/fphys.2018.01840] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The endothelium is a monolayer of cells that covers the inner surface of blood vessels and its integrity is essential for the maintenance of vascular health. Endothelial dysfunction is a key pathological component of antiphospholipid syndrome (APS). Its systemic complications include thrombotic endocarditis, valvular dysfunction, cerebrovascular occlusions, proliferative nephritis, deep vein thrombosis, and pulmonary embolism. In women, APS is also associated with pregnancy complications (obstetric APS). The conventional treatment regimens for APS are ineffective when the clinical symptoms are severe. Therefore, a better understanding of alterations in the endothelium caused by antiphospholipid antibodies (aPL) may lead to more effective therapies in patients with elevated aPL titers and severe clinical symptoms. Currently, while in vivo analyses of endothelial dysfunction in patients with APS have been reported, most research has been performed using in vitro models with endothelial cells exposed to either patient serum/plasma, monoclonal aPL, or IgGs isolated from patients with APS. These studies have described a reduction in endothelial cell nitric oxide synthesis, the induction of inflammatory and procoagulant phenotypes, an increase in endothelial proliferation, and impairments in vascular remodeling and angiogenesis. Despite these lines of evidence, further research is required to better understand the pathophysiology of endothelial dysfunction in patients with APS. In this review, we have compared the current understanding about the mechanisms of endothelial dysfunction induced by patient-derived aPL under the two main clinical manifestations of APS: thrombosis and gestational complications, either alone or in combination. We also discuss gaps in our current knowledge regarding aPL-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Manuela Velásquez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Escuela de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Coordinador Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo, Chillan, Chile
| | - Ángela P Cadavid
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Escuela de Medicina, Universidad de Antioquia, Medellín, Colombia.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo, Chillan, Chile
| |
Collapse
|
13
|
Schenkein HA, Thomas RR. Anticardiolipin (aCL) in sera from periodontitis subjects activate Toll-like receptor 4 (TLR4). PLoS One 2018; 13:e0203494. [PMID: 30192824 PMCID: PMC6128564 DOI: 10.1371/journal.pone.0203494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022] Open
Abstract
Anticardiolipin antibodies (aCL) have been reported to be present in 15–20% of sera from subjects with periodontitis at concentrations exceeding those found in 95% of the healthy adult population. These antibodies, albeit at concentrations exceeding those generally found in periodontitis subjects, are typically present in patients with the antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. aCL from APS patients are proinflammatory and can activate trophoblasts, macrophages, and platelets via cell-surface interactions with their target antigen beta-2-glycoprotein-I (β2GPI). β2GPI is an anionic phospholipid-binding serum protein that can associate with toll-like receptors (TLR’s) on the cell-surface, leading to cell activation following interaction with autoimmune aCL. We examined an expanded series of 629 sera from clinically characterized subjects for aCL content, and observed that 14–19% of these sera contained elevated (>95th %-tile) levels of aCL. We purified IgG from 16 subjects with elevated or normal levels of aCL and examined their ability to activate TLR2- or TLR4-transfected human embryonic kidney (HEK) cells, and observed that IgG from periodontitis patients with elevated aCL activated HEK-TLR4 cells, but not HEK-TLR2 cells. Prior removal of aCL by immunoabsorption significantly reduced the ability of IgG preparations from these sera to activate TLR4. Further experiments using a human first trimester trophoblastic cell line (HTR8 sv/neo) revealed that aCL from periodontitis patients stimulated IL-8 production, which was profoundly decreased if aCL was removed by immunoabsorption or if HTR8 sv/neo were pretreated with blocking anti-TLR4 antibodies. Thus, it appears that aCL from periodontitis patients can be proinflammatory, activating cells via TLR4. Since these antibodies are likely produced via molecular mimicry due to similarities between oral bacterial antigens and β2GPI, the data indicate that circulating serum aCL may induce or influence inflammatory responses at sites distant from the oral cavity.
Collapse
Affiliation(s)
- Harvey A. Schenkein
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, United States of America
- * E-mail:
| | - Ravindar R. Thomas
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, United States of America
| |
Collapse
|
14
|
Guo D, Zhou F, Chen D, Xie H, Wang T, Wang H, Xu G, Wen H, Hong Z. Involvement of IRAKs and TRAFs in anti-β2GPI/β2GPI-induced tissue factor expression in THP-1 cells. Thromb Haemost 2017; 106:1158-69. [DOI: 10.1160/th11-04-0229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/25/2011] [Indexed: 01/05/2023]
Abstract
SummaryOur previous study has shown that Toll-like receptor 4 (TLR4) and its signalling pathway contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI)-induced tissue factor (TF) expression in human acute monocytic leukaemia cell line THP-1 and annexin A2 (ANX2) is involved in this pathway. However, its downstream molecules have not been well explored. In this study, we have established that interleukin-1 receptor-associated kinases (IRAKs) and tumour necrosis factor receptor-associated factors (TRAFs) are crucial downstream molecules of anti-β2GPI/β2GPI-induced TLR4 signaling pathway in THP-1 cells and explored the potential mechanisms of their self-regulation. Treatment of THP-1 cells with anti-β2GPI/β2GPI complex induced IRAKs and TRAFs expression and activation. Anti-β2GPI/β2GPI complex firstly induced expression of IRAK4 and IRAK1, then IRAK1 phosphorylation and last IRAK3 upregulation. In addition, anti-β2GPI/β2GPI complex simultaneously and acutely enhanced mRNA levels of TRAF6, TRAF4 and zinc finger protein A20 (A20), while chronically increased A20 protein level. Moreover, anti-β2GPI/β2GPI complex-induced IRAKs and TRAFs expression and activation were attenuated by knockdown of ANX2 by infection with ANX2-specific RNA interference lentiviruses (LV-RNAi-ANX2) or by treatment with paclitaxel, which inhibits TLR4 as an antagonist of myeloid differentiation protein 2 (MD-2) ligand. Furthermore, both IRAK1/4 inhibitor and a specific proteasome inhibitor MG-132 could attenuate TRAFs expression as well as TF expression induced by anti-β2GPI/β2GPI complex. In conclusion, our results indicate that IRAKs and TRAFs play important roles in anti-β2GPI/β2GPI-stimulated TLR4/TF signaling pathway in THP-1 cells and contribute to the pathological processes of antiphospholipid syndrome (APS).
Collapse
|
15
|
Activation of mTOR is involved in anti-β 2 GPI/β 2 GPI-induced expression of tissue factor and IL-8 in monocytes. Thromb Res 2017; 157:103-110. [DOI: 10.1016/j.thromres.2017.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
16
|
Murgueitio MS, Ebner S, Hörtnagl P, Rakers C, Bruckner R, Henneke P, Wolber G, Santos-Sierra S. Enhanced immunostimulatory activity of in silico discovered agonists of Toll-like receptor 2 (TLR2). Biochim Biophys Acta Gen Subj 2017; 1861:2680-2689. [PMID: 28734965 DOI: 10.1016/j.bbagen.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Emergent therapies in anticancer vaccination use Toll-like receptors (TLRs) agonists as dendritic cell (DC) vaccine adjuvants. DCs from the patient are isolated, stimulated with TLR agonists and tumor antigens ex vivo and then infused back into the patient. Although some TLR ligands have been tested in clinical trials, novel TLR agonists with improved immunomodulatory properties are essential to optimize treatment success. We report on the discovery of small-molecule TLR2 agonists, with favorable properties as synthetic adjuvants. METHODS We performed a shape- and featured-based similarity virtual screening against a commercially available compound library. The selected virtual hits were experimentally tested in TLR2-reporter cells and their activity in phagocytes and DCs was characterized. A binding model of the compounds to TLR2 (docking studies) was proposed. RESULTS Through a virtual screening approach against a library of three million compounds four virtual hits (AG1, AG2, AG3, AG4) were found to synergistically augment the NF-kB activation induced by the lipopeptide ligand Pam3CSK4 in luciferase reporter assays using HEK293-TLR2 cells. Biacore experiments indicated that AG1-AG4 are ago-allosteric modulators of TLR2 and AG2 bound TLR2 with high affinity (KD 0.8μM). The compounds induced TNF-α production in human peripheral blood mononuclear cells (PBMCs) and they activated DCs as indicated by IL-12 production and upregulation of CD83/CD86. CONCLUSIONS Following a combined in silico/in vitro approach we have discovered TLR2-agonists (AG1-AG4) that activate human and mouse immune cells. GENERAL SIGNIFICANCE We introduce four novel TLR2 ago-allosteric modulators that stimulate myeloid cell activity and constitute promising candidates as synthetic adjuvants.
Collapse
Affiliation(s)
- M S Murgueitio
- Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2-4, 14195 Berlin, Germany
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University Innsbruck, Innrain 66, 6020 Innsbruck, Austria
| | - P Hörtnagl
- Central Institute of Blood Transfusion and Immunology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - C Rakers
- Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2-4, 14195 Berlin, Germany
| | - R Bruckner
- Section of Biochemical Pharmacology, Medical University Innsbruck, Peter Mayr Str.1, 6020 Innsbruck, Austria
| | - P Henneke
- Center for Chronic Immunodeficiency (CCI) and Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, 79106 Freiburg, Germany
| | - G Wolber
- Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2-4, 14195 Berlin, Germany
| | - S Santos-Sierra
- Section of Biochemical Pharmacology, Medical University Innsbruck, Peter Mayr Str.1, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Bai A. β2-glycoprotein I and its antibodies involve in the pathogenesis of the antiphospholipid syndrome. Immunol Lett 2017; 186:15-19. [DOI: 10.1016/j.imlet.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
18
|
Abstract
Antiphospholipid syndrome (APS), also known as Hughes Syndrome, is a systemic autoimmune disease characterized by thrombosis and/or pregnancy morbidity in the presence of persistently positive antiphospholipid antibodies. A patient with APS must meet at least one of two clinical criteria (vascular thrombosis or complications of pregnancy) and at least one of two laboratory criteria including the persistent presence of lupus anticoagulant (LA), anticardiolipin antibodies (aCL), and/or anti-b2 glycoprotein I (anti-b2GPI) antibodies of IgG or IgM isotype at medium to high titres in patient’s plasma. However, several other autoantibodies targeting other coagulation cascade proteins (i.e. prothrombin) or their complex with phospholipids (i.e. phosphatidylserine/prothrombin complex), or to some domains of β2GPI, have been proposed to be also relevant to APS. In fact, the value of testing for new aPL specificities in the identification of APS in thrombosis and/or pregnancy morbidity patients is currently being investigated.
Collapse
Affiliation(s)
- Maria Laura Bertolaccini
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, London, UK
| | - Giovanni Sanna
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Chiu WC, Chiou TJ, Chung MJ, Chiang AN. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase. PLoS One 2016; 11:e0161950. [PMID: 27579889 PMCID: PMC5006999 DOI: 10.1371/journal.pone.0161950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Wen-Chin Chiu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Chung
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res 2016; 108:46-56. [PMID: 27073018 DOI: 10.1016/j.phrs.2016.03.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022]
Abstract
Endothelial cells (EC) are able to actively control vascular permeability, coagulation, blood pressure and angiogenesis. Most recently, a role for endothelial cells in the immune response has been described. Therefore, the endothelium has a dual role controlling homeostasis but also being the first line for host defence and tissue damage repair thanks to its ability to mount an inflammatory response. Endothelial cells have been shown to express pattern-recognition receptors (PRR) including Toll-like receptors (TLR) that are activated in response to stimuli within the bloodstream including pathogens and damage signals. TLRs are strategic mediators of the immune response in endothelial cells but they also regulate the angiogenic process critical for tissue repair. Nevertheless, endothelial activation and angiogenesis can contribute to some pathologies. Thus, inappropriate endothelial activation, also known as endothelial dysfunction, through TLRs contributes to tissue damage during autoimmune and inflammatory diseases such as atherosclerosis, hypertension, ischemia and diabetes associated cardiovascular diseases. Also TLR induced angiogenesis is required for the growth of some tumors, atherosclerosis and rheumatoid arthritis, among others. In this review we discuss the importance of various TLRs in modulating the activation of endothelial cells and their importance in immunity to infection and vascular disease as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Alicia Arranz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Sara Francisco
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Laura Córdoba
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | - Carmen Punzón
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | | | - Manuel Fresno
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Otomo K, Amengual O, Fujieda Y, Nakagawa H, Kato M, Oku K, Horita T, Yasuda S, Matsumoto M, Nakayama KI, Hatakeyama S, Koike T, Atsumi T. Role of apolipoprotein B100 and oxidized low-density lipoprotein in the monocyte tissue factor induction mediated by anti-β2 glycoprotein I antibodies. Lupus 2016; 25:1288-98. [PMID: 26964561 DOI: 10.1177/0961203316638165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The objective of this paper is to elucidate the not yet known plasma molecule candidates involved in the induction of tissue factor (TF) expression mediated by β2GPI-dependent anticardiolipin antibody (aCL/β2GPI) on monocytes. METHODS Human serum incubated with FLAG-β2GPI was applied for affinity chromatography with anti- FLAG antibody. Immunopurified proteins were analyzed by a liquid chromatography coupled with mass spectrometry (LC-MS). TF mRNA induced by the identified molecules on monocytes was also analyzed. RESULTS Apolipoprotein B100 (APOB) was the only identified serum molecule in the MS search. Oxidized LDL, containing APOB as well as ox-Lig1 (a known ligand of β2GPI), was revealed as a β2GPI-binding molecule in the immunoprecipitation assay. TF mRNA was markedly induced by oxidized LDL/β2GPI complexes with either WBCAL-1 (monoclonal aCL/β2GPI) or purified IgG from APS patients. The activities of lipoprotein-associated phospholipase A2, one of the component molecules of oxidized LDL, were significantly higher in serum from APS patients than in those from controls. CONCLUSION APOB (or oxidized LDL) was detected as a major β2GPI binding serum molecule by LC-MS search. Oxidized LDL/aCL/β2GPI complexes significantly induced TF expressions on monocytes. These data suggest that complexes of oxidized LDL and aCL/β2GPI may have a crucial role in the pathophysiology of APS.
Collapse
Affiliation(s)
- K Otomo
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - O Amengual
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Y Fujieda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Nakagawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Kato
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - K Oku
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Horita
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Yasuda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Matsumoto
- Division of Proteomics, Multi-scale Research Center for Prevention of Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - K I Nakayama
- Division of Proteomics, Multi-scale Research Center for Prevention of Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - S Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Koike
- Sapporo Medical Center NTT EC, Sapporo, Japan
| | - T Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Terrisse AD, Laurent PA, Garcia C, Gratacap MP, Vanhaesebroeck B, Sié P, Payrastre B. The class I phosphoinositide 3-kinases α and β control antiphospholipid antibodies-induced platelet activation. Thromb Haemost 2016; 115:1138-46. [PMID: 26818901 DOI: 10.1160/th15-08-0661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterised by the presence of antiphospholipid antibodies (aPL) associated with increased thrombotic risk and pregnancy morbidity. Although aPL are heterogeneous auto-antibodies, the major pathogenic target is the plasma protein β2-glycoprotein 1. The molecular mechanisms of platelet activation by aPL remain poorly understood. Here, we explored the role of the class IA phosphoinositide 3-kinase (PI3K) α and β isoforms in platelet activation by aPL. Compared to control IgG from healthy individuals, the IgG fraction isolated from patients with APS potentiates platelet aggregation induced by low dose of thrombin in vitro and increases platelet adhesion and thrombus growth on a collagen matrix under arterial shear rate through a mechanism involving glycoprotein Ib (GPIb) and Toll Like Receptor 2 (TLR-2). Using isoforms-selective pharmacological PI3K inhibitors and mice with megakaryocyte/platelet lineage-specific inactivation of class IA PI3K isoforms, we demonstrate a critical role of the PI3Kβ and PI3Kα isoforms in platelet activation induced by aPL. Our data show that aPL potentiate platelet activation through GPIbα and TLR-2 via a mechanism involving the class IA PI3Kα and β isoforms, which represent new potential therapeutic targets in the prevention or treatment of thrombotic events in patients with APS.
Collapse
Affiliation(s)
- Anne-Dominique Terrisse
- Anne-Dominique Terrisse, Inserm U1048, I2MC, 1 Avenue Jean Poulhés, BP 84225, 31432 Toulouse Cedex 04, France, Tel.: +33 5 3122 4150, Fax: +33 5 6132 5621, E-mail:
| | | | | | | | | | | | | |
Collapse
|
23
|
Laplante P, Fuentes R, Salem D, Subang R, Gillis MA, Hachem A, Farhat N, Qureshi ST, Fletcher CA, Roubey RAS, Merhi Y, Thorin É, Levine JS, Mackman N, Rauch J. Antiphospholipid antibody-mediated effects in an arterial model of thrombosis are dependent on Toll-like receptor 4. Lupus 2015; 25:162-76. [PMID: 26391610 DOI: 10.1177/0961203315603146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022]
Abstract
Patients with antiphospholipid syndrome (APS) produce antiphospholipid antibodies (aPL) and develop vascular thrombosis that may occur in large or small vessels in the arterial or venous beds. On the other hand, many individuals produce aPL and yet never develop thrombotic events. Toll-like receptor 4 (TLR4) appears to be necessary for aPL-mediated prothrombotic effects in venous and microvascular models of thrombosis, but its role in arterial thrombosis has not been studied. Here, we propose that aPL alone are insufficient to cause thrombotic events in an arterial model of APS, and that a concomitant trigger of innate immunity (e.g. TLR4 activation) is required. We show specifically that anti-β2-glycoprotein I (anti-β2GPI) antibodies, a subset of aPL, accelerated thrombus formation in C57BL/6 wild-type, but not TLR4-deficient, mice in a ferric chloride-induced carotid artery injury model. These aPL bound to arterial and venous endothelial cells, particularly in the presence of β2GPI, and to human TLR4 by enzyme-linked immunoassay. Arterial endothelium from aPL-treated mice had enhanced leukocyte adhesion, compared to control IgG-treated mice. In addition, aPL treatment of mice enhanced expression of tissue factor (TF) in leukocytes induced by the TLR4 ligand lipopolysaccharide (LPS). aPL also enhanced LPS-induced TF expression in human leukocytes in vitro. Our findings support a mechanism in which aPL enhance TF expression by leukocytes, as well as augment adhesion of leukocytes to the arterial endothelium. The activation of TLR4 in aPL-positive individuals may be required to trigger thrombotic events.
Collapse
Affiliation(s)
- P Laplante
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada Current affiliation: Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montreal, Quebec, Canada
| | - R Fuentes
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Current affiliation: Cato Research Ltd., Durham, NC
| | - D Salem
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - R Subang
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - M-A Gillis
- Montreal Heart Institute, Université de Montréal, Montreal Heart Institute, Montreal, Quebec, Canada
| | - A Hachem
- Montreal Heart Institute, Université de Montréal, Montreal Heart Institute, Montreal, Quebec, Canada
| | - N Farhat
- Montreal Heart Institute, Université de Montréal, Montreal Heart Institute, Montreal, Quebec, Canada Current affiliation: Pharsight, a Certara™ Company, Montreal, Quebec, Canada
| | - S T Qureshi
- Department of Critical Care and Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - C A Fletcher
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R A S Roubey
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine and Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y Merhi
- Montreal Heart Institute, Université de Montréal, Montreal Heart Institute, Montreal, Quebec, Canada
| | - É Thorin
- Montreal Heart Institute, Université de Montréal, Montreal Heart Institute, Montreal, Quebec, Canada
| | - J S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, and Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - N Mackman
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Rauch
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Varela C, de Haro J, Bleda S, Rodriguez-Padilla J, Ferruelo A, Acín F. Circulating anti-β2-glycoprotein I antibodies of peripheral arterial disease patients trigger a genomic overexpression of Toll-like receptor 4 in endothelial cells. J Vasc Surg 2015; 61:1041-9.e1. [PMID: 24472415 DOI: 10.1016/j.jvs.2013.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/25/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Circulating anti-β2-glycoprotein I (ABGPI) antibodies are associated with peripheral arterial disease (PAD) and induce the expression of leukocyte adhesion molecules and proinflammatory cytokines by endothelial cells. Our aim is to study a transcriptional activation pathway of the innate immune system through the cellular signalling cascade triggered by receptors Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) of endothelial cells after the exposure of these cells to seropositive ABGPI human serum obtained from PAD patients. METHODS We obtained serum samples from PAD patients and controls without PAD. ABGPI serum titer was detected using indirect immunofluorescence. Our sample was stratified into three groups: group I (PAD and ABGPI titer ≥1:100; n = 15), group II (PAD and ABGPI titer <1:100; n = 15), and control participants (no PAD; n = 15). All serum samples were incubated with human aortic endothelial cell (HAEC) culture. Genomic expression of TLR2 and TLR4 receptors and their shared intracellular signalling molecules, myeloid differentiation primary response gene 88 (MyD88), and interleukin (IL)-1 receptor-associated kinase (1IRAK1), were measured after the exposure of HAECs to each serum. RESULTS HAEC genomic expression of TLR4 was higher after the exposure to group I serum than after the exposure to group II serum (log10×10-relative quantification [RQ]: 1.80 ± 0.42 vs 1.37 ± 0.39; P = .01) or control serum (log10×10-RQ: 1.80 ± 0.42 vs 1.09 ± 0.26; P < .01). TLR4 expression was higher in group II than in the control group (log10×10-RQ: 1.37 ± 0.39 vs 1.09 ± 0.26; P = .04). TLR4 expression correlated with MyD88 (r = 0.54; P < .01) and IRAK1 (r = 0.55; P < .01) expression. We recorded a positive correlation between MyD88 and IRAK1 genomic expression (r = 0.58; P < .01). CONCLUSIONS Our results suggest that serum from PAD patients with elevated ABGPI antibodies induces a genomic overexpression of TLR4 and its cellular signalling molecules in endothelial cells.
Collapse
Affiliation(s)
- Cesar Varela
- Department of Angiology and Vascular Surgery, Hospital Universitario de Getafe, Madrid, Spain.
| | - Joaquin de Haro
- Department of Angiology and Vascular Surgery, Hospital Universitario de Getafe, Madrid, Spain
| | - Silvia Bleda
- Department of Angiology and Vascular Surgery, Hospital Universitario de Getafe, Madrid, Spain
| | | | - Antonio Ferruelo
- Department of Research, Hospital Universitario de Getafe, Madrid, Spain
| | - Francisco Acín
- Department of Angiology and Vascular Surgery, Hospital Universitario de Getafe, Madrid, Spain
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent thrombosis and/or obstetrical morbidity in the presence of persistently positive antiphospholipid antibodies. Recent insights into the pathogenesis of APS have begun to elucidate pathophysiology and led to the identification of potential therapeutic interventions. The objective of this review is to examine the advances in this field and highlight the areas of further investigation. RECENT FINDINGS Several mechanisms of thrombosis and pregnancy loss in APS have been proposed. These include activation of endothelial cells, monocytes, and platelets, and/or inhibition of natural anticoagulant and fibrinolytic systems by antiphospholipid antibodies. However, in many cases the underlying molecular mechanisms and their relevance to the human disorder remain uncertain. New therapeutic agents such as statins, hydroxychloroquine, rituximab, complement inhibitors, and interventions aimed at disruption of intracellular signaling pathways have shown promise in preclinical and clinical studies. SUMMARY Indefinite anticoagulation remains the mainstay of treatment for thrombotic APS. Despite advances in diagnostic techniques, it remains difficult to predict thrombotic risk in asymptomatic patients with antiphospholipid antibodies. Further mechanistic and clinical studies are needed to predict thrombotic risk and develop improved therapies for this devastating illness.
Collapse
|
26
|
Cañas F, Simonin L, Couturaud F, Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res 2014; 135:226-30. [PMID: 25533130 DOI: 10.1016/j.thromres.2014.11.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 01/20/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by arterial, venous or small-vessel thrombotic events, and recurrent miscarriages or fetal loss. APS diagnosis is based on the repeated detection of anti-phospholipid (PL) antibodies (Ab), typically associated with anti-β2 glycoprotein I (β2GPI)-Ab. Recent studies suggest that anti-β2GPI Ab activity involves a protein complex including β2GPI and annexin A2 (ANXA2). Anti-ANXA2 Ab recognizes this complex, and these Ab can effectively promote thrombosis by inhibiting plasmin generation, and by activating endothelial cells. Therefore, anti-ANXA2 Ab represent a new biomarker, which can be detected in up to 25% of APS patients. Moreover, anti-ANXA2 Ab have been detected, in thrombotic associated diseases including pre-eclampsia, in other autoimmune diseases, and in cancer.
Collapse
Affiliation(s)
- Felipe Cañas
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences Universidad del Rosario, Bogotá, Colombia
| | - Laurent Simonin
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France; Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Francis Couturaud
- Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Yves Renaudineau
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France.
| |
Collapse
|
27
|
Kaiser R, Tang LF, Taylor KE, Sterba K, Nititham J, Brown EE, Edberg JC, McGwin G, Alarcón GS, Ramsey-Goldman R, Reveille JD, Vilá LM, Petri M, Rauch J, Miller E, Mesznik K, Kwok PY, Kimberly RP, Salmon JE, Criswell LA. A polymorphism in TLR2 is associated with arterial thrombosis in a multiethnic population of patients with systemic lupus erythematosus. Arthritis Rheumatol 2014; 66:1882-7. [PMID: 24578102 PMCID: PMC4269184 DOI: 10.1002/art.38520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/18/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Thrombosis is a serious complication of systemic lupus erythematosus (SLE). Studies that have investigated the genetics of thrombosis in SLE are limited. We undertook this study to assess the association of previously implicated candidate genes, particularly Toll-like receptor (TLR) genes, with pathogenesis of thrombosis. METHODS We genotyped 3,587 SLE patients from 3 multiethnic populations for 77 single-nucleotide polymorphisms (SNPs) in 10 genes, primarily in TLRs 2, 4, 7, and 9, and we also genotyped 64 ancestry-informative markers (AIMs). We first analyzed association with arterial and venous thrombosis in the combined population via logistic regression, adjusting for top principal components of the AIMs and other covariates. We also subjected an associated SNP, rs893629, to meta-analysis (after stratification by ethnicity and study population) to confirm the association and to test for study population or ethnicity effects. RESULTS In the combined analysis, the SNP rs893629 in the KIAA0922/TLR2 region was significantly associated with arterial thrombosis (logistic P = 6.4 × 10(-5) , false discovery rate P = 0.0044). Two additional SNPs in TLR2 were also suggestive: rs1816702 (logistic P = 0.002) and rs4235232 (logistic P = 0.009). In the meta-analysis by study population, the odds ratio (OR) for arterial thrombosis with rs893629 was 2.44 (95% confidence interval 1.58-3.76), without evidence for heterogeneity (P = 0.78). By ethnicity, the effect was most significant among African Americans (OR 2.42, P = 3.5 × 10(-4) ) and European Americans (OR 3.47, P = 0.024). CONCLUSION TLR2 gene variation is associated with thrombosis in SLE, particularly among African Americans and European Americans. There was no evidence of association among Hispanics, and results in Asian Americans were limited due to insufficient sample size. These results may help elucidate the pathogenesis of this important clinical manifestation.
Collapse
|
28
|
Liu J, He C, Zhou H, Xu Y, Zhang X, Yan J, Xie H, Cheng S. Effects of TLR4 on β2-glycoprotein I-induced bone marrow-derived dendritic cells maturation. Cell Immunol 2014; 290:226-32. [PMID: 25108557 DOI: 10.1016/j.cellimm.2014.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Our previous study has demonstrated that Toll-like receptor 4 (TLR4) can contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI)-induced tissue factor (TF) expression in human acute monocytic leukemia cell line THP-1. However, the role of TLR4 in the activation of autoimmune response in antiphospholipid syndrome (APS) has rarely been reported. In this study, we focused on the role of TLR4 in β2GPI-induced maturation of bone marrow-derived dendritic cells (BMDCs). iDCs from C3H/HeN mice stimulated with β2GPI were more mature than that from C3H/HeJ mice, yields of CD11c(+)MHCII(+)DCs, CD11c(+)CD80(+)DCs and CD11c(+)CD86(+)DCs and production of some pro-inflammatory cytokines in iDCs from C3H/HeN were higher than those from C3H/HeJ (p<0.05). Moreover, the ability of β2GPI-treated iDCs from C3H/HeJ to stimulate proliferation of allogeneic mixed lymphocytes was lower than that of iDCs from C3H/HeN. In conclusion, our results indicate that TLR4 may play a significant role in β2-glycoprotein I-induced BMDCs maturation.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Ya Xu
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaolei Zhang
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Hongxiang Xie
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Si Cheng
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
29
|
oxLDL/β2GPI/anti-β2GPI complex induced macrophage differentiation to foam cell involving TLR4/NF-kappa B signal transduction pathway. Thromb Res 2014; 134:384-92. [PMID: 24882274 DOI: 10.1016/j.thromres.2014.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/11/2014] [Accepted: 05/08/2014] [Indexed: 01/12/2023]
Abstract
Macrophage-derived foam cell formation is a hallmark of atherosclerosis. It has been reported that oxidized low density lipoprotein (oxLDL) inducing formation of foam cells and expression of inflammatory molecules are partly mediated by toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway. However, whether oxLDL/β2-glycoprotein I/anti-β2-glycoprotein I (oxLDL/β2GPI/anti-β2GPI) complex enhanced formation of foam cells involving TLR4/NF-κB pathway or not has never been explored. In the current study, we focused on investigating the transformation of peritoneal macrophages from BALB/c mice into foam cells induced by the three complexes, and the involvement of TLR4 as well as its downstream signal molecule NF-κB. The results showed that treatment of macrophages with oxLDL/β2GPI/anti-β2GPI complex could markedly increase intracellular lipid loading and expression of TLR4, phosphorylated NF-κB p65 (p-NF-κB p65), monocyte chemoattractant protein-1 (MCP-1), as well as tissue factor (TF). The oxLDL and oxLDL/β2GPI/anti-β2GPI complex induced formation of foam cells and expression of p-NF-κB p65 were significantly reduced, while macrophages were pre-treated with TLR4 inhibitor TAK-242. Meanwhile, both TAK-242 and NF-κB inhibitor PDTC could remarkably inhibit oxLDL, oxLDL/β2GPI/anti-β2GPI complex, as well as LPS increased MCP-1 and TF levels. Nevertheless, β2GPI/anti-β2GPI complex-induced MCP-1 and TF mRNA expression were inhibited by TAK-242 rather than PDTC, although TF activity was significantly reduced by both of the inhibitors. In conclusion, our results indicate that oxLDL/β2GPI/anti-β2GPI complex could enhance the conversion of macrophages into foam cells and the process may be at least partly mediated by TLR4/NF-κB pathway, which may contribute to the accelerated development of atherosclerosis in APS.
Collapse
|
30
|
Brandt KJ, Fickentscher C, Boehlen F, Kruithof EKO, de Moerloose P. NF-κB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost 2014; 12:779-91. [PMID: 24612386 DOI: 10.1111/jth.12536] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The antiphospholipid antibody syndrome (APS) is an autoimmune disease associated with arterial or venous thrombosis and/or recurrent fetal loss and is caused by pathogenic antiphospholipid antibodies (aPLA). We recently demonstrated that Toll-like receptor 2 (TLR2) and CD14 contribute to monocyte activation of aPLA. OBJECTIVE To study the mechanisms of cell activation by aPLA, leading to pro-coagulant and pro-inflammatory responses. METHODS AND RESULTS For this study, we used purified antibodies from the plasmas of 10 different patients with APS and healthy donors. We demonstrate that aPLA, but not control IgG, co-localizes with TLR2 and TLR1 or TLR6 on human monocytes. Blocking antibodies to TLR2, TLR1 or TLR6, but not to TLR4, decreased TNF and tissue factor (TF) responses to aPLA. Pharmacological and siRNA approaches revealed the importance of the clathrin/dynamin-dependent endocytic pathway in cell activation by aPLA. In addition, soluble aPLA induced NF-κB activation, while bead-immobilized aPLA beads, which cannot be internalized, were unable to activate NF-κB. Internalization of aPLA in monocytes and NF-κB activation were dependent on the presence of CD14. CONCLUSION We show that TLR2 and its co-receptors, TLR1 and TLR6, contribute to the pathogenicity of aPLA, that aPLA are internalized via clathrin- and CD14-dependent endocytosis and that endocytosis is required for NF-κB activation. Our results contribute to a better understanding of the APS and provide a possible therapeutic approach.
Collapse
Affiliation(s)
- K J Brandt
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Kong X, Sun J, Cui M, Xu D. The serum from dialysis patients with acute coronary syndrome up-regulates the expression of TLR2 and its downstream effectors in human renal glomerular endothelial cells. Ren Fail 2014; 36:785-9. [PMID: 24524679 DOI: 10.3109/0886022x.2014.886466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study was to investigate the expression of toll-like receptor 2 and its downstream effectors in endothelial cells in response to the serum from maintenance hemodialysis (MHD) patients with acute coronary syndrome (ACS). METHODS Human renal glomerular endothelial cells (HRGEC) were treated in vitro with serum from the healthy subjects (control group), the MHD patients with stable angina pectoris (SAP group), or the MHD patients with ACS (ACS group). The cells in ACS group were cultured in the presence or absence of TLR2 signaling blockers for 18 h. The mRNA level for TLR2, nuclear factor-κB (NF-κB), interleukin-6 (IL-6) and vascular cell adhesion molecule-1 (VCAM-1) were examined by real-time qPCR, the localization of TLR2 was detected by immunocytochemistry, and the secretion of IL-6 and VCAM-1 were measured by enzyme-linked immunosorbent assay. RESULTS The mRNA level of TLR2, NF-κB and IL-6 were statistically higher in the ACS group when compared with those in SAP group and healthy controls (p < 0.05), but not significantly different between SAP and healthy controls. The secretion of IL-6 in ACS group was increased when compared with SAP group and control subjects (p < 0.05). When the HRGEC were cultured with the anti-TLR2 antibodies, the expression of NF-κB, IL-6 and VCAM-1 mRNA as well as the secretion of IL-6 and VCAM-1 were significantly inhibited (p < 0.05). CONCLUSION This study revealed that the TLR2 signaling may mediate pro-inflammatory response in the MHD patients occurring with ACS.
Collapse
Affiliation(s)
- Xianglei Kong
- Department of Nephrology, Qianfoshan Hospital, Shandong University , Jinan , PR China and
| | | | | | | |
Collapse
|
32
|
Fischer S, Agmon-Levin N, Shapira Y, Porat Katz BS, Graell E, Cervera R, Stojanovich L, Gómez Puerta JA, Sanmartí R, Shoenfeld Y. Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res 2014; 56:287-92. [PMID: 23553228 DOI: 10.1007/s12026-013-8402-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Parasitic infections may induce variable immunomodulatory effects and control of autoimmune disease. Toxoplasma gondii (T. gondii) is a ubiquitous intracellular protozoan that was recently associated with autoimmunity. This study was undertaken to investigate the seroprevalence and clinical correlation of anti-T. gondii antibodies in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We evaluated sera from European patients with RA (n = 125) and SLE (n = 164) for the prevalence of anti-T. gondii IgG antibodies (ATXAb), as well as other common infections such as Cytomegalovirus, Epstein-Barr, and Rubella virus. The rates of seropositivity were determined utilizing the LIAISON chemiluminescent immunoassays (DiaSorin, Italy). Our results showed a higher seroprevalence of ATXAb in RA patients, as compared with SLE patients [63 vs. 36 %, respectively (p = 0.01)]. The rates of seropositivity of IgG against other infectious agents were comparable between RA and SLE patients. ATXAb-seropositivity was associated with older age of RA patients, although it did not correlate with RA disease activity and other manifestations of the disease. In conclusion, our data suggest a possible link between exposure to T. gondii infection and RA.
Collapse
Affiliation(s)
- Svetlana Fischer
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel HaShomer, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Toll-like receptors in antiviral innate immunity. J Mol Biol 2013; 426:1246-64. [PMID: 24316048 PMCID: PMC3943763 DOI: 10.1016/j.jmb.2013.11.024] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. TLRs are membrane-bound sensors that activate innate immune responses to viruses. TLRs recognize viral proteins on cell surface or viral nucleic acids in endosomes. TLRs employ distinct pathways to induce interferon (IFN) antiviral and/or inflammatory responses. Viruses have evolved elaborate tactics to circumvent TLR-mediated innate immunity. TLRs regulate viral pathogenesis and are amenable to therapeutic purposes.
Collapse
|
34
|
Circulating anti-beta2-glycoprotein I antibodies are associated with endothelial dysfunction, inflammation, and high nitrite plasma levels in patients with intermittent claudication. Int J Inflam 2013; 2013:268079. [PMID: 24222887 PMCID: PMC3810519 DOI: 10.1155/2013/268079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/02/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Our aim is to investigate a possible association of circulating anti-beta2-glycoprotein I antibodies (ABGPI) with the endothelial dysfunction, nitric oxide bioactivity dysregulation, and the inflammatory status that surrounds peripheral arterial disease. We carried out an observational translational study, including 50 male patients with intermittent claudication and a healthy control group of 10 male subjects, age and sex matched with the cases. Flow-mediated arterial dilatation (FMAD) was assessed as a surrogate of endothelial dysfunction, and C-reactive protein (hsCRP) was determined as a marker of inflammation. Nitrite plasma levels were measured by colorimetric analysis. Circulating ABGPI titer was detected with indirect immunofluorescence. Titers <1 : 10 represented the reference range and the lower detection limit of the test. Circulating ABGPI titer ≥1 : 10 was detected in 21 (42%) patients and in none of the control subjects (P < 0.01). Patients with ABGPI titer ≥1 : 10 had a lower FMAD (P = 0.01). The CRP levels were higher in patients with ABGPI titer ≥1 : 10 (P = 0.04). The nitrite plasma levels were higher in patients with ABGPI titer ≥1 : 10 (P < 0.01). These data suggest that these circulating ABGPI may collaborate in the development of atherosclerosis; however, further prospective studies are required to establish a causal relationship.
Collapse
|
35
|
Zhou H, Sheng L, Wang H, Xie H, Mu Y, Wang T, Yan J. Anti-β2GPI/β2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways. Thromb Res 2013; 132:742-9. [PMID: 24157085 DOI: 10.1016/j.thromres.2013.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Our previous study demonstrated that Toll-like receptor 4 (TLR4) could act as a co-receptor with annexin A2 (ANX2) mediating anti-β2-glycoprotein I/β2- glycoprotein I (anti-β2GPI/β2GPI) -induced tissue factor (TF) expression in human acute monocytic leukaemia cell line THP-1. In the current study, we further explored the roles of TLR4 and its adaptors, MD-2 and MyD88, as well as nuclear factor kappa B (NF-κB), in anti-β2GPI/β2GPI-induced the activation of THP-1 cells, especially on the expression of some proinflammatory molecules. The results showed that treatment of THP-1 cells with anti-β2GPI (10μg/ml)/β2GPI (100μg/ml) complex could increase IL-6 (interleukin-6), IL-8 (interleukin-8) as well as TNF-α (tumor necrosis factor alpha) expression (both mRNA and protein levels). These effects could be blocked by addition of TAK-242 (5μM), a blocker of signaling transduction mediated by the intracellular domain of TLR4, and also by NF-κB inhibitor PDTC (20μM). Overall, our results indicate that anti-β2GPI/β2GPI complex induced IL-6, IL-8 and TNF-α expression involving TLR4/MD-2/MyD88 and NF-κB signaling pathways and this might be associated with pathological mechanisms of antiphospholipid syndrome (APS).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. Br J Haematol 2013; 164:165-76. [PMID: 24180619 DOI: 10.1111/bjh.12587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongxiang Xie
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Liangju Sheng
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Hong Zhou
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Jinchuan Yan
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
| |
Collapse
|
37
|
Antiphospholipid antibodies internalised by human syncytiotrophoblast cause aberrant cell death and the release of necrotic trophoblast debris. J Autoimmun 2013; 47:45-57. [PMID: 24035196 DOI: 10.1016/j.jaut.2013.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
Abstract
Antiphospholipid antibodies (aPL) are the strongest maternal risk factor for pre-eclampsia, a hypertensive disease of human pregnancy. Pre-eclampsia is triggered by a toxic factor released from the placenta that activates the maternal endothelium. Antiphospholipid antibodies cause the release of necrotic trophoblast debris from the placental syncytiotrophoblast and this debris can activate endothelial cells. In this study, we investigated how aPL affects syncytiotrophoblast death and production of necrotic trophoblast debris by examining the interaction between aPL and human first trimester placental explants. Human polyclonal and murine monoclonal aPL, but not control antibodies, were rapidly internalised by the syncytiotrophoblast. Inhibitors of endocytosis or the low-density lipoprotein receptor (LDLR) family, but not toll-like receptors, decreased the internalisation of aPL and prevented the release of necrotic trophoblast debris from the syncytiotrophoblast. Once internalised, aPL increased inner mitochondrial membrane leak and Cytochrome c release while depressing oxidative flux through Complex IV of the electron transport system in syncytiotrophoblast mitochondria. These data suggest that the human syncytiotrophoblast internalises aPL by antigen-dependent endocytosis involving LDLR family members. Once internalised by the syncytiotrophoblast, aPL affects the death-regulating mitochondria, causing extrusion of necrotic trophoblast debris which can activate maternal endothelial cells thereby contributing to the pathogenesis of pre-eclampsia.
Collapse
|
38
|
Thromboses inhabituelles et syndrome catastrophique des antiphospholipides. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-013-0716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Du VX, Kelchtermans H, de Groot PG, de Laat B. From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: Pathogenic mechanisms of the antiphospholipid syndrome. Thromb Res 2013; 132:319-26. [DOI: 10.1016/j.thromres.2013.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
|
40
|
Brandt KJ, Kruithof EKO, de Moerloose P. Receptors involved in cell activation by antiphospholipid antibodies. Thromb Res 2013; 132:408-13. [PMID: 24054056 DOI: 10.1016/j.thromres.2013.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 02/08/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease associated with arterial or venous thrombosis and/or recurrent fetal loss and is caused by pathogenic antiphospholipid antibodies (aPLA). The plasma protein β2-glycoprotein 1 (β2GP1) has been identified as a major target of aPLA associated with APS. Cell activation by aPLA appears to be a major pathogenic cause in the pathogenesis of APS. Receptors, co-receptors and accessory molecules are known to assist the pathogenic effects of aPLA. Members of the TLR family and the platelet receptor apolipoprotein E receptor 2' (apoER2'), a receptor belonging to the low-density lipoprotein receptor (LDL-R) family, as well as GPIbα, were identified as putative candidates for aPLA recognition. CD14, a co-receptor for TLR2 and TLR4, and annexin A2, a ubiquitous Ca2+ -binding protein that is essential for actin-dependent vesicle transport, could serve as important accessory molecules in mediating the pathogenic effects of aPLA. Finally, complement activation has been reported in association with the pathogenicity of APS. The relative contribution of these different mechanisms in the pathogenesis of APS is controversial. Here, we review the various in vivo and in vitro models that have been used to investigate the pathogenic mechanisms of aPLA in APS.
Collapse
Affiliation(s)
- Karim J Brandt
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | | | | |
Collapse
|
41
|
van Bergenhenegouwen J, Plantinga TS, Joosten LAB, Netea MG, Folkerts G, Kraneveld AD, Garssen J, Vos AP. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 2013; 94:885-902. [PMID: 23990624 DOI: 10.1189/jlb.0113003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TLRs play a major role in microbe-host interactions and innate immunity. Of the 10 functional TLRs described in humans, TLR2 is unique in its requirement to form heterodimers with TLR1 or TLR6 for the initiation of signaling and cellular activation. The ligand specificity of TLR2 heterodimers has been studied extensively, using specific bacterial and synthetic lipoproteins to gain insight into the structure-function relationship, the minimal active motifs, and the critical dependence on TLR1 or TLR6 for activation. Different from that for specific well-defined TLR2 agonists, recognition of more complex ligands like intact microbes or molecules from endogenous origin requires TLR2 to interact with additional coreceptors. A breadth of data has been published on ligand-induced interactions of TLR2 with additional pattern recognition receptors such as CD14, scavenger receptors, integrins, and a range of other receptors, all of them important factors in TLR2 function. This review summarizes the roles of TLR2 in vivo and in specific immune cell types and integrates this information with a detailed review of our current understanding of the roles of specific coreceptors and ligands in regulating TLR2 functions. Understanding how these processes affect intracellular signaling and drive functional immune responses will lead to a better understanding of host-microbe interactions and will aid in the design of new agents to target TLR2 function in health and disease.
Collapse
|
42
|
Varela-Casariego C, de Haro-Miralles J, Bleda-Moreno S, Esparza-Gómez L, Ferruelo-Alonso A, Acín-García F. El suero de pacientes con enfermedad arterial periférica activa el sistema inmunitario innato a través de los receptores Toll-Like 4 de las células endoteliales. ANGIOLOGIA 2013. [DOI: 10.1016/j.angio.2013.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Xia L, Zhou H, Hu L, Xie H, Wang T, Xu Y, Liu J, Zhang X, Yan J. Both NF-κB and c-Jun/AP-1 involved in anti-β2GPI/β2GPI-induced tissue factor expression in monocytes. Thromb Haemost 2013; 109:643-51. [PMID: 23467542 DOI: 10.1160/th12-09-0655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/12/2013] [Indexed: 12/21/2022]
Abstract
Our previous data has demonstrated that Toll-like receptor 4 (TLR4) and its signalling pathway can contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI) -induced tissue factor (TF) expression in human blood monocytes and acute monocytic leukaemia cell line THP-1. However, its downstream nuclear transcription factors have not been well explored. In the current study, we further investigated whether nuclear factor kappa B (NF-κB) and activator protein (AP-1) were activated and their roles in anti-β2GPI/β2GPI complex stimulating TF expression. The results showed that treatment of the cells with anti-β2GPI (10μg/ml)/β2GPI (100 mg/ml) complex could markedly increase the levels of phosphorylated NF-κB (p-NF-κB p65) and c-Jun/AP-1 (p-c-Jun), as well as TF expression. Both NF-κB inhibitor PDTC (20 μM) and AP-1 inhibitor curcumin (25 mM) could attenuate TF expression induced by anti-β2GPI/β2GPI or APS-IgG/β2GPI complex. Combination of any two inhibitors of MAPKs (SB203580/U0126 or SB203580/SP600125 or U0126/SP600125) could decrease activation of NF-κB. SB203580/SP600125 or U0126/SP600125, but not SB203580/U0126, could reduce the phosphorylation of c-Jun/AP-1. Neither NF-κB nor c-Jun/AP-1 activation caused by anti-β2GPI/β2GPI complex could be affected by TLR4 inhibitor TAK-242. In conclusion, our results indicate that both NF-κB and c-Jun/AP-1 can be activated and play important roles in the process of anti-β2GPI/β2GPI-induced TF expression in monocytes, thereby contributing to the pathological processes of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Longfei Xia
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pope MR, Bukovnik U, Tomich JM, Fleming SD. Small β2-glycoprotein I peptides protect from intestinal ischemia reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2012; 189:5047-56. [PMID: 23034168 DOI: 10.4049/jimmunol.1200290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intestinal ischemic events, which are followed by reperfusion, induce significant tissue damage and frequently result in multiple organ failure, with >70% mortality. Upon reperfusion, excessive inflammation leads to exacerbated tissue damage. Previous studies indicated that binding of the serum protein, β2-glycoprotein I, to the endothelium initiates a cascade of inflammatory molecules that is required for damage. We hypothesized that peptides derived from the binding domain (domain V) of β2-glycoprotein I would attenuate ischemia/reperfusion-induced damage and inflammation in a therapeutic manner. Using a mouse model of intestinal ischemia/reperfusion, we administered peptides either prior to ischemia or at clinically relevant time points during reperfusion and evaluated intestinal tissue damage and inflammation after 2 h of reperfusion. We demonstrate that multiple peptides attenuate injury and inflammation in a dose-dependent manner and, perhaps more significantly, are efficacious when administered up to 30 min after the onset of reperfusion. In addition, an all D-amino acid retro-inverso peptide was biologically active. Thus, the β2-glycoprotein I-derived peptides attenuate injury and inflammation when administered in a therapeutic manner in intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Michael R Pope
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
45
|
Oku K, Amengual O, Atsumi T. Pathophysiology of thrombosis and pregnancy morbidity in the antiphospholipid syndrome. Eur J Clin Invest 2012; 42:1126-35. [PMID: 22784367 DOI: 10.1111/j.1365-2362.2012.02697.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In patients with the antiphospholipid syndrome (APS), the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes arteriovenous thrombosis and pregnancy complications. To date, the pathogenicity of the antiphospholipid antibodies has been the focus of analysis. Recently, the antibodies were reported to be capable of direct cell activation, and research on the underlying mechanism is ongoing. The antiphospholipid antibodies bind to the membranes of vascular endothelial cells, monocytes and platelets, provoking tissue factor expression and platelet aggregation. This activation functions as intracellular signalling, independent of the cell type, to activate p38MAPK and the transcription factor NFκB. Currently, there are multiple candidates for the membrane receptors of the antiphospholipid antibodies that are being tested for potential in specific therapy. Recently, APS was reported to have significant comorbidity with complement activation, and it was proposed that this results in placental damage and cell activation and, therefore, could be the primary factor for the onset of pregnancy complications and thrombosis. The detailed mechanism of complement activation remains unknown; however, an inflammation-inducing substance called anaphylatoxin, which appears during the activation process of the classical complement pathway, is thought to be a key molecule. Complement activation occurs in tandem, regardless of the pathology of APS or the type of antiphospholipid antibody, and it is thought that this completely new understanding of the mechanism will contribute greatly to comprehension of the pathology of APS.
Collapse
Affiliation(s)
- Kenji Oku
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
46
|
Zhou H, Chen D, Xie H, Xia L, Wang T, Yuan W, Yan J. Activation of MAPKs in the anti-β2GPI/β2GPI-induced tissue factor expression through TLR4/IRAKs pathway in THP-1 cells. Thromb Res 2012; 130:e229-35. [DOI: 10.1016/j.thromres.2012.08.303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
|
47
|
Pers JO. Pierre Youinou: Life contribution to autoimmunity. Clin Exp Rheumatol 2012; 11:777-8. [DOI: 10.1016/j.autrev.2012.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood 2012; 120:3360-70. [PMID: 22932793 DOI: 10.1182/blood-2011-09-378851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
β(2)-glycoprotein I (β(2)GPI) is the major antigenic target for antiphospholipid Abs. Anti-β(2)GPI Abs are a heterogeneous population of Igs targeting all domains of the molecule. Abs specific to β(2)GPI domain I are strongly associated with thrombosis and obstetric complications. In the present study, we sought to understand the possible pathogenic mechanism for this subset of anti-β(2)GPI Abs, investigating their potential cross-reactivity with other self-proteins involved in inflammatory or coagulant events. We compared the amino acid sequence of the β(2)GPI domain I with human proteins in a protein databank and identified a peptide sharing 88% identity with an epitope of human TLR4. A high percentage of patients with antiphospholipid syndrome (41%) and systemic lupus erythematosus (50%) presented serum IgG specific to this peptide. Anti-β(2)GPI peptide Abs binding the TLR4 were able to induce NF-κB activation in HEK293 cells that were stably transfected with the TLR4 gene. Anti-β(2)GPI peptide Abs induced activation of TLR4 and triggered interleukin-1 receptor-associated kinase phosphorylation and NF-κB translocation, promoting VCAM expression on endothelial cells and TNF-α release by monocytes. In conclusion, our observations suggest a novel pathogenic mechanism in the TLR4 stimulation by anti-β(2)GPI peptide Abs that links adaptive immune responses with innate immunity in antiphospholipid syndrome and systemic lupus erythematosus.
Collapse
|
49
|
Pierre Youinou: when intuition and determination meet autoimmunity. J Autoimmun 2012; 39:117-20. [PMID: 22863520 DOI: 10.1016/j.jaut.2012.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 12/16/2022]
|
50
|
β2-Glycoprotein I inhibits endothelial cell migration through the nuclear factor κB signalling pathway and endothelial nitric oxide synthase activation. Biochem J 2012; 445:125-33. [DOI: 10.1042/bj20111383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
β2-GPI (β2-glycoprotein I) is a plasma glycoprotein ascribed with an anti-angiogenic function; however, the biological role and molecular basis of its action in cell migration remain unknown. The aim of the present study was to assess the contribution of β2-GPI to HAEC (human aortic endothelial cell) migration and the details of its underlying mechanism. Using wound healing and Boyden chamber assays, we found that β2-GPI inhibited endothelial cell migration, which was restored by its neutralizing antibody. NF-κB (nuclear factor κB) inhibitors and lentiviral siRNA (small interfering RNA) silencing of NF-κB significantly attenuated the inhibitory effect of β2-GPI on cell migration. Moreover, β2-GPI was found to induce IκBα (inhibitor of NF-κB) phosphorylation and translocation of p65 and p50. We further demonstrated that mRNA and protein levels of eNOS [endothelial NO (nitric oxide) synthase] and NO production were all increased by β2-GPI and these effects were remarkably inhibited by NF-κB inhibitors and siRNAs of p65 and p50. Furthermore, β2-GPI-mediated inhibition of cell migration was reversed by eNOS inhibitors and eNOS siRNAs. The findings of the present study provide novel insight into the ability of β2-GPI to inhibit endothelial cell migration predominantly through the NF-κB/eNOS/NO signalling pathway, which indicates a potential direction for clinical therapy in vascular diseases.
Collapse
|