1
|
Yan T, Zhou A. Crystallization and crystallographic studies of human serine protease inhibitor (serpin) B9. Acta Crystallogr F Struct Biol Commun 2024; 80:286-293. [PMID: 39382088 DOI: 10.1107/s2053230x24009439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Serine protease inhibitor B9 (serpin B9, also known as protease inhibitor 9 or PI9) plays a critical role in regulating the immune response by specifically inhibiting granzyme B, a serine protease found in cytotoxic T lymphocytes and natural killer cells. Despite its potential as an anticancer drug target, the structural details of serpin B9 have remained elusive until now. In this study, a cleaved form of recombinant human serpin B9 was successfully prepared and crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 68.51, b = 82.32, c = 101.17 Å, and an X-ray diffraction data set was collected at 1.9 Å resolution. The structure shows that serpin B9 adopts a relaxed conformation, with its cleaved reactive-centre loop inserted into the central β-sheet. Unlike other serpins, serpin B9 shows significant structural deviations around helix D, with a larger surface cavity, which could serve as a promising target for small-molecule inhibitors.
Collapse
Affiliation(s)
- Teng Yan
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| |
Collapse
|
2
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Tibbs E, Cao X. Emerging Canonical and Non-Canonical Roles of Granzyme B in Health and Disease. Cancers (Basel) 2022; 14:1436. [PMID: 35326588 PMCID: PMC8946077 DOI: 10.3390/cancers14061436] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Granzyme (Gzm) family has classically been recognized as a cytotoxic tool utilized by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to illicit cell death to infected and cancerous cells. Their importance is established based on evidence showing that deficiencies in these cell death executors result in defective immune responses. Recent findings have shown the importance of Granzyme B (GzmB) in regulatory immune cells, which may contribute to tumor growth and immune evasion during cancer development. Other studies have shown that members of the Gzm family are important for biological processes such as extracellular matrix remodeling, angiogenesis and organized vascular degradation. With this growing body of evidence, it is becoming more important to understand the broader function of Gzm's rather than a specific executor of cell death, and we should be aware of the many alternative roles that Gzm's play in physiological and pathological conditions. Therefore, we review the classical as well as novel non-canonical functions of GzmB and discuss approaches to utilize these new findings to address current gaps in our understanding of the immune system and tissue development.
Collapse
Affiliation(s)
- Ellis Tibbs
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Xuefang Cao
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Luke CJ, Markovina S, Good M, Wight IE, Thomas BJ, Linneman JM, Lanik WE, Koroleva O, Coffman MR, Miedel MT, Gong Q, Andress A, Campos Guerrero M, Wang S, Chen L, Beatty WL, Hausmann KN, White FV, Fitzpatrick JAJ, Orvedahl A, Pak SC, Silverman GA. Lysoptosis is an evolutionarily conserved cell death pathway moderated by intracellular serpins. Commun Biol 2022; 5:47. [PMID: 35022507 PMCID: PMC8755814 DOI: 10.1038/s42003-021-02953-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Lysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.
Collapse
Affiliation(s)
- Cliff J Luke
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
| | - Stephanie Markovina
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Misty Good
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Ira E Wight
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Brian J Thomas
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - John M Linneman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Wyatt E Lanik
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Olga Koroleva
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Maggie R Coffman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Mark T Miedel
- Department of Computational and Systems biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qingqing Gong
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Arlise Andress
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Marlene Campos Guerrero
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Songyan Wang
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - LiYun Chen
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Wandy L Beatty
- Molecular Microbiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Kelsey N Hausmann
- Molecular Microbiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Frances V White
- Department of Pathology and Immunology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Cell Biology and Physiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
- Neuroscience, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Anthony Orvedahl
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Stephen C Pak
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Gary A Silverman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Cell Biology and Physiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Genetics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
5
|
Liu Y, Balachandran YL, Li Z, Cong Y, Shao Y, Jiang X. Two dimensional nanosheets as immunoregulator improve HIV vaccine efficacy. Chem Sci 2021; 13:178-187. [PMID: 35059165 PMCID: PMC8694375 DOI: 10.1039/d1sc04044h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Two-dimensional (2D) nanosheets as carriers have shown promising potential for surface-displaying or loading various drugs. Nevertheless, developing sheet-like materials themselves into an immunoregulator has never been realized so far. In this study, we take advantage of the immunoregulatory effects of rare earth elements themselves and develop water-soluble erbium-dysprosium 2D nanosheets (2D NSs). Such 2D NSs can target lymph nodes and activate macrophages to improve vaccine efficacy in mice significantly. Transcriptome analysis further reveals that six critical molecules (Msr1, Ccr2, Serpinb9, Klrk1, Klrd1, Klrc1) closely correlate with 2D NS-mediated immunoregulation in vivo. For the first time, the present work realizes a proof-of-concept for designing immunoregulatory 2D NSs and shows a promising potential of 2D NSs for improving the immunoprophylaxis/immunotherapy of vaccines.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Kunming Yunnan 650000 P. R. China
| | - Yekkuni L Balachandran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Zulan Li
- Clinical Laboratory of South Building, Chinese P. L. A. General Hospital No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Yulong Cong
- Clinical Laboratory of South Building, Chinese P. L. A. General Hospital No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention Beijing P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
6
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yong Huang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Jian He
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Liping Zhong
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| |
Collapse
|
8
|
Brief Report: Diminished Coinhibitory Molecule 2B4 Expression Is Associated With Preserved iNKT Cell Phenotype in HIV Long-Term Nonprogressors. J Acquir Immune Defic Syndr 2021; 85:73-78. [PMID: 32796294 DOI: 10.1097/qai.0000000000002399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have previously shown an association of elevated coinhibitory molecule 2B4 expression with iNKT cells alterations in HIV disease. Herein, we show a comparative analysis of 2B4 expression on iNKT cells of HIV long-term nonprogressors (LTNPs) and progressors. METHODS Antiretroviral therapy-naive HIV-seropositive individuals (progressors, n = 16) and LTNPs (n = 10) were recruited for this study. We used multicolor flow cytometry on frozen peripheral blood mononuclear cells to determine iNKT subset frequencies, the levels of coinhibitory 2B4 expression, and intracellular interferon-γ (IFN-γ) production. CD1d tetramer was used to characterize iNKT cells. RESULTS We report significantly lower level of 2B4 expression on bulk LTNPs iNKT cells and on their CD4 subsets compared with HIV progressors. Furthermore, the iNKT cells from LTNPs produced higher amount of IFN-γ than HIV progressors as detected by intracellular cytokine staining. Interestingly, the frequency of 2B4iNKT cells of progressors but not LTNPs significantly correlates with CD4 T-cell count, HIV viral load, and IFN-γ production by iNKT cells. CONCLUSION Our results suggest that in addition to suppressed HIV replication, diminished 2B4 expression and associated coinhibitory signaling, and substantial production of IFN-γ could contribute to preserved iNKT cell phenotype in LTNPs.
Collapse
|
9
|
CD1d expression and invariant natural killer T-cell numbers are reduced in patients with upper gastrointestinal cancers and are further impaired by commonly used chemotherapies. Cancer Immunol Immunother 2020; 69:969-982. [DOI: 10.1007/s00262-020-02514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/02/2020] [Indexed: 12/24/2022]
|
10
|
Mohammadpour H, Du W, O'Neill R, Khalili S, Qiu J, Repasky EA, McCarthy PL, Cao X. Host-Derived Serine Protease Inhibitor 6 Provides Granzyme B-Independent Protection of Intestinal Epithelial Cells in Murine Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 24:2397-2408. [PMID: 30006303 DOI: 10.1016/j.bbmt.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/03/2018] [Indexed: 01/03/2023]
Abstract
Graft-versus-host disease (GVHD) is a serious complication after allogeneic hematopoietic cell transplantation (allo-HCT) that limits the therapeutic potential of this treatment. Host antigen-presenting cells (APCs) play a vital role in activating donor T cells that subsequently use granzyme B (GzmB) and other cytotoxic molecules to damage host normal tissues. Serine protease inhibitor 6 (Spi6), known as the sole endogenous inhibitor of GzmB, has been implicated in protecting T cells and APCs against GzmB-inflicted damage. In this study we used murine models to examine the previously unknown role of host-derived Spi6 in GVHD pathogenesis. Our results indicated that host Spi6 deficiency exacerbated GVHD as evidenced by significantly increased lethality and clinical and histopathologic scores. Using bone marrow chimera system, we found that Spi6 in nonhematopoietic tissue played a dominant role in protecting against GVHD and was significantly upregulated in intestinal epithelial cells after allo-HCT, whereas Spi6 in hematopoietic APCs surprisingly suppressed alloreactive T cell response. Interestingly, the protective effect of Spi6 and its expression in intestinal epithelial cells appeared to be independent of donor-derived GzmB. We used in silico modeling to explore potential targets of Spi6. Interaction tested in silico demonstrated that Spi6 could inhibit caspase-3 and caspase-8 with the same functional loop that inhibits GzmB but was not capable of forming stable interaction with caspase-1 or granzyme A. Using an in vitro co-culture system, we further identified that donor T cell-derived IFN-γ was important for inducing Spi6 expression in an intestinal epithelial cell line. Altogether, our data indicate that host Spi6 plays a novel, GzmB-independent role in regulating alloreactive T cell response and protecting intestinal epithelial cells. Therefore, enhancing host-derived Spi6 function has the potential to reduce GVHD.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Immunology; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wei Du
- Department of Immunology; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Rachel O'Neill
- Department of Immunology; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Jingxin Qiu
- Department of Pathology; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth A Repasky
- Department of Immunology; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Philip L McCarthy
- Department of Medicine; Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xuefang Cao
- Department of Immunology; Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
11
|
Du W, Mohammadpour H, O'Neill RE, Kumar S, Chen C, Qiu M, Mei L, Qiu J, McCarthy PL, Lee KP, Cao X. Serine protease inhibitor 6 protects alloreactive T cells from Granzyme B-mediated mitochondrial damage without affecting graft-versus-tumor effect. Oncoimmunology 2017; 7:e1397247. [PMID: 29399396 DOI: 10.1080/2162402x.2017.1397247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for hematologic malignancies. Donor T cells are able to eliminate residual tumor cells after allo-HCT, producing the beneficial graft-versus-tumor (GVT) effect, but can also cause graft-versus-host disease (GVHD) when attacking host normal tissues. We previously reported that granzyme B (GzmB) is involved in activation-induced cell death (AICD) of donor T cells and exerts differential impacts on GVHD and GVT effect. Serine protease inhibitor 6 (Spi6) is the sole endogenous inhibitor of GzmB that can protect immune and tissue cells against GzmB-mediated damage. This study is aimed to delineate the mechanism by which the GzmB-Spi6 axis regulates allogeneic T cell response. Using multiple clinically relevant murine allo-HCT models, we have found that Spi6 is concentrated in mitochondria during allogeneic T cell activation, while Spi6-/- T cells exhibit abnormal mitochondrial membrane potential, mass, reactive oxygen species (ROS) production and increased GzmB-dependent AICD mainly in the form of fratricide. Compared with WT T cells, Spi6-/- T cells exhibit decreased expansion in the host and cause significantly reduced GVHD. Notably, however, Spi6-/- T cells demonstrate the same level of GVT activity as WT T cells, which were confirmed by two independent tumor models. In summary, our findings demonstrate that Spi6 plays a novel and critical role in maintaining the integrity of T cell mitochondrial function during allogeneic response, and suggest that disabling Spi6 in donor T cells may represent a novel strategy that can alleviate GVHD without sacrificing the beneficial GVT effect.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sandeep Kumar
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michelle Qiu
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lin Mei
- Department of Internal Medicine; University at Buffalo, Buffalo, NY, USA
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Philip L McCarthy
- Department of Medicine; Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
12
|
Sula Karreci E, Eskandari SK, Dotiwala F, Routray SK, Kurdi AT, Assaker JP, Luckyanchykov P, Mihali AB, Maarouf O, Borges TJ, Alkhudhayri A, Patel KR, Radwan A, Ghobrial I, McGrath M, Chandraker A, Riella LV, Elyaman W, Abdi R, Lieberman J, Azzi J. Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation. JCI Insight 2017; 2:91599. [PMID: 29093262 DOI: 10.1172/jci.insight.91599] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Tregs hold great promise as a cellular therapy for multiple immunologically mediated diseases, given their ability to control immune responses. The success of such strategies depends on the expansion of healthy, suppressive Tregs ex vivo and in vivo following the transfer. In clinical studies, levels of transferred Tregs decline sharply in the blood within a few days of the transfer. Tregs have a high rate of apoptosis. Here, we describe a new mechanism of Treg self-inflicted damage. We show that granzymes A and -B (GrA and GrB), which are highly upregulated in human Tregs upon stimulation, leak out of cytotoxic granules to induce cleavage of cytoplasmic and nuclear substrates, precipitating apoptosis in target cells. GrA and GrB substrates were protected from cleavage by inhibiting granzyme activity in vitro. Additionally, we show - by using cytometry by time of flight (CYTOF) - an increase in GrB-expressing Tregs in the peripheral blood and renal allografts of transplant recipients undergoing rejection. These GrB-expressing Tregs showed an activated phenotype but were significantly more apoptotic than non-GrB expressing Tregs. This potentially novel finding improves our understanding of Treg survival and suggests that manipulating Gr expression or activity might be useful for designing more effective Treg therapies.
Collapse
Affiliation(s)
- Esilida Sula Karreci
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Farokh Dotiwala
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Sujit K Routray
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Ahmed T Kurdi
- Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Jean Pierre Assaker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Pavlo Luckyanchykov
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Albana B Mihali
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Omar Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Thiago J Borges
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Abdullah Alkhudhayri
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Kruti R Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Amr Radwan
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Leonardo V Riella
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| |
Collapse
|
13
|
Ahmad F, Shankar EM, Yong YK, Tan HY, Ahrenstorf G, Jacobs R, Larsson M, Schmidt RE, Kamarulzaman A, Ansari AW. Negative Checkpoint Regulatory Molecule 2B4 (CD244) Upregulation Is Associated with Invariant Natural Killer T Cell Alterations and Human Immunodeficiency Virus Disease Progression. Front Immunol 2017; 8:338. [PMID: 28396665 PMCID: PMC5366318 DOI: 10.3389/fimmu.2017.00338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
The CD1d-restricted invariant natural killer T (iNKT) cells are implicated in innate immune responses against human immunodeficiency virus (HIV). However, the determinants of cellular dysfunction across the iNKT cells subsets are seldom defined in HIV disease. Herein, we provide evidence for the involvement of the negative checkpoint regulator (NCR) 2B4 in iNKT cell alteration in a well-defined cohort of HIV-seropositive anti-retroviral therapy (ART) naïve, ART-treated, and elite controllers (ECs). We report on exaggerated 2B4 expression on iNKT cells of HIV-infected treatment-naïve individuals. In sharp contrast to CD4−iNKT cells, 2B4 expression was significantly higher on CD4+ iNKT cell subset. Notably, an increased level of 2B4 on iNKT cells was strongly correlated with parameters associated with HIV disease progression. Further, iNKT cells from ART-naïve individuals were defective in their ability to produce intracellular IFN-γ. Together, our results suggest that the levels of 2B4 expression and the downstream co-inhibitory signaling events may contribute to impaired iNKT cell responses.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Esaki M Shankar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia; Division of Infection Biology, Department of Life Sciences, School of Basic & Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, India
| | - Yean K Yong
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya , Kuala Lumpur , Malaysia
| | - Hong Y Tan
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya , Kuala Lumpur , Malaysia
| | - Gerrit Ahrenstorf
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University , Linkoping , Sweden
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul W Ansari
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Suddason T, Anwar S, Charlaftis N, Gallagher E. T-Cell-Specific Deletion of Map3k1 Reveals the Critical Role for Mekk1 and Jnks in Cdkn1b-Dependent Proliferative Expansion. Cell Rep 2016; 14:449-457. [PMID: 26774476 PMCID: PMC4733086 DOI: 10.1016/j.celrep.2015.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022] Open
Abstract
MAPK signaling is important for T lymphocyte development, homeostasis, and effector responses. To better understand the role of Mekk1 (encoded by Map3k1) in T cells, we conditionally deleted Map3k1 in LckCre/+Map3k1f/f mice, and these display larger iNKT cell populations within the liver, spleen, and bone marrow. Mekk1 signaling controls splenic and liver iNKT cell expansion in response to glycolipid antigen. LckCre/+Map3k1f/f mice have enhanced liver damage in response to glycolipid antigen. Mekk1 regulates Jnk activation in iNKT cells and binds and transfers Lys63-linked poly-ubiquitin onto Carma1. Map3k1 is critical for the regulation of p27Kip1 (encoded by Cdkn1b). iNKT cell expansion is aberrant in LckCre/+Map3k1f/f mice LckCre/+Map3k1f/f mice have enhanced liver damage in response to glycolipids Mekk1 regulates TCR-dependent Jnk activation Mekk1 regulates p27Kip1 expression to regulate proliferation
Collapse
Affiliation(s)
- Tesha Suddason
- Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Saba Anwar
- Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Nikolaos Charlaftis
- Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ewen Gallagher
- Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
15
|
Mangan MSJ, Bird CH, Kaiserman D, Matthews AY, Hitchen C, Steer DL, Thompson PE, Bird PI. A Novel Serpin Regulatory Mechanism: SerpinB9 IS REVERSIBLY INHIBITED BY VICINAL DISULFIDE BOND FORMATION IN THE REACTIVE CENTER LOOP. J Biol Chem 2015; 291:3626-38. [PMID: 26670609 DOI: 10.1074/jbc.m115.699298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 02/01/2023] Open
Abstract
The intracellular protease inhibitor Sb9 (SerpinB9) is a regulator of the cytotoxic lymphocyte protease GzmB (granzyme B). Although GzmB is primarily involved in the destruction of compromised cells, recent evidence suggests that it is also involved in lysosome-mediated death of the cytotoxic lymphocyte itself. Sb9 protects the cell from GzmB released from lysosomes into the cytosol. Here we show that reactive oxygen species (ROS) generated within cytotoxic lymphocytes by receptor stimulation are required for lyososomal permeabilization and release of GzmB into the cytosol. Importantly, ROS also inactivate Sb9 by oxidizing a highly conserved cysteine pair (P1-P1' in rodents and P1'-P2' in other mammals) in the reactive center loop to form a vicinal disulfide bond. Replacement of the P4-P3' reactive center loop residues of the prototype serpin, SERPINA1, with the P4-P5' residues of Sb9 containing the cysteine pair is sufficient to convert SERPINA1 into a ROS-sensitive GzmB inhibitor. Conversion of the cysteine pair to serines in either human or mouse Sb9 results in a functional serpin that inhibits GzmB and resists ROS inactivation. We conclude that ROS sensitivity of Sb9 allows the threshold for GzmB-mediated suicide to be lowered, as part of a conserved post-translational homeostatic mechanism regulating lymphocyte numbers or activity. It follows, for example, that antioxidants may improve NK cell viability in adoptive immunotherapy applications by stabilizing Sb9.
Collapse
Affiliation(s)
- Matthew S J Mangan
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Catherina H Bird
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Dion Kaiserman
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Anthony Y Matthews
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Corinne Hitchen
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - David L Steer
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| | - Philip E Thompson
- the Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, Parkville, Victoria 3052, Australia
| | - Phillip I Bird
- From the Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton, Clayton, Victoria 3800 Australia and
| |
Collapse
|
16
|
Su Y, Jevnikar AM, Huang X, Lian D, Zhang ZX. Spi6 protects alloreactive CD4(+) but not CD8 (+) memory T cell from granzyme B attack by double-negative T regulatory cell. Am J Transplant 2014; 14:580-93. [PMID: 24730048 DOI: 10.1111/ajt.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Memory T (Tm) cells pose a major barrier to long-term transplant survival. Whether regulatory T cells (Tregs)can control them remains poorly defined. Previously,we established that double-negative (DN) Tregs suppress effector T (Teff) cells. Here, we demonstrate that DNTregs effectively suppress CD4+/CD8+Teff and CD8+Tm but not CD4+Tm cells, whereas the suppression on CD8+Tm is abrogated by perforin (PFN) deficiency in DNTregs. Consistently, in a BALB/c to B6-Rag1-/-skin transplantation, transfer of DN Tregs suppressed the rejection mediated by CD4þ/CD8+Teff and CD8+Tmcells (76.0±4.9, 87.5±5.0 and 63.0±4.7 days, respectively)but not CD4þTmcells (25.3±1.4 days). Both CD8þ effector memory T and central memory T compartments significantly reduced after DN Treg transfer. CD4+Tm highly expresses granzyme B (GzmB) inhibitor serine protease inhibitor-6 (Spi6). Spi6 deficiency renders CD4þTm susceptible to DN Treg suppression. In addition,transfer of WT DN Tregs, but not PFN-/-DN Tregs,inhibited the skin allograft rejection mediated by Spi6-/-CD4þTm(75.5±7.9 days). In conclusion, CD4+ and CD8+Tm cells differentially respond toDNTregs’ suppression.The GzmB resistance conferred by Spi6 in CD4þTm cells might hint at the physiological significance of Tmpersistence
Collapse
|
17
|
Azzi J, Skartsis N, Mounayar M, Magee CN, Batal I, Ting C, Moore R, Riella LV, Ohori S, Abdoli R, Smith B, Fiorina P, Heathcote D, Bakhos T, Ashton-Rickardt PG, Abdi R. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2319-27. [PMID: 23913965 DOI: 10.4049/jimmunol.1300851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6(-/-) Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrB-mediated apoptosis in Spi6(-/-) nTregs and impaired suppression of alloreactive T cells in vitro. Spi6(-/-) Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6(-/-) nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.
Collapse
Affiliation(s)
- Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ashton-Rickardt PG. An emerging role for Serine Protease Inhibitors in T lymphocyte immunity and beyond. Immunol Lett 2013; 152:65-76. [PMID: 23624075 DOI: 10.1016/j.imlet.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmo-regulation, tissue re-modeling and immunity to infection. T lymphocytes are required for adaptive cell mediated immunity and serine proteases are not only important for effector function but also homeostatic regulation of cell numbers. Serine Protease Inhibitors (Serpins) are the physiological regulators of serine proteases activity. In this review, I will discuss the role of serpins in controlling the recognition of antigen, effector function and homeostatic control of T lymphocytes through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This will be discussed in the context of the T lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. The potent anti-apoptotic properties of serpins can also work against adaptive cell immunity by protecting viruses and tumors from eradication by cytotoxic T cells (CTL). Recent insights from knock-out mouse models demonstrate that these serpins also are required for hematological progenitor cells and so are critical for the development of lineages other than T lymphocytes. Given the emerging role of serpins in multiple aspects of lymphocyte immunity and blood development I will review the progress to date in developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
Affiliation(s)
- Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
19
|
Balato A, Zhao Y, Harberts E, Groleau P, Liu J, Fishelevich R, Gaspari AA. CD1d-dependent, iNKT-cell cytotoxicity against keratinocytes in allergic contact dermatitis. Exp Dermatol 2012; 21:915-20. [DOI: 10.1111/exd.12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yuming Zhao
- Department of Dermatology; University of Maryland; Baltimore; MD; USA
| | | | - Patricia Groleau
- Department of Dermatology; University of Maryland; Baltimore; MD; USA
| | - Juan Liu
- Department of Dermatology; University of Maryland; Baltimore; MD; USA
| | - Rita Fishelevich
- Department of Dermatology; University of Maryland; Baltimore; MD; USA
| | | |
Collapse
|
20
|
Serpinb9 (Spi6)-deficient mice are impaired in dendritic cell-mediated antigen cross-presentation. Immunol Cell Biol 2012; 90:841-51. [PMID: 22801574 DOI: 10.1038/icb.2012.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serpinb9 (Sb9, also called Spi6) is an intracellular inhibitor of granzyme B (GrB) that protects activated cytotoxic lymphocytes from apoptosis. We show here that the CD8(+) subset of splenic dendritic cells (DC), specialized in major histocompatibility complex class I (MHC I) presentation of exogenous antigens (cross-presentation), produce high levels of Sb9. Mice deficient in Sb9 are unable to generate a cytotoxic T-cell response against cell-associated antigen by cross-presentation, but maintain normal MHC-II presentation to helper T cells. This impaired cross-priming ability is autonomous to DC and is evident in animals deficient in both Sb9 and GrB, indicating that this role of Sb9 in DC is GrB-independent. In Sb9-deficient mice, CD8(+) DC develop normally, survive as well as wild-type DC after antigenic challenge, and exhibit unimpaired capacity to take up antigen. Although the core processing machinery is unaffected, Sb9-deficient DC appear to process antigen faster. Our results point to a novel, GrB-independent role for Sb9 in DC cross-priming.
Collapse
|
21
|
Lovo E, Zhang M, Wang L, Ashton-Rickardt PG. Serine protease inhibitor 6 is required to protect dendritic cells from the kiss of death. THE JOURNAL OF IMMUNOLOGY 2012; 188:1057-63. [PMID: 22227570 DOI: 10.4049/jimmunol.1102667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How dendritic cells (DC) present Ag to cytotoxic T cells (CTL) without themselves being killed through contact-mediated cytotoxicity (so-called kiss of death) has proved to be controversial. Using mice deficient in serine protease inhibitor 6 (Spi6), we show that Spi6 protects DC from the kiss of death by inhibiting granzyme B (GrB) delivered by CTL. Infection of Spi6 knockout mice with lymphocytic choriomeningitis virus revealed impaired survival of CD8α DC. The impaired survival of Spi6 knockout CD8α DC resulted in impaired priming and expansion of both primary and memory lymphocytic choriomeningitis virus-specific CTL, which could be corrected by GrB deficiency. The rescue in the clonal burst obtained by GrB elimination demonstrated that GrB was the physiological target through which Spi6 protected DC from CTL. We conclude that the negative regulation of DC priming of CD8 T lymphocyte immunity by CTL killing is mitigated by the physiological inhibition of GrB by Spi6.
Collapse
Affiliation(s)
- Elena Lovo
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | |
Collapse
|