1
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
2
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
3
|
Wang YT, Ji WD, Jiao HM, Lu A, Chen KF, Liu QB. Targeting 4-1BB for tumor immunotherapy from bench to bedside. Front Immunol 2022; 13:975926. [PMID: 36189243 PMCID: PMC9523430 DOI: 10.3389/fimmu.2022.975926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction has been proposed as a factor that may contribute to disease progression. Emerging evidence suggests that immunotherapy aims to abolish cancer progression by modulating the balance of the tumor microenvironment. 4-1BB (also known as CD137 and TNFRS9), a member of tumor necrosis factor receptor superfamily, has been validated as an extremely attractive and promising target for immunotherapy due to the upregulated expression in the tumor environment and its involvement in tumor progression. More importantly, 4-1BB-based immunotherapy approaches have manifested powerful antitumor effects in clinical trials targeting 4-1BB alone or in combination with other immune checkpoints. In this review, we will summarize the structure and expression of 4-1BB and its ligand, discuss the role of 4-1BB in the microenvironment and tumor progression, and update the development of drugs targeting 4-1BB. The purpose of the review is to furnish a comprehensive overview of the potential of 4-1BB as an immunotherapeutic target and to discuss recent advances and prospects for 4-1BB in cancer therapy.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Wei-Dong Ji
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Hong-Mei Jiao
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Ang Lu
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Kun-Feng Chen
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
- *Correspondence: Qi-Bing Liu, ; Kun-Feng Chen,
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- *Correspondence: Qi-Bing Liu, ; Kun-Feng Chen,
| |
Collapse
|
4
|
Li Z, Simin L, Jian K, Xin G, Youlin K. 4-1BB antibody enhances cytotoxic activity of natural killer cells against prostate cancer cells via NKG2D agonist combined with IL-27. Immunotherapy 2022; 14:1043-1053. [PMID: 35852136 DOI: 10.2217/imt-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To enhance the cytotoxicity of natural killer (NK) cells against prostate cancer cells via NKG2D agonist, with 4-1BB antibody and IL-27 combination. Materials & methods: FACS was used to detect degranulation and cell surface receptors in NK cells isolated from healthy donors. Cytokine concentrations were measured using ELISA. NK-cell cytotoxicity was analyzed using Cell Counting Kit-8. Results: NKG2D agonist, 4-1BB antibody and IL-27 combination treatment improved the activating receptor expression and IFN-γ and TNF-α secretion but decreased the suppressive receptor CD158a expression and IL-10 secretion in NK cells. The combined treatment enhanced NK-cell cytotoxicity against both PC3 and DU145 cells with concurrent enhanced STAT3 activation. Conclusion: 4-1BB antibody and IL-27 improved NKG2D agonist function in NK cells against prostate cancer cells.
Collapse
Affiliation(s)
- Zhang Li
- Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Simin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kang Jian
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gou Xin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kuang Youlin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Wang R, Bao W, Pal M, Liu Y, Yazdanbakhsh K, Zhong H. Intermediate monocytes induced by IFN-γ inhibit cancer metastasis by promoting NK cell activation through FOXO1 and interleukin-27. J Immunother Cancer 2022; 10:jitc-2021-003539. [PMID: 35091454 PMCID: PMC8804695 DOI: 10.1136/jitc-2021-003539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Background Circulating monocytes are functionally heterogeneous and can be divided into classical (CMo), intermediate (IMo), and non-CMo/patrolling monocyte (PMo) subsets. CMo can differentiate into PMo through IMo. PMos have been shown to inhibit cancer metastasis but the role of IMo is unclear. To date, no strategy has been developed to inhibit cancer metastasis through enhancing PMo/IMo differentiation. Methods We screened multiple inflammatory cytokines/chemokines activity of modulating PMo/IMo associated cell markers expression using human monocyte in vitro culture system. We tested our candidate cytokine activity in vivo using multiple mice models. We identified critical key factors and cytokines for our candidate cytokine activity by using gene-knockout mice and neutralization antibodies. Results We identified IFN-γ as a candidate inflammatory cytokine in the regulation of human IMo/PMo marker expression. Our in vivo data demonstrated that IMo expansion was induced by short-term (3 days) IFN-γ treatment through increasing CMo-IMo differentiation and blocking IMo-PMo differentiation. The IMo induced by IFN-γ (IFN-IMo), but not IFN-γ activated CMo (IFN-CMo), inhibited cancer metastasis by 90%. Surprizing, the effect of IFN-γ is greater in PMo deficiency mice, indicating the effect of IFN-IMo is not mediated through further differentiation into PMo. We also found that IFN-IMos induced by short-term IFN-γ treatment robustly boosted NK cell expansion for threefold and promoted NK differentiation and function through IL-27 and CXCL9. Furthermore, we identified that FOXO1, a key molecule controlling cellular energy metabolism, mediated the effect of IFN-γ induced IL-27 expression, and that NR4A1, a key molecule controlling PMo differentiation and inhibiting cancer metastasis, inhibited the pro-NK cell and anti-metastasis activity of IFN-IMo by suppressing CXCL9 expression. Conclusions We have discovered the antimetastasis and pro-NK cell activity of IFN-IMo, identified FOXO1 as a key molecule for IFN-γ driven monocyte differentiation and function, and found NR4A1 as an inhibitory molecule for IFN-IMo activity. Our study has not only shown novel mechanisms for a classical antitumor cytokine but also provided potential target for developing superior monocytic cell therapy against cancer metastasis.
Collapse
Affiliation(s)
- Rikang Wang
- Laboratory of Immune Regulation, New York Blood Center, New York, New York, USA
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Mouli Pal
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Hui Zhong
- Laboratory of Immune Regulation, New York Blood Center, New York, New York, USA
| |
Collapse
|
6
|
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 2021; 4:e000733. [PMID: 32611557 PMCID: PMC7333812 DOI: 10.1136/esmoopen-2020-000733] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain.
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain; Department of Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
7
|
Immune-Checkpoint Inhibitors in B-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13020214. [PMID: 33430146 PMCID: PMC7827333 DOI: 10.3390/cancers13020214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immune-based treatment strategies, which include immune checkpoint inhibition, have recently become a new frontier for the treatment of B-cell-derived lymphoma. Whereas checkpoint inhibition has given oncologists and patients hope in specific lymphoma subtypes like Hodgkin lymphoma, other entities do not benefit from such promising agents. Understanding the factors that determine the efficacy and safety of checkpoint inhibition in different lymphoma subtypes can lead to improved therapeutic strategies, including combinations with various chemotherapies, biologics and/or different immunologic agents with manageable safety profiles. Abstract For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies.
Collapse
|
8
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, Tobin NP, Blake E, Seitz C, Thomas R, Wagner AK, Andersson J, de Boniface J, Bergh J, Murray S, Alici E, Childs R, Johansson M, Westerberg LS, Haglund F, Hartman J, Lundqvist A. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest 2020; 130:1185-1198. [PMID: 31770109 DOI: 10.1172/jci128895] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
High levels of ecto-5'-nucleotidase (CD73) have been implicated in immune suppression and tumor progression, and have also been observed in cancer patients who progress on anti-PD-1 immunotherapy. Although regulatory T cells can express CD73 and inhibit T cell responses via the production of adenosine, less is known about CD73 expression in other immune cell populations. We found that tumor-infiltrating NK cells upregulate CD73 expression and the frequency of these CD73-positive NK cells correlated with larger tumor size in breast cancer patients. In addition, the expression of multiple alternative immune checkpoint receptors including LAG-3, VISTA, PD-1, and PD-L1 was significantly higher in CD73-positive NK cells than in CD73-negative NK cells. Mechanistically, NK cells transport CD73 in intracellular vesicles to the cell surface and the extracellular space via actin polymerization-dependent exocytosis upon engagement of 4-1BBL on tumor cells. These CD73-positive NK cells undergo transcriptional reprogramming and upregulate IL-10 production via STAT3 transcriptional activity, suppressing CD4-positive T cell proliferation and IFN-γ production. Taken together, our results support the notion that tumors can hijack NK cells as a means to escape immunity and that CD73 expression defines an inducible population of NK cells with immunoregulatory properties within the tumor microenvironment.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emily Blake
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Ron Thomas
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | | - Jana de Boniface
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Surgery, Capio St. Goran's Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shannon Murray
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington, USA
| | | | - Richard Childs
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Lisa S Westerberg
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Laboratory, Södersjukhuset, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
11
|
Grimmig T, Gasser M, Moench R, Zhu LJ, Nawalaniec K, Callies S, Wagner M, Polat B, Mothi SS, Luo Y, Ribas CM, Malafaia O, Hsiao LL, Waaga-Gasser AM. Expression of Tumor-mediated CD137 ligand in human colon cancer indicates dual signaling effects. Oncoimmunology 2019; 8:e1651622. [PMID: 31741755 PMCID: PMC6844327 DOI: 10.1080/2162402x.2019.1651622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
CD137-targeting immune therapy, which activates anti-tumor T effector cell responses, seems to be an attractive concept in clinical oncology. Recent evidence has demonstrated that tumor cells besides T cells and antigen-presenting cells are able to express CD137 and CD137L. Here we aimed to identify CD137/CD137L expression in established colon cancer cell lines and primary tumors (UICC stages I-IV) from patients with documented long-term follow-up. CD137/CD137L expression was highly upregulated in early to late-stage tumors while the inverse was observed in patient-derived peripheral blood mononuclear cells. High CD137L expression within primary tumors was mediated by tumor cells and significantly correlated with the occurrence of distant metastases and shortened survival in advanced stages of disease (UICC stage IV). Interestingly, induced tumor cell signaling via CD137L on its surface in vitro resulted in dual effects: (i) reduced tumor cell proliferation suggesting inhibitory signaling in all investigated cancers and (ii) increased epithelial-to-mesenchymal transition signaling events. Taken together CD137/CD137L expression was stage-dependently upregulated with shortened survival in patients with highly CD137L-expressing tumors. Our clinical and experimental data suggest that colon cancer cells predominantly express CD137L and thereby have negative impact on overall survival through a process of reverse signaling. Beside agonistic CD137 antibody therapy to foster T effector cell responses, CD137L-mediated intervention strategies may become instrumental to circumvent relapsed tumor growth through induced epithelial-to-mesenchymal transition and consecutive metastases formation.
Collapse
Affiliation(s)
- Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Romana Moench
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Lang-Jing Zhu
- Nephrology Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR. China.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karol Nawalaniec
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Callies
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Wagner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Buelent Polat
- Department of Radiation, Oncology University of Wuerzburg, Wuerzburg, Germany
| | - Suraj Sarvode Mothi
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yueming Luo
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmen M Ribas
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Osvaldo Malafaia
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Glorieux C, Huang P. Regulation of CD137 expression through K-Ras signaling in pancreatic cancer cells. Cancer Commun (Lond) 2019; 39:41. [PMID: 31288851 PMCID: PMC6615207 DOI: 10.1186/s40880-019-0386-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/28/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The interaction between CD137 and its ligand (CD137L) plays a major role in the regulation of immune functions and affects cancer immunotherapy. CD137 is a cell surface protein mainly located on activated T cells, and its regulation and functions in immune cells are well established. However, the expression of CD137 and its regulation in cancer cells remain poorly understood. The main purposes of this study were to examine the expression of CD137 in pancreatic cancer cells and to investigate its underlying mechanisms. METHODS Cells containing inducible K-RasG12V expression vector or with different K-Ras mutational statuses were used as in vitro models to examine the regulation of CD137 expression by K-Ras. Various molecular assays were employed to explore the regulatory mechanisms. Tumor specimens from 15 pancreatic cancer patients and serum samples from 10 patients and 10 healthy donors were used to test if the expression of CD137 could be validated in clinical samples. RESULTS We found that the CD137 protein was expressed on the cell surface in pancreatic cancer tissues and cancer cell lines. Enzyme-linked immunosorbent assay revealed no difference in the levels of secreted CD137 in the sera of patients and healthy donors. By using the K-Ras inducible cell system, we further showed that oncogenic K-Ras up-regulated CD137 through the activation of MAPK (mitogen-activated protein kinases) and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways, as evidenced by significantly reduced CD137 mRNA expression led by genetic silencing of MAPK1 and p65, the key proteins involved in the respective pathways. Furthermore, we also found that the NF-κB pathway was mainly stimulated by the K-Ras-induced secretion of interleukin-1α (IL-1α) which promoted the transcription of the CD137 gene in pancreatic cancer cell lines. Analysis of the TCGA (the cancer genome atlas) database also revealed a significant correlation between IL-1α and CD137 expression (r = 0.274) in tumor samples from pancreatic cancer patients (P < 0.001). CONCLUSIONS The present study has demonstrated that the CD137 protein was expressed on pancreatic cancer cell surface, and has identified a novel mechanism by which K-Ras regulates CD137 in pancreatic cancer cells through MAPK and NF-κB pathways stimulated by IL-1α.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
13
|
Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019; 5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea C Pichler
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mircea Lazar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | - Slavica Vuckovic
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
14
|
Kerage D, Soon MSF, Doff BL, Kobayashi T, Nissen MD, Lam PY, Leggatt GR, Mattarollo SR. Therapeutic vaccination with 4-1BB co-stimulation eradicates mouse acute myeloid leukemia. Oncoimmunology 2018; 7:e1486952. [PMID: 30288351 DOI: 10.1080/2162402x.2018.1486952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
Immunomodulatory therapies can effectively control haematological malignancies. Previously we reported the effectiveness of combination immunotherapies that centre on 4-1BB-targeted co-stimulation of CD8 + T cells, particularly when simultaneously harnessing the immune adjuvant properties of Natural Killer T (NKT) cells. The objective of this study was to assess the effectiveness of agonistic anti-4-1BB antibody-based combination therapy against two aggressive forms of acute myeloid leukemia (AML). Anti-4-1BB treatment alone resulted in transient suppression of established AML-ETO9a tumor growth in 50% of mice, however the majority of these mice subsequently succumbed to disease. Combining alpha-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with anti-4-1BB antibody treatment increased the proportion of responding mice to 100%, and protection led to long-term, tumor-free survival, demonstrating complete eradication of AML. This finding was extended to established mixed lymphocytic leukemia (MLL)-AF9 tumors, whereby vaccine plus anti-4-1BB combination similarly resulted in 100% protection. The addition of anti-PD-1 to anti-4-1BB treatment, although improving survival outcomes compared to anti-4-1BB alone, was not as effective as NKT cell vaccination. The effectiveness of 4-1BB combination therapies was dependent on IFN-γ signaling within host cells, but not tumors. Vaccine plus anti-4-1BB therapy elicited potent generation of functional effector and memory CD8 + T cells in all tumor-associated organs. Therapy induced KLRG1+ effector CD8 T cells were the most effective at controlling disease. We show that combining NKT cell-targeting vaccination with anti-4-1BB provides excellent therapeutic responses against AML and MLL in mice, and these results will guide ongoing efforts in finding immunotherapeutic solutions against acute myeloid leukemias.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Megan S F Soon
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Brianna L Doff
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Michael D Nissen
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Pui Yeng Lam
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
15
|
Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2017; 131:49-57. [PMID: 29118009 DOI: 10.1182/blood-2017-06-741041] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
4-1BB (CD137, tumor necrosis factor receptor superfamily 9) is an inducible costimulatory receptor expressed on activated T and natural killer (NK) cells. 4-1BB ligation on T cells triggers a signaling cascade that results in upregulation of antiapoptotic molecules, cytokine secretion, and enhanced effector function. In dysfunctional T cells that have a decreased cytotoxic capacity, 4-1BB ligation demonstrates a potent ability to restore effector functions. On NK cells, 4-1BB signaling can increase antibody-dependent cell-mediated cytotoxicity. Agonistic monoclonal antibodies targeting 4-1BB have been developed to harness 4-1BB signaling for cancer immunotherapy. Preclinical results in a variety of induced and spontaneous tumor models suggest that targeting 4-1BB with agonist antibodies can lead to tumor clearance and durable antitumor immunity. Clinical trials of 2 agonist antibodies, urelumab and utomilumab, are ongoing. Despite initial signs of efficacy, clinical development of urelumab has been hampered by inflammatory liver toxicity at doses >1 mg/kg. Utomilumab has a superior safety profile, but is a less potent 4-1BB agonist relative to urelumab. Both antibodies have demonstrated promising results in patients with lymphoma and are being tested in combination therapy trials with other immunomodulatory agents. In an effort to optimally leverage 4-1BB-mediated immune activation, the next generation of 4-1BB targeting strategies attempts to decouple the observed antitumor efficacy from the on-target liver toxicity. Multiple therapeutics that attempt to restrict 4-1BB agonism to the tumor microenvironment and minimize systemic exposure have emerged. 4-1BB is a compelling target for cancer immunotherapy and future agents show great promise for achieving potent immune activation while avoiding limiting immune-related adverse events.
Collapse
|
16
|
Kang SW, Lee SC, Park SH, Kim J, Kim HH, Lee HW, Seo SK, Kwon BS, Cho HR, Kwon B. Anti-CD137 Suppresses Tumor Growth by Blocking Reverse Signaling by CD137 Ligand. Cancer Res 2017; 77:5989-6000. [PMID: 28923858 DOI: 10.1158/0008-5472.can-17-0610] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/12/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
CD137 (4-1BB) is a T-cell costimulatory molecule, and agonstic CD137 antibodies are currently being evaluated in the clinic as cancer immunotherapy. Recently, it was found that CD137-/- mice or mice injected with agonistic anti-CD137 antibodies exhibit heightened antitumor responses, contrary to expectations based on other knowledge of CD137 function. Here, we report findings related to reverse signaling by CD137 ligand (CD137L) in antigen-presenting dendritic cells (DC) in tumors that address these paradoxical results. Specifically, CD137L suppressed intratumoral differentiation of IL12-producing CD103+ DC and type 1 tumor-associated macrophages (TAM). Differentiation of these cell types is important because they are required to generate IFNγ-producing CD8+ cytotoxic T lymphocytes (Tc1). Notably, CD137L blockade increased levels of IL12 and IFNγ, which promoted intratumoral differentiation of IFNγ-producing Tc1, IL12-producing CD103+ DC, and type 1 TAM within tumors. Our results offer an explanation for the paradoxical effects of CD137 blockade, based on differential immunomodulatory effects of CD137 signaling and reverse signaling in T cells and DC, respectively. Further, they show how CD137L blockade can seed a forward-feedback loop for activation of CD103+ DC/type 1 TAM and Tc1 that can create a self-perpetuating cycle of highly effective immunosurveillance. Cancer Res; 77(21); 5989-6000. ©2017 AACR.
Collapse
MESH Headings
- 4-1BB Ligand/immunology
- 4-1BB Ligand/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Sang W Kang
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Sang C Lee
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - So H Park
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Hyeon H Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Su K Seo
- Department of Microbiology, College of Medicine, Inje University, Pusan, Republic of Korea
| | | | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea.
- Department of Surgery, Ulsan University Hospital, University of Ulsan, Ulsan, College of Medicine, Republic of Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
17
|
Choi BK, Kim YH, Lee DG, Oh HS, Kim KH, Park SH, Lee J, Vinay DS, Kwon BS. In vivo 4-1BB deficiency in myeloid cells enhances peripheral T cell proliferation by increasing IL-15. THE JOURNAL OF IMMUNOLOGY 2015; 194:1580-90. [PMID: 25601928 DOI: 10.4049/jimmunol.1303439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
4-1BB signals are considered positive regulators of T cell responses against viruses and tumors, but recent studies suggest that they have more complex roles in modulating T cell responses. Although dual roles of 4-1BB signaling in T cell responses have been suggested, the underlying mechanisms are still not fully understood. In this study, we tested whether 4-1BB expression affected T cell responses differently when expressed in myeloid versus lymphoid cells in vivo. By assessing the proliferation of 4-1BB(+/+) and 4-1BB(-/-) T cells in lymphocyte-deficient RAG2(-/-) and RAG2(-/-)4-1BB(-/-) mice, we were able to compare the effects on T cell responses of 4-1BB expression on myeloid versus T cells. Surprisingly, adoptively transferred T cells were more responsive in tumor-bearing RAG2(-/-)4-1BB(-/-) mice than in RAG2(-/-) mice, and this enhanced T cell proliferation was further enhanced if the T cells were 4-1BB deficient. Dendritic cells (DCs) rather than NK or tissue cells were the myeloid lineage cells primarily responsible for the enhanced T cell proliferation. However, individual 4-1BB(-/-) DCs were less effective in T cell priming in vivo than 4-1BB(+/+) DCs; instead, more DCs in the secondary lymphoid organs of RAG2(-/-)4-1BB(-/-) mice appeared to induce the enhanced T cell proliferation by producing and transpresenting more IL-15. Therefore, we conclude that in vivo 4-1BB signaling of myeloid cells negatively regulates peripheral T cell responses by limiting the differentiation of DCs and their accumulation in secondary lymphoid organs.
Collapse
Affiliation(s)
- Beom K Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young H Kim
- Biomedicine Production Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea; and
| | - Don G Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Ho S Oh
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Kwang H Kim
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang H Park
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Jinsun Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Dass S Vinay
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
18
|
Kobayashi T, Doff BL, Rearden RC, Leggatt GR, Mattarollo SR. NKT cell-targeted vaccination plus anti-4-1BB antibody generates persistent CD8 T cell immunity against B cell lymphoma. Oncoimmunology 2015; 4:e990793. [PMID: 25949907 PMCID: PMC4404843 DOI: 10.4161/2162402x.2014.990793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/28/2022] Open
Abstract
Harnessing the immune adjuvant properties of natural killer T (NKT) cells is an effective strategy to generate anticancer immunity. The objective of this study was to increase the potency and durability of vaccine-induced immunity against B cell lymphoma by combining α-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with an agonistic antibody targeting the immune checkpoint molecule 4–1BB (CD137). We observed potent synergy when combining vaccination and anti-4–1BB antibody treatment resulting in significantly enhanced survival of mice harboring Eμ-myc tumors, including complete eradication of lymphoma in over 50% of mice. Tumor-free survival required interferon γ (IFNγ)-dependent expansion of CD8+ T cells and was associated with 4–1BB-mediated differentiation of KLRG1+ effector CD8+ T cells. 'Cured' mice were also resistant to lymphoma re-challenge 80 days later indicating successful generation of immunological memory. Overall, our results demonstrate that therapeutic anticancer vaccination against B cell lymphoma using an NKT cell ligand can be boosted by subsequent co-stimulation through 4–1BB leading to a sustainable immune response that may enhance outcomes to conventional treatment.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Brianna L Doff
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Rory C Rearden
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| |
Collapse
|
19
|
Navabi SS, Doroudchi M, Tashnizi AH, Habibagahi M. Natural Killer Cell Functional Activity After 4-1BB Costimulation. Inflammation 2014; 38:1181-90. [DOI: 10.1007/s10753-014-0082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014; 47:122-9. [PMID: 24499671 PMCID: PMC4163883 DOI: 10.5483/bmbrep.2014.47.3.283] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Although considerable progress has been made in understanding how tumors evade immune surveillance, measures to counter the same have not kept pace with the advances made in designing effective strategies. 4-1BB (CD137; TNFRS9), an activation-induced costimulatory molecule, is an important regulator of immune responses. Targeting 4-1BB or its natural ligand 4-1BB ligand (4-1BBL) has important implications in many clinical conditions, including cancer. In-depth analysis revealed that 4-1BB-mediated anti-cancer effects are based on its ability to induce activation of cytotoxic T lymphocytes (CTL), and among others, high amounts of IFN-γ. In this review, we will discuss the various aspects of 4-1BB-mediated anti-tumor responses, the basis of such responses, and future directions. [BMB Reports 2014; 47(3): 122-129]
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA; Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
21
|
Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer 2014; 135:2857-67. [PMID: 24789574 DOI: 10.1002/ijc.28943] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
Immunotherapy is a promising strategy against hepatocellular carcinoma (HCC). We assessed the therapeutic effects of stimulating CD137, a member of the TNF receptor family, with agonistic monoclonal antibodies (mAb). Agonistic anti-CD137 mAb treatment was tested on two in situ models of HCC in immunocompetent mice. We also studied the mediators involved at different time points. In an orthotopic HCC the treatment consistently leads to complete tumor regression in 40-60% of animals. The protection is long lasting in the animals responding to the treatment, which can reject a second tumor challenge more than 3 months after treatment and eradication of the first malignancy. The main mediators of the effect are T lymphocytes and NK cells, demonstrated through depletion experiments. In addition, adoptive transfer of splenocytes prepared from anti-CD137 mAb-treated and -cured mice to naive mice allowed them to, in turn, reject the tumor. The efficacy of anti-CD137 mAb treatment is associated with early, sustained recruitment of iNOS-positive macrophages within tumor nodules. Moreover, in the absence of treatment, tumor development is accompanied by infiltration by myeloid derived suppressor cells (MDSC) and regulatory T lymphocytes. In mice responding to the anti-CD137 mAb treatment, this infiltration is very limited, and a combination treatment with a depletion of MDSC leads to the recovery of 80% of the mice. These results demonstrate that agonistic anti-CD137 mAb is a promising therapeutic strategy for anti-tumor immunity stimulation against HCC.
Collapse
Affiliation(s)
- Vanessa Gauttier
- INSERM UMR1064, Centre for Research in Transplantation and Immunology-ITUN, Université de Nantes, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | | | | | | | | | | |
Collapse
|
22
|
CD137 expressed on neutrophils plays dual roles in antibacterial responses against Gram-positive and Gram-negative bacterial infections. Infect Immun 2013; 81:2168-77. [PMID: 23545301 DOI: 10.1128/iai.00115-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe sepsis and septic shock caused mainly by bacterial infections are life-threatening conditions that urge the development of novel therapies. However, host responses to and pathophysiology of sepsis have not been clearly understood, which remains a major obstacle for the development of effective therapeutics. Recently, we have shown that stimulation of a costimulatory molecule, CD137, enhanced survival of mice infected with the Gram-positive (G(+)) intracellular bacterium Listeria monocytogenes but decreased survival in a polymicrobial sepsis model. Herein, we report that CD137 deficiency or blocking of CD137 signaling decreased antibacterial responses of mice infected with G(+) bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis) but increased these responses in mice infected with Gram-negative (G(-)) bacteria (Escherichia coli, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium). Consistent with these findings, stimulation of CD137 by administration of agonistic antibody enhanced responses against G(+) bacteria, whereas it decreased these responses against G(-) bacteria. Neutrophils were responsible for CD137-mediated opposite roles in control of G(+) and G(-) bacterial infections. Stimulation of CD137 enhanced activities of neutrophils against S. aureus but decreased these activities against E. coli, while CD137 blocking produced opposite results with the stimulation of CD137 in vivo and in vitro. Furthermore, we found that combined signaling of CD137 and Toll-like receptor 2 (TLR2) induced synergistic production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) by neutrophils, but combined signaling of CD137 and TLR4 did not. Our data strongly suggest that CD137 may play a dual role in sepsis in association with TLRs.
Collapse
|
23
|
Behrendt AK, Meyer-Bahlburg A, Hansen G. CD137 deficiency does not affect development of airway inflammation or respiratory tolerance induction in murine models. Clin Exp Immunol 2012; 168:308-17. [PMID: 22519594 DOI: 10.1111/j.1365-2249.2012.04572.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The co-stimulatory molecule CD137 (4-1BB) plays a crucial role in the development and persistence of asthma, characterized by eosinophilic airway inflammation, mucus hypersecretion, airway hyperreactivity, increased T helper type 2 (Th2) cytokine production and serum immunoglobulin (Ig)E levels. We have shown previously that application of an agonistic CD137 monoclonal antibody (mAb) prevented and even reversed an already established asthma phenotype. In the current study we investigated whether deficiency of the CD137/CD137L pathway affects the development of allergic airway inflammation or the opposite immune reaction of respiratory tolerance. CD137⁻/⁻ and wild-type (WT) mice were sensitized and challenged with the model allergen ovalbumin (OVA) and analysed for the presence of allergic disease parameters (allergy protocol). Some animals were tolerized by mucosal application of OVA prior to transferring the animals to the allergy protocol to analyse the effect of CD137 loss on tolerance induction (tolerance protocol). Eosinophilic airway inflammation, mucus hypersecretion, Th2 cytokine production and elevated allergen-specific serum IgE levels were increased equally in CD137⁻/⁻ and WT mice. Induction of tolerance resulted in comparable protection from the development of an allergic phenotype in both mouse strains. In addition, no significant differences could be identified in CD4⁺, CD8⁺ and forkhead box protein 3 (FoxP3⁺) regulatory T cells, supporting the conclusion that CD137⁻/⁻ mice show equal Th2-mediated immune responses compared to WT mice. Taken together, CD137⁻/⁻ mice and WT mice develop the same phenotype in a murine model of Th2-mediated allergic airway inflammation and respiratory tolerance.
Collapse
Affiliation(s)
- A-K Behrendt
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
24
|
Park SJ, Kim HJ, Lee JS, Cho HR, Kwon B. Reverse signaling through the co-stimulatory ligand, CD137L, as a critical mediator of sterile inflammation. Mol Cells 2012; 33:533-7. [PMID: 22526397 PMCID: PMC3887753 DOI: 10.1007/s10059-012-0077-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/16/2022] Open
Abstract
CD137 (also called 4-1BB and TNFRSF9) has recently received attention as a therapeutic target for cancer and a variety of autoimmune and inflammatory diseases. Stimulating CD137 in vivo enhances CD8(+) T cell-activity and results in strong immunosuppression in some contexts. This paradoxical phenomenon may be partially explained by the ability of CD137-stimulating reagents (usually agonistic monoclonal antibodies against CD137) to overactivate T cells and other CD137-expressing cells. This over-activity is associated with deleting pathogenic T cells and B cells or generating a tolerogenic microenvironment. Recent studies, however, suggest that the biology of CD137 and its ligand (CD137L) are more complex, mainly due to bidirectional signaling between CD137 and CD137L. For example, signaling through CD137L in non-hematopoietic cells such as epithelial cells and endothelial cells has been shown to play an essential role in sterile inflammation by regulating immune cell recruitment. One outstanding, and clinically important, issue is understanding how bidirectional signaling through CD137 and CD137L controls the vicious cycle of sterile inflammation (e.g., ischemia-reperfusion tissue injury and meta-inflammatory diseases).
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Hye Jeong Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Jong Soo Lee
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- School of Biological Sciences, University of Ulsan, Ulsan 682-714,
Korea
| |
Collapse
|
25
|
Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72:3664-76. [PMID: 22628427 DOI: 10.1158/0008-5472.can-11-2791] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.
Collapse
Affiliation(s)
- Christina Claus
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Teijeira Á, Palazón A, Garasa S, Marré D, Aubá C, Rogel A, Murillo O, Martínez‐Forero I, Lang F, Melero I, Rouzaut A. CD137 on inflamed lymphatic endothelial cells enhances CCL21‐guided migration of dendritic cells. FASEB J 2012; 26:3380-92. [DOI: 10.1096/fj.11-201061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Álvaro Teijeira
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Asís Palazón
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Saray Garasa
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Diego Marré
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Cristina Aubá
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Anne Rogel
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ohiana Murillo
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Iván Martínez‐Forero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - François Lang
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ignacio Melero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Ana Rouzaut
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| |
Collapse
|