1
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Carannante V, Wiklund M, Önfelt B. In vitro models to study natural killer cell dynamics in the tumor microenvironment. Front Immunol 2023; 14:1135148. [PMID: 37457703 PMCID: PMC10338882 DOI: 10.3389/fimmu.2023.1135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel in vitro methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease. They should allow high-throughput and high-content analysis, to evaluate the efficacy of treatments and understand immune-evasion processes to facilitate development of new therapeutic targets. Ideally, they should be suitable for personalized immunotherapy testing, providing information for patient stratification. Consequently, the application of in vitro 3-dimensional (3D) cell culture models, such as tumor spheroids and organoids, is rapidly expanding in the immunotherapeutic field, coupled with the development of novel imaging-based techniques and -omic analysis. In this paper, we review the recent advances in the development of in vitro 3D platforms applied to natural killer (NK) cell-based cancer immunotherapy studies, highlighting the benefits and limitations of the current methods, and discuss new concepts and future directions of the field.
Collapse
Affiliation(s)
- Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Nie J, Liao W, Zhang Z, Zhang M, Wen Y, Capanoglu E, Sarker MMR, Zhu R, Zhao C. A 3D co-culture intestinal organoid system for exploring glucose metabolism. Curr Res Food Sci 2022; 6:100402. [DOI: 10.1016/j.crfs.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
|
4
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
5
|
Rademacher MJ, Cruz A, Faber M, Oldham RAA, Wang D, Medin JA, Schloemer NJ. Sarcoma IL-12 overexpression facilitates NK cell immunomodulation. Sci Rep 2021; 11:8321. [PMID: 33859303 PMCID: PMC8050085 DOI: 10.1038/s41598-021-87700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
Interleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.
Collapse
Affiliation(s)
- Mary Jo Rademacher
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anahi Cruz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dandan Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biochemisty, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nathan J Schloemer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
7
|
Arima N. Dual effects of natural killer cells in transplantation for leukemia. Crit Rev Oncol Hematol 2020; 158:103206. [PMID: 33388454 DOI: 10.1016/j.critrevonc.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells were originally considered to belong to the innate immune system to play a protective role against tumor cells and viral infections. In human, they can recognize self and non-self HLA class 1 as their ligand. So, analyzing the outcomes of allogeneic hematopoietic stem cell transplantation is a good opportunity to know the antitumor effects and regulatory effects of NK cells through HLA class 1 matching and mismatching of donor and recipient. In this review, I looked back on the main analysis results of the past transplants, summarized our reports consisting of many cases in a single ethnic, and showed that NK cells might work oppositely depending on the type of leukemia. New treatment strategies based on these concepts may offer individualized treatment options and ultimately increase offer the possibility of a cure for patients with leukemia.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-ku, Kobe, 651-0072, Hyogo, Japan.
| |
Collapse
|
8
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
9
|
Jeon S, Kim HK, Kwon JY, Baek SH, Ri HS, Choi HJ, Cho HR, Lee YS, Kim JY, Kim J, Bae J, Lee HJ. Role of Sevoflurane on Natural Killer Group 2, Member D-Mediated Immune Response in Non-Small-Cell Lung Cancer: An In Vitro Study. Med Sci Monit 2020; 26:e926395. [PMID: 33139690 PMCID: PMC7648410 DOI: 10.12659/msm.926395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The purpose of this study was to investigate the effects of sevoflurane on cancer immunosurveillance and metastasis in non-small-cell lung cancer (NSCLC). Material/Methods NCI-H23 cells, a human NSCLC cell line, were incubated with or without sevoflurane at the concentrations of 0, 12.5, 25, 50, 100, and 200 μM for 6 h. Cell viability, the expression of natural killer group 2, member D ligands (NKG2D ligands: UL16-binding proteins 1–3 [ULBP1–3] and major histocompatibility complex class I chain-related molecules A/B [MICA/B]), the expression of matrix metalloproteinases (MMPs), NK cell-mediated cytotoxicity, and cancer cell migration were measured. Results At 12.5, 25, 50, and 100 μM, sevoflurane increased the expression of NKG2D ligands (ULBP2–3 and MICA, ULBP1–3, ULBP1–3, and ULBP1, respectively). Sevoflurane decreased the expression of NKG2D ligands at 200 μM (MICA/B). NK cell-mediated lysis of NCI-H23 cells at 200 μM sevoflurane was significantly reduced compared with the control (P=0.025; target cell: effect cell=1: 10). Sevoflurane increased the expression of MMP-1, -2, and -9 and increased cell migration in NCI-H23 cells at 50, 100, and 200 μM (P=0.001, 0.035, and 0.039, respectively, compared with the control after 18 h of wound formation). Conclusions Sevoflurane could suppress NKG2D-mediated NK cell cytotoxicity and increased expression of MMPs and migration in NCI-H23 cells. Further research is needed to determine the effects of sevoflurane on cancer immunosurveillance and metastasis in NSCLC.
Collapse
Affiliation(s)
- Soeun Jeon
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Pusan National University, School of Medicine, Busan, South Korea
| | - Hae-Kyu Kim
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Jae-Young Kwon
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Seung-Hoon Baek
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Hyun-Su Ri
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Ho Jung Choi
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Hae-Ryung Cho
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Young Shin Lee
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Joo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinsil Kim
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Hyeon-Jeong Lee
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Pusan National University, School of Medicine, Busan, South Korea
| |
Collapse
|
10
|
Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci 2020; 7:33. [PMID: 32211418 PMCID: PMC7067892 DOI: 10.3389/fmolb.2020.00033] [Citation(s) in RCA: 942] [Impact Index Per Article: 188.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cell culture is an important and necessary process in drug discovery, cancer research, as well as stem cell study. Most cells are currently cultured using two-dimensional (2D) methods but new and improved methods that implement three-dimensional (3D) cell culturing techniques suggest compelling evidence that much more advanced experiments can be performed yielding valuable insights. When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases. Scaffold based techniques such as hydrogel-based support, polymeric hard material-based support, hydrophilic glass fiber, and organoids are employed, and each provide their own advantages and applications. Likewise, there are also scaffold free techniques used such as hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment coating. 3D cell culture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models. The present review compares 2D cell culture to 3D cell culture, provides the details surrounding the different 3D culture techniques, as well as focuses on the present and future applications of 3D cell culture.
Collapse
Affiliation(s)
- Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biology, College of Science and Mathematics, Augusta University, Augusta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Delconte RB, Guittard G, Goh W, Hediyeh-Zadeh S, Hennessy RJ, Rautela J, Davis MJ, Souza-Fonseca-Guimaraes F, Nunès JA, Huntington ND. NK Cell Priming From Endogenous Homeostatic Signals Is Modulated by CIS. Front Immunol 2020; 11:75. [PMID: 32082327 PMCID: PMC7005222 DOI: 10.3389/fimmu.2020.00075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cell activation is controlled by a balance of activating and inhibitory signals and cytokines such as IL-15. We previously identified cytokine-inducible SH2-containing protein (CIS) as a negative regulator of IL-15 signaling in NK cells under inflammatory conditions. While the functional effect of Cish-deficiency in NK cells was obvious by their increased anti-tumor immunity and hyper-proliferative response to IL-15, it remained unclear how CIS regulates NK cell biology in steady-state. Here, we investigated the role of CIS in the homeostatic maintenance of NK cells and found CIS-ablation promoted terminal differentiation of NK cells and increased turnover, suggesting that under steady-state conditions, CIS plays a role in maintaining IL-15 driven regulation of NK cells in vivo. However, hyper-responsiveness to IL-15 did not manifest in NK cell accumulation, even when the essential NK cell apoptosis mediator, Bcl2l11 (BIM) was deleted in addition to Cish. Instead, loss of CIS conferred a lower activation threshold, evidenced by augmented functionality on a per cell basis both in vitro and in vivo without prior priming. We conclude that Cish regulates IL-15 signaling in NK cells in vivo, and through the rewiring of several activation pathways leads to a reduction in activation threshold, decreasing the requirement for priming and improving NK cell anti-tumor function. Furthermore, this study highlights the tight regulation of NK cell homeostasis by several pathways which prevent NK cell accumulation when IL-15 signaling and intrinsic apoptosis are dysregulated.
Collapse
Affiliation(s)
- Rebecca B Delconte
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Wilford Goh
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Robert J Hennessy
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Jai Rautela
- oNKo-Innate Pty Ltd., Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Melissa J Davis
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Nicholas D Huntington
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,oNKo-Innate Pty Ltd., Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Kim N, Lee HH, Lee HJ, Choi WS, Lee J, Kim HS. Natural killer cells as a promising therapeutic target for cancer immunotherapy. Arch Pharm Res 2019; 42:591-606. [DOI: 10.1007/s12272-019-01143-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
13
|
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a highly malignant disease with a dismal prognosis that is currently being tested for theclinical activity of checkpoint inhibitors. SCLC is associated with smoking and exhibits a high mutational burden. However, low expression of PD-L1 and MHC antigens, as well low levels of immune cell infiltration and rapid tumor progress seems to limit the efficacy of anticancer immunity. Nevertheless, long-term survival was reported from studies using anti-PD-1/PD-L1 and CTLA-4 agents. AREAS COVERED Data of clinical trials of checkpoint inhibitors in SCLC show lower success rates compared to NSCLC. The mechanisms of resistance to immunotherapy are discussed for their relevance to SCLC patients. EXPERT OPINION Although some factors, such as a high mutation rate, favor immunotherapy for SCLC patients, downregulation of MHC class I, low expression of PD-L1, poor tumor infiltration by effector T cells, presence of myeloid-derived suppressor cells as well as regulatory T lymphocytes counteract the immune system activation by checkpoint inhibitors. Furthermore, this tumor develops avascular regions which have immunosuppressive effects and restrict access of lymphocytes and antibodies. In conclusion, immunotherapy in SCLC is effective in highly selected patients with good performance status and special and unknown preconditions contributing to long-lasting responses.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
14
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
15
|
Sherman H, Gitschier HJ, Rossi AE. A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity. Front Immunol 2018; 9:857. [PMID: 29740450 PMCID: PMC5924962 DOI: 10.3389/fimmu.2018.00857] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
The latest advancements in oncology research are focused on autologous immune cell therapy. However, the effectiveness of this type of immunotherapy for cancer remediation is not equivalent for all patients or cancer types. This suggests the need for better preclinical screening models that more closely recapitulate in vivo tumor biology. The established method for investigating tumoricidal activity of immunotherapies has been study of two-dimensional (2D) monolayer cultures of immortalized cancer cell lines or primary tumor cells in standard tissue culture vessels. Indeed, a proven means to examine immune cell migration and invasion are 2D chemotaxis assays in permeabilized supports or Boyden chambers. Nevertheless, the more in vivo-like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell invasion and tumor cell cytotoxicity. Accordingly, we have developed a 3D immune oncology model by combining 96-well permeable support systems and 96-well low-attachment microplates. The use of the permeable support system enables assessment of immune cell migration, which was tested in this study as chemotactic response of natural killer NK-92MI cells to human stromal-cell derived factor-1 (SDF-1α). Immune invasion was assessed by measuring NK-92MI infiltration into lung carcinoma A549 cell spheroids that were formed in low-attachment microplates. The novel pairing of the permeable support system with low-attachment microplates permitted simultaneous investigation of immune cell homing, immune invasion of tumor spheroids, and spheroid cytotoxicity. In effect, the system represents a more comprehensive and in vivo-like immune oncology model that can be utilized for high-throughput study of tumoricidal activity.
Collapse
Affiliation(s)
- Hilary Sherman
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| | - Hannah J Gitschier
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| | - Ann E Rossi
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| |
Collapse
|
16
|
Qiao H, Tang T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res 2018; 6:3. [PMID: 29507817 PMCID: PMC5826951 DOI: 10.1038/s41413-018-0008-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis to bone is a three-dimensional (3D), multistep, dynamic process that requires the sequential involvement of three microenvironments, namely, the primary tumour microenvironment, the circulation microenvironment and the bone microenvironment. Engineered 3D approaches allow for a vivid recapitulation of in vivo cancerous microenvironments in vitro, in which the biological behaviours of cancer cells can be assessed under different metastatic conditions. Therefore, modelling bone metastasis microenvironments with 3D cultures is imperative for advancing cancer research and anti-cancer treatment strategies. In this review, multicellular tumour spheroids and bioreactors, tissue engineering constructs and scaffolds, microfluidic systems and 3D bioprinting technology are discussed to explore the progression of the 3D engineering approaches used to model the three microenvironments of bone metastasis. We aim to provide new insights into cancer biology and advance the translation of new therapies for bone metastasis.
Collapse
Affiliation(s)
- Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
17
|
Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci 2018; 19:ijms19020615. [PMID: 29466296 PMCID: PMC5855837 DOI: 10.3390/ijms19020615] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer treatment is rapidly evolving toward personalized medicine, which takes into account the individual molecular and genetic variability of tumors. Sophisticated new in vitro disease models, such as three-dimensional cell cultures, may provide a tool for genetic, epigenetic, biomedical, and pharmacological research, and help determine the most promising individual treatment. Sarcomas, malignant neoplasms originating from mesenchymal cells, may have a multitude of genomic aberrations that give rise to more than 70 different histopathological subtypes. Their low incidence and high level of histopathological heterogeneity have greatly limited progress in their treatment, and trials of clinical sarcoma are less frequent than trials of other carcinomas. The main advantage of 3D cultures from tumor cells or biopsy is that they provide patient-specific models of solid tumors, and they overcome some limitations of traditional 2D monolayer cultures by reflecting cell heterogeneity, native histologic architectures, and cell-extracellular matrix interactions. Recent advances promise that these models can help bridge the gap between preclinical and clinical research by providing a relevant in vitro model of human cancer useful for drug testing and studying metastatic and dormancy mechanisms. However, additional improvements of 3D models are expected in the future, specifically the inclusion of tumor vasculature and the immune system, to enhance their full ability to capture the biological features of native tumors in high-throughput screening. Here, we summarize recent advances and future perspectives of spheroid and organoid in vitro models of rare sarcomas that can be used to investigate individual molecular biology and predict clinical responses. We also highlight how spheroid and organoid culture models could facilitate the personalization of sarcoma treatment, provide specific clinical scenarios, and discuss the relative strengths and limitations of these models.
Collapse
|
18
|
Lanuza PM, Vigueras A, Olivan S, Prats AC, Costas S, Llamazares G, Sanchez-Martinez D, Ayuso JM, Fernandez L, Ochoa I, Pardo J. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. Oncoimmunology 2018; 7:e1395123. [PMID: 29632716 DOI: 10.1080/2162402x.2017.1395123] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/26/2023] Open
Abstract
Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Alan Vigueras
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Sara Olivan
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Anne C Prats
- Inserm, U1037, F-31432 Toulouse, France, Université de Toulouse, UPS, Cancer Research Center of Toulouse, F-31432 Toulouse, France
| | - Santiago Costas
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Guillermo Llamazares
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | | | - José María Ayuso
- Medical Engineering, Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Luis Fernandez
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Ignacio Ochoa
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Dpt. Microbiology, Preventive Medicine and Public Health and Dpt. Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain.,Aragón I+D Foundation (ARAID), Government of Aragon, Zaragoza, Spain Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Mazzarella L, Curigliano G. A new approach to assess drug sensitivity in cells for novel drug discovery. Expert Opin Drug Discov 2018; 13:339-346. [PMID: 29415581 DOI: 10.1080/17460441.2018.1437136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a pressing need to improve strategies to select candidate drugs early on in the drug development pipeline, especially in oncology, as the efficiency of new drug approval has steadily declined these past years. Traditional methods of drug screening have relied on low-cost assays on cancer cell lines growing on plastic dishes. Recent massive-scale screens have generated big data amenable for sophisticated computational modeling and integration with clinical data. However, 2D culturing has several intrinsic limitations and novel methodologies have been devised for culturing in three dimensions, to include cells from the tumor immune microenvironment. These major improvements are bringing in vitro systems even closer to a physiological, more clinically relevant state. Areas covered: In this article, the authors review the literature on methodologies for early-phase drug screening, focusing on in vitro systems and analyzing both novel experimental and statistical approaches. The article does not cover the expanding literature on in vivo systems. Expert opinion: The popularity of three-dimensional systems is exploding, driven by the development of 'organoid' derivation technology in 2009. These assays are growing in sophistication to accommodate the increasing need by modern oncology to develop drugs that target the microenvironment.
Collapse
Affiliation(s)
- Luca Mazzarella
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy
| | - Giuseppe Curigliano
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy.,b Department of Oncology and Hemato-Oncology , University of Milano , Milano , Italy
| |
Collapse
|
20
|
Hoogstad-van Evert JS, Cany J, van den Brand D, Oudenampsen M, Brock R, Torensma R, Bekkers RL, Jansen JH, Massuger LF, Dolstra H. Umbilical cord blood CD34 + progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg null mice. Oncoimmunology 2017; 6:e1320630. [PMID: 28919991 PMCID: PMC5593716 DOI: 10.1080/2162402x.2017.1320630] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Adoptive transfer of allogeneic natural killer (NK) cells is an attractive therapy approach against ovarian carcinoma. Here, we evaluated the potency of highly active NK cells derived from human CD34+ haematopoietic stem and progenitor cells (HSPC) to infiltrate and mediate killing of human ovarian cancer spheroids using an in vivo-like model system and mouse xenograft model. These CD56+Perforin+ HSPC-NK cells were generated under stroma-free conditions in the presence of StemRegenin-1, IL-15, and IL-12, and exerted efficient cytolytic activity and IFNγ production toward ovarian cancer monolayer cultures. Live-imaging confocal microscopy demonstrated that these HSPC-NK cells actively migrate, infiltrate, and mediate tumor cell killing in a three-dimensional multicellular ovarian cancer spheroid. Infiltration of up to 30% of total HSPC-NK cells within 8 h resulted in robust tumor spheroid destruction. Furthermore, intraperitoneal HSPC-NK cell infusions in NOD/SCID-IL2Rγnull (NSG) mice bearing ovarian carcinoma significantly reduced tumor progression. These findings demonstrate that highly functional HSPC-NK cells efficiently destruct ovarian carcinoma spheroids in vitro and kill intraperitoneal ovarian tumors in vivo, providing great promise for effective immunotherapy through intraperitoneal HSPC-NK cell adoptive transfer in ovarian carcinoma patients.
Collapse
Affiliation(s)
- Janneke S Hoogstad-van Evert
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dirk van den Brand
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Manon Oudenampsen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruud L Bekkers
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg H, Hartmann W, Wiendl H, Pankratz S, Meltzer J, Farwick N, Greune L, Fluegge M, Rossig C. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology 2016; 6:e1250050. [PMID: 28197367 DOI: 10.1080/2162402x.2016.1250050] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers.
Collapse
Affiliation(s)
- Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Christian Spurny
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Muenster , Muenster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University , Duesseldorf, Germany
| | - Katharina Roellecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University , Duesseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University, Duesseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk Institute for Pathology, University of Muenster , Muenster, Germany
| | - Heinz Wiendl
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany; Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Susann Pankratz
- Department of Neurology, University Hospital Muenster , Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Maike Fluegge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| |
Collapse
|
22
|
Parsons MS, Richard J, Lee WS, Vanderven H, Grant MD, Finzi A, Kent SJ. NKG2D Acts as a Co-Receptor for Natural Killer Cell-Mediated Anti-HIV-1 Antibody-Dependent Cellular Cytotoxicity. AIDS Res Hum Retroviruses 2016; 32:1089-1096. [PMID: 27487965 DOI: 10.1089/aid.2016.0099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The utility of antibody-dependent cellular cytotoxicity (ADCC) for eliminating HIV-1-infected cells is of much interest for the design of both prophylactic vaccines for HIV-1 prevention and therapeutics to eliminate latently infected cells following reactivation. Significant research has been conducted to understand the antibody specificities involved in anti-HIV-1 ADCC responses. Perhaps equally important as the identity of the antibodies mediating these responses are factors regulating the ability of ADCC effector cells, in particular, natural killer (NK) cells, to respond to antibody-coated target cells. Indeed, a plethora of activating and inhibitory receptors expressed on the surface of NK cells might act in conjunction with CD16 to influence ADCC. As the expression of NKG2D and its ligands has been linked to HIV-1 disease progression, we evaluated if signals through NKG2D were involved in anti-HIV-1 ADCC. Utilizing assays measuring cytolysis, we provide the first data implicating NKG2D in antibody-dependent NK cell responses against a target cell line either pulsed with gp120 or infected with HIV-1. These observations are highly significant for understanding antibody-dependent NK cell responses against HIV-1 and might be useful for optimizing prophylactics and therapeutics aiming to utilize antibodies and optimally functional NK cells to control HIV-1.
Collapse
Affiliation(s)
- Matthew S. Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Richard
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montreal, Montreal, Canada
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Hillary Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Michael D. Grant
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Andrés Finzi
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montreal, Montreal, Canada
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Frenkel D, Zhang F, Guirnalda P, Haynes C, Bockstal V, Radwanska M, Magez S, Black SJ. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathog 2016; 12:e1005733. [PMID: 27403737 PMCID: PMC4942092 DOI: 10.1371/journal.ppat.1005733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.
Collapse
Affiliation(s)
- Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Fengqiu Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Carole Haynes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kearney CJ, Ramsbottom KM, Voskoboinik I, Darcy PK, Oliaro J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncoimmunology 2016; 5:e1196308. [PMID: 27622064 DOI: 10.1080/2162402x.2016.1196308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with poor natural killer (NK) cell function through aberrant expression of NK-cell-activating receptors and their ligands on tumor cells. These alterations are thought to promote formation of inhibitory NK-target cell synapses, in which killer cell degranulation is attenuated. Allogeneic stem cell transplantation can be effective in treating AML, through restoration of NK cell lytic activity. Similarly, agents that augment NK-cell-activating signals within the immunological synapse may provide some therapeutic benefit. However, the receptor-ligand interactions that critically dictate NK cell function in AML remain undefined. Here, we demonstrate that CD112/CD155 expression is required for DNAM-1-dependent killing of AML cells. Indeed, the low, or absent, expression of CD112/CD155 on multiple AML cell lines resulted in failure to stimulate optimal NK cell function. Importantly, isolated clones with low CD112/155 expression were resistant to NK cell killing while those expressing abundant levels of CD112/155 were highly susceptible. Attenuated NK cell killing in the absence of CD112/CD155 originated from decreased NK-target cell conjugation. Furthermore, we reveal by time-lapse microscopy, a significant increase in NK cell 'failed killing' in the absence of DNAM-1 ligands. Consequently, NK cells preferentially lysed ligand-expressing cells within heterogeneous populations, driving clonal selection of CD112/CD155-negative blasts upon NK cell attack. Taken together, we identify reduced CD155 expression as a major NK cell escape mechanism in AML and an opportunity for targeted immunotherapy.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly M Ramsbottom
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center , East Melbourne, Victoria, Australia
| | - Ilia Voskoboinik
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Killer Cell Biology Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Immunotherapy Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jane Oliaro
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Bücklein V, Adunka T, Mendler AN, Issels R, Subklewe M, Schmollinger JC, Noessner E. Progressive natural killer cell dysfunction associated with alterations in subset proportions and receptor expression in soft-tissue sarcoma patients. Oncoimmunology 2016; 5:e1178421. [PMID: 27622032 PMCID: PMC5006893 DOI: 10.1080/2162402x.2016.1178421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy is currently investigated as treatment option in many types of cancer. So far, results from clinical trials have demonstrated that significant benefit from immunomodulatory therapies is restricted to patients with select histologies. To broaden the potential use of these therapies, a deeper understanding for mechanisms of immunosuppression in patients with cancer is needed. Soft-tissue sarcoma (STS) presents a medical challenge with significant mortality even after multimodal treatment. We investigated function and immunophenotype of peripheral natural killer (NK) cells from chemotherapy-naive STS patients (1st line) and STS patients with progression or relapse after previous chemotherapeutic treatment (2nd line). We found NK cells from peripheral blood of both STS patient cohorts to be dysfunctional, being unable to lyse K562 target cells while NK cells from renal cell cancer (RCC) patients did not display attenuated lytic activity. Ex vivo stimulation of NK cells from STS patients with interleukin-2 plus TKD restored cytotoxic function. Furthermore, altered NK cell subset composition with reduced proportions of CD56(dim) cells could be demonstrated, increasing from 1st- to 2nd-line patients. 2nd-line patients additionally displayed significantly reduced expression of receptors (NKG2D), mediators (CD3ζ), and effectors (perforin) of NK cell activation. In these patients, we also detected fewer NK cells with CD57 expression, a marker for terminally differentiated cytotoxic NK cells. Our results elucidate mechanisms of NK cell dysfunction in STS patients with advanced disease. Markers like NKG2D, CD3ζ, and perforin are candidates to characterize NK cells with effective antitumor function for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Veit Bücklein
- Clinical Cooperation Group Immunotherapy, HelmholtzZentrum München, Munich, Germany; Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Tina Adunka
- Division of Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der Universität München , Munich, Germany
| | - Anna N Mendler
- Institute of Molecular Immunology, HelmholtzZentrum München , Munich, Germany
| | - Rolf Issels
- Department of Internal Medicine III, Klinikum der Universität München , Munich, Germany
| | - Marion Subklewe
- Clinical Cooperation Group Immunotherapy, HelmholtzZentrum München, Munich, Germany; Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Jan C Schmollinger
- Institute of Molecular Immunology, HelmholtzZentrum München , Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, HelmholtzZentrum München , Munich, Germany
| |
Collapse
|
26
|
Klöss S, Chambron N, Gardlowski T, Weil S, Koch J, Esser R, Pogge von Strandmann E, Morgan MA, Arseniev L, Seitz O, Köhl U. Cetuximab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroids. Front Immunol 2015; 6:543. [PMID: 26579120 PMCID: PMC4629470 DOI: 10.3389/fimmu.2015.00543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 01/04/2023] Open
Abstract
Immunosuppressive factors, such as soluble major histocompatibility complex class I chain-related peptide A (sMICA) and transforming growth factor beta 1 (TGF-β1), are involved in tumor immune escape mechanisms (TIEMs) exhibited by head and neck squamous cell carcinomas (HNSCCs) and may represent opportunities for therapeutic intervention. In order to overcome TIEMs, we investigated the antibody-dependent cellular cytotoxicity (ADCC), cytokine release and retargeted tumor infiltration of sMICA-inhibited patient NK cells expressing Fcγ receptor IIIa (FcγRIIIa, CD16a) in the presence of cetuximab, an anti-epidermal growth factor receptor (HER1) monoclonal antibody (mAb). Compared to healthy controls, relapsed HNSCC patients (n = 5), not currently in treatment revealed decreased levels of circulating regulatory NK cell subsets in relation to increased cytotoxic NK cell subpopulations. Elevated sMICA and TGF-β1 plasma levels correlated with diminished TNFα and IFN-γ release and decreased NKG2D (natural killer group 2 member D)-dependent killing of HNSCC cells by NK cells. Incubation of IL-2-activated patient NK cells with patient plasma containing elevated sMICA or sMICA analogs (shed MICA and recombinant MICA) significantly impaired NKG2D-mediated killing by down-regulation of NKG2D surface expression. Of note, CD16 surface expression levels, pro-apoptotic and activation markers, and viability of patient and healthy donor NK cell subpopulations were not affected by this treatment. Accordingly, cetuximab restored killing activity of sMICA-inhibited patient NK cells against cetuximab-coated primary HNSCC cells via ADCC in a dose-dependent manner. Rapid reconstitution of anti-tumor recognition and enhanced tumor infiltration of treated NK cells was monitored by 24 h co-incubation of HNSCC tumor spheroids with cetuximab (1 μg/ml) and was characterized by increased IFN-γ and TNFα secretion. This data show that the impaired NK cell-dependent tumor surveillance in relapsed HNSCC patients could be reversed by the re-establishment of ADCC-mediated effector cell activity, thus supporting NK cell-based immunotherapy in combination with antineoplastic monoclonal mAbs.
Collapse
Affiliation(s)
- Stephan Klöss
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Nicole Chambron
- Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Klinikum Hanau GmbH , Hanau , Germany
| | - Tanja Gardlowski
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Sandra Weil
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy , Frankfurt , Germany
| | - Joachim Koch
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy , Frankfurt , Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | | | - Michael A Morgan
- Institute of Experimental Haematology, Hannover Medical School , Hannover , Germany
| | - Lubomir Arseniev
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Oliver Seitz
- Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Klinikum Hanau GmbH , Hanau , Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| |
Collapse
|
27
|
Christakou AE, Ohlin M, Önfelt B, Wiklund M. Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. LAB ON A CHIP 2015; 15:3222-31. [PMID: 26126574 DOI: 10.1039/c5lc00436e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate a simple method for three-dimensional (3D) cell culture controlled by ultrasonic standing waves in a multi-well microplate. The method gently arranges cells in a suspension into a single aggregate in each well of the microplate and, by this, nucleates 3D tissue-like cell growth for culture times between two and seven days. The microplate device is compatible with both high-resolution optical microscopy and maintenance in a standard cell incubator. The result is a scaffold- and coating-free method for 3D cell culture that can be used for controlling the cellular architecture, as well as the cellular and molecular composition of the microenvironment in and around the formed cell structures. We demonstrate the parallel production of one hundred synthetic 3D solid tumors comprising up to thousands of human hepatocellular carcinoma (HCC) HepG2 cells, we characterize the tumor structure by high-resolution optical microscopy, and we monitor the functional behavior of natural killer (NK) cells migrating, docking and interacting with the tumor model during culture. Our results show that the method can be used for determining the collective ability of a given number of NK cells to defeat a solid tumor having a certain size, shape and composition. The ultrasound-based method itself is generic and can meet any demand from applications where it is advantageous to monitor cell culture from production to analysis of 3D tissue or tumor models using microscopy in one single microplate device.
Collapse
|
28
|
Giannattasio A, Weil S, Kloess S, Ansari N, Stelzer EHK, Cerwenka A, Steinle A, Koehl U, Koch J. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer 2015; 15:351. [PMID: 25933805 PMCID: PMC4422268 DOI: 10.1186/s12885-015-1321-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/17/2015] [Indexed: 02/12/2023] Open
Abstract
Background The complex cellular networks within tumors, the cytokine milieu, and tumor immune escape mechanisms affecting infiltration and anti-tumor activity of immune cells are of great interest to understand tumor formation and to decipher novel access points for cancer therapy. However, cellular in vitro assays, which rely on monolayer cultures of mammalian cell lines, neglect the three-dimensional architecture of a tumor, thus limiting their validity for the in vivo situation. Methods Three-dimensional in vivo-like tumor spheroid were established from human cervical carcinoma cell lines as proof of concept to investigate infiltration and cytotoxicity of NK cells in a 96-well plate format, which is applicable for high-throughput screening. Tumor spheroids were monitored for NK cell infiltration and cytotoxicity by flow cytometry. Infiltrated NK cells, could be recovered by magnetic cell separation. Results The tumor spheroids were stable over several days with minor alterations in phenotypic appearance. The tumor spheroids expressed high levels of cellular ligands for the natural killer (NK) group 2D receptor (NKG2D), mediating spheroid destruction by primary human NK cells. Interestingly, destruction of a three-dimensional tumor spheroid took much longer when compared to the parental monolayer cultures. Moreover, destruction of tumor spheroids was accompanied by infiltration of a fraction of NK cells, which could be recovered at high purity. Conclusion Tumor spheroids represent a versatile in vivo-like model system to study cytotoxicity and infiltration of immune cells in high-throughput screening. This system might proof useful for the investigation of the modulatory potential of soluble factors and cells of the tumor microenvironment on immune cell activity as well as profiling of patient-/donor-derived immune cells to personalize cellular immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane Giannattasio
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Sandra Weil
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Stephan Kloess
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Nariman Ansari
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany.
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Ulrike Koehl
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Joachim Koch
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| |
Collapse
|
29
|
Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells. Cancer Immunol Immunother 2015; 64:573-83. [PMID: 25854581 PMCID: PMC4412555 DOI: 10.1007/s00262-015-1657-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 01/11/2015] [Indexed: 12/17/2022]
Abstract
Children with advanced stages (relapsed/refractory and stage IV) of rhabdomyosarcoma (RMS) have a poor prognosis despite intensive chemotherapy and autologous stem cell rescue, with 5-year survival rates ranging from 5 to 35 %. Development of new, additional treatment modalities is necessary to improve the survival rate. In this preclinical study, we investigated the potential of resting and cytokine-activated natural killer (NK) cells to lyse RMS cell lines, as well as the pathways involved, to explore the eventual clinical application of (activated) NK cell immunotherapy. RMS cell lines (n = 3 derived from embryonal RMS and n = 2 derived from alveolar RMS) were susceptible to cytolysis mediated by resting NK cells, and this susceptibility was significantly increased using IL-15-activated NK cells. Flow cytometry and cytolytic assays were used to define the activating and inhibitory pathways of NK cells involved in recognizing and lysing RMS cells. NKG2D and DNAM-1 receptor-ligand interactions were essential in cytolysis by resting NK cells, as simultaneous blocking of both pathways resulted in almost complete abrogation of the cytotoxicity. In contrast, combined blocking of DNAM-1 and NKG2D only led to partial reduction of the lytic activity of IL-15-activated NK cells. In this respect, residual lysis was, at least partly, mediated by pathways involving the natural cytotoxicity receptors NKp30 and NKp46. These findings support further exploration of NK cell-based immunotherapy as adjuvant modality in current treatment strategies of RMS.
Collapse
|
30
|
Abstract
Current therapy for sarcomas, though effective in treating local disease, is often ineffective for patients with recurrent or metastatic disease. To improve outcomes, novel approaches are needed and cell therapy has the potential to meet this need since it does not rely on the cytotoxic mechanisms of conventional therapies. The recent successes of T-cell therapies for hematological malignancies have led to renewed interest in exploring cell therapies for solid tumors such as sarcomas. In this review, we will discuss current cell therapies for sarcoma with special emphasis on genetic approaches to improve the effector function of adoptively transferred cells.
Collapse
Affiliation(s)
- Melinda Mata
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
31
|
Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci U S A 2014; 111:E5688-96. [PMID: 25512551 DOI: 10.1073/pnas.1411072112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interactions between natural killer (NK) cells and dendritic cells (DCs) aid DC maturation and promote T-cell responses. Here, we have analyzed the response of human NK cells to tumor cells, and we identify a pathway by which NK-DC interactions occur. Gene expression profiling of tumor-responsive NK cells identified the very rapid induction of TNF superfamily member 14 [TNFSF14; also known as homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT)], a cytokine implicated in the enhancement of antitumor responses. TNFSF14 protein expression was induced by three primary mechanisms of NK cell activation, namely, via the engagement of CD16, by the synergistic activity of multiple target cell-sensing NK-cell activation receptors, and by the cytokines IL-2 and IL-15. For antitumor responses, TNFSF14 was preferentially produced by the licensed NK-cell population, defined by the expression of inhibitory receptors specific for self-MHC class I molecules. In contrast, IL-2 and IL-15 treatment induced TNFSF14 production by both licensed and unlicensed NK cells, reflecting the ability of proinflammatory conditions to override the licensing mechanism. Importantly, both tumor- and cytokine-activated NK cells induced DC maturation in a TNFSF14-dependent manner. The coupling of TNFSF14 production to tumor-sensing NK-cell activation receptors links the tumor immune surveillance function of NK cells to DC maturation and adaptive immunity. Furthermore, regulation by NK cell licensing helps to safeguard against TNFSF14 production in response to healthy tissues.
Collapse
|
32
|
Hirt C, Papadimitropoulos A, Mele V, Muraro MG, Mengus C, Iezzi G, Terracciano L, Martin I, Spagnoli GC. "In vitro" 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 2014; 79-80:145-54. [PMID: 24819215 DOI: 10.1016/j.addr.2014.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 02/07/2023]
Abstract
Interaction between cancer cells and immune system critically affects development, progression and treatment of human malignancies. Experimental animal models and conventional "in vitro" studies have provided a wealth of information on this interaction, currently used to develop immune-mediated therapies. Studies utilizing three-dimensional culture technologies have emphasized that tumor architecture dramatically influences cancer cell-immune system interaction by steering cytokine production and regulating differentiation patterns of myeloid cells, and decreasing the sensitivity of tumor cells to lymphocyte effector functions. Hypoxia and increased production of lactic acid by tumor cells cultured in 3D architectures appear to be mechanistically involved. 3D culture systems could be further developed to (i) include additional cell partners potentially influencing cancer cell-immune system interaction, (ii) enable improved control of hypoxia, and (iii) allow the use of freshly derived clinical cancer specimens. Such advanced models will represent new tools for cancer immunobiology studies and for pre-clinical assessment of innovative treatments.
Collapse
|
33
|
3D tissue-engineered model of Ewing's sarcoma. Adv Drug Deliv Rev 2014; 79-80:155-71. [PMID: 25109853 DOI: 10.1016/j.addr.2014.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/28/2014] [Accepted: 07/24/2014] [Indexed: 12/30/2022]
Abstract
Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests that more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing's sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and the extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine.
Collapse
|
34
|
El-Jawhari JJ, El-Sherbiny YM, Scott GB, Morgan RSM, Prestwich R, Bowles PA, Blair GE, Tanaka T, Rabbitts TH, Meade JL, Cook GP. Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes. Mol Immunol 2013; 58:160-8. [PMID: 24365750 DOI: 10.1016/j.molimm.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 12/12/2022]
Abstract
Mutations in the RAS family of oncogenes are highly prevalent in human cancer and, amongst its manifold effects, oncogenic RAS impairs the expression of components of the antigen presentation pathway. This allows evasion of cytotoxic T lymphocytes (CTL). CTL and natural killer (NK) cells are reciprocally regulated by MHC class I molecules and any gain in CTL recognition obtained by therapeutic inactivation of oncogenic RAS may be offset by reduced NK cell activation. We have investigated the consequences of targeted inactivation of oncogenic RAS on the recognition by both CTL and NK cells. Inactivation of oncogenic RAS, either by genetic deletion or inactivation with an inducible intracellular domain antibody (iDAb), increased MHC class I expression in human colorectal cell lines. The common RAS mutations, at codons 12, 13 and 61, all inhibited antigen presentation. Although MHC class I modulates the activity of both CTL and NK cells, the enhanced MHC class I expression resulting from inactivation of mutant KRAS did not significantly affect the in vitro recognition of these cell lines by either class of cytotoxic lymphocyte. These results show that oncogenic RAS and its downstream signalling pathways modulate the antigen presentation pathway and that this inhibition is reversible. However, the magnitude of these effects was not sufficient to alter the in vitro recognition of tumour cell lines by either CTL or NK cells.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK; Affiliated with the Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Yasser M El-Sherbiny
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK; Affiliated with the Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Gina B Scott
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Ruth S M Morgan
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Robin Prestwich
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Paul A Bowles
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK; Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - G Eric Blair
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tomoyuki Tanaka
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Terence H Rabbitts
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Josephine L Meade
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Graham P Cook
- Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK.
| |
Collapse
|
35
|
Peters HL, Yan Y, Solheim JC. APLP2 regulates the expression of MHC class I molecules on irradiated Ewing's sarcoma cells. Oncoimmunology 2013; 2:e26293. [PMID: 24353913 PMCID: PMC3862638 DOI: 10.4161/onci.26293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023] Open
Abstract
Ewing's sarcoma (EWS) is a pediatric cancer that is conventionally treated by surgery, chemotherapy, and radiation therapy. Innovative immunotherapies to treat EWS are currently under development. Unfortunately for EWS patients, when the disease is found to be resistant to current therapeutic approaches, the prognosis is predictably grim. Radiation therapy and immunotherapy could potentially synergize in the eradication of EWS, as some studies have previously shown that irradiation increases the presence of immune receptors, including MHC class I molecules, on the surface of tumor cells. However, EWS cells have been reported to express low levels of MHC class I molecules, a phenotype that would inhibit T-cell mediated lysis. We have previously demonstrated that the transgene-driven overexpression of amyloid β (A4) precursor-like protein 2 (APLP2) reduces the expression of MHC class I molecules on the surface of human cervical carcinoma HeLa cells. We thus examined whether endogenously expressed APLP2 downregulates MHC class I expression on EWS cells, particularly upon irradiation. We found that irradiation induces the relocalization of APLP2 and MHC class I molecules on the surface of EWS cells, redistributing cells from subpopulations with relatively low APLP2 and high MHC class I into subpopulations with relatively high APLP2 and low MHC class I surface expression. Consistent with these findings, the transfection of an APLP2-targeting siRNA into EWS cells increased MHC class I expression on the cell surface. Furthermore, APLP2 was found by co-immunoprecipitation to bind to MHC class I molecules. Taken together, these findings suggest that APLP2 inhibits MHC class I expression on the surface of irradiated EWS cells by a mechanism that involves APLP2/MHC class I interactions. Thus, therapeutic strategies that limit APLP2 expression may boost the ability of T cells to recognize and eradicate EWS in patients.
Collapse
Affiliation(s)
- Haley L Peters
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA
| | - Ying Yan
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA
| | - Joyce C Solheim
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA ; Department of Biochemistry and Molecular Biology; University of Nebraska Medical Center; Omaha, NE USA ; Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha, NE USA
| |
Collapse
|
36
|
Ogbomo H, Zemp FJ, Lun X, Zhang J, Stack D, Rahman MM, Mcfadden G, Mody CH, Forsyth PA. Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo. PLoS One 2013; 8:e66825. [PMID: 23762498 PMCID: PMC3677932 DOI: 10.1371/journal.pone.0066825] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/12/2013] [Indexed: 11/19/2022] Open
Abstract
Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.
Collapse
Affiliation(s)
- Henry Ogbomo
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Franz J. Zemp
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Lun
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jiqing Zhang
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Danuta Stack
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Grant Mcfadden
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Christopher H. Mody
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter A. Forsyth
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of NeuroOncology, Moffitt Cancer Center and University of Southern Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
Siddiqui N, Hope J. Differential recruitment and activation of natural killer cell sub-populations by Mycobacterium bovis-infected dendritic cells. Eur J Immunol 2012; 43:159-69. [PMID: 23124835 DOI: 10.1002/eji.201242736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/27/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Through complex interplay with APCs, subsets of NK cells play an important role in shaping adaptive immune responses. Bovine tuberculosis, caused by Mycobacterium bovis, is increasing in incidence and detailed knowledge of host-pathogen interactions in the natural host is essential to facilitate disease control. We investigated the interactions of NK-cell sub-populations and M. bovis-infected DCs to determine early innate mechanisms in the response to infection. A sub-population of NK cells (NKp46(+) CD2(-) ) selectively expressing lymphoid homing and inflammatory chemokine receptors were induced to migrate towards M. bovis-infected DCs. This migration was associated with increased expression of chemokines CCL3, 4, 5, 20 and CXCL8 by M. bovis-infected DCs. Activation of NKp46(+) CD2(-) NK cells and secretion of IFN-γ was observed, a response reliant on localised IL-12 release and direct cellular interaction. In a reciprocal manner, NKp46(+) CD2(-) cells induced an increase in the intensity of cell surface MHC class II expression on DCs. In contrast, NKp46(+) CD2(+) NK cells were unable to secrete IFN-γ and did not reciprocally affect DCs. This study provides novel evidence to demonstrate distinct effector responses between bovine NK-cell subsets during mycobacterial infection.
Collapse
|
38
|
The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation. EMBO J 2012; 31:3596-606. [PMID: 22863774 PMCID: PMC3433784 DOI: 10.1038/emboj.2012.218] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/12/2022] Open
Abstract
The novel RNA-binding E3 ubiquitin ligase MEX-3C targets the mRNA of MHC-I gene HLA-A2 for degradation in a RING-dependent manner. Depletion of MEX-3C in NK cells leads to reduced killing of target cells. RNA-binding E3 ubiquitin ligases were recently identified, though their function remains unclear. While studying the regulation of the MHC class I (MHC-I) pathway, we here characterize a novel role for ubiquitin in mRNA degradation. MHC-I molecules provide ligands for both cytotoxic T-lymphocytes as well as natural killer (NK) cells, and play a central role in innate and adaptive immunity. MHC-I cell-surface expression is closely monitored by NK cells, whose killer immunoglobulin-like receptors encode MHC-I-specific activatory and inhibitory receptors, implying that MHC-I expression needs to be tightly regulated. In a functional siRNA ubiquitome screen we identified MEX-3C, a novel RNA-binding ubiquitin E3 ligase, as responsible for the post-transcriptional, allotype-specific regulation of MHC-I. MEX-3C binds the 3′UTR of HLA-A2 mRNA, inducing its RING-dependent degradation. The RING domain of MEX-3C is not required for HLA-A2 cell-surface downregulation, but regulates the degradation of HLA-A2 mRNA. We have therefore uncovered a novel post-transcriptional pathway for regulation of HLA-A allotypes and provide a link between ubiquitination and mRNA degradation.
Collapse
|
39
|
Sullivan RP, Leong JW, Schneider SE, Keppel CR, Germino E, French AR, Fehniger TA. MicroRNA-deficient NK cells exhibit decreased survival but enhanced function. THE JOURNAL OF IMMUNOLOGY 2012; 188:3019-30. [PMID: 22379033 DOI: 10.4049/jimmunol.1102294] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune lymphocytes important for early host defense against infectious pathogens and malignant transformation. MicroRNAs (miRNAs) are small RNA molecules that regulate a wide variety of cellular processes, typically by specific complementary targeting of the 3'UTR of mRNAs. The Dicer1 gene encodes a conserved enzyme essential for miRNA processing, and Dicer1 deficiency leads to a global defect in miRNA biogenesis. In this study, we report a mouse model of lymphocyte-restricted Dicer1 disruption to evaluate the role of Dicer1-dependent miRNAs in the development and function of NK cells. As expected, Dicer1-deficient NK cells had decreased total miRNA content. Furthermore, miRNA-deficient NK cells exhibited reduced survival and impaired maturation defined by cell surface phenotypic markers. However, Dicer1-deficient NK cells exhibited enhanced degranulation and IFN-γ production in vitro in response to cytokines, tumor target cells, and activating NK cell receptor ligation. Moreover, a similar phenotype of increased IFN-γ was evident during acute MCMV infection in vivo. miRs-15a/15b/16 were identified as abundant miRNAs in NK cells that directly target the murine IFN-γ 3'UTR, thereby providing a potential mechanism for enhanced IFN-γ production. These data suggest that the function of miRNAs in NK cell biology is complex, with an important role in NK cell development, survival, or homeostasis, while tempering peripheral NK cell activation. Further study of individual miRNAs in an NK cell specific fashion will provide insight into these complex miRNA regulatory effects in NK cell biology.
Collapse
Affiliation(s)
- Ryan P Sullivan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer 2012; 106:1123-33. [PMID: 22374462 PMCID: PMC3304425 DOI: 10.1038/bjc.2012.57] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Novel treatment strategies are needed to cure disseminated Ewing sarcoma. Primitive neuroectodermal features and a mesenchymal stem cell origin are both compatible with aberrant expression of the ganglioside antigen GD2 and led us to explore GD2 immune targeting in this cancer. Methods: We investigated GD2 expression in Ewing sarcoma by immunofluorescence staining. We then assessed the antitumour activity of T cells expressing a chimeric antigen receptor specific for GD2 against Ewing sarcoma in vitro and in vivo. Results: Surface GD2 was detected in 10 out of 10 Ewing sarcoma cell lines and 3 out of 3 primary cell cultures. Moreover, diagnostic biopsies from 12 of 14 patients had uniform GD2 expression. T cells specifically modified to express the GD2-specific chimeric receptor 14. G2a-28ζ efficiently interacted with Ewing sarcoma cells, resulting in antigen-specific secretion of cytokines. Moreover, chimeric receptor gene-modified T cells from healthy donors and from a patient exerted potent, GD2-specific cytolytic responses to allogeneic and autologous Ewing sarcoma, including tumour cells grown as multicellular, anchorage-independent spheres. GD2-specific T cells further had activity against Ewing sarcoma xenografts. Conclusion: GD2 surface expression is a characteristic of Ewing sarcomas and provides a suitable target antigen for immunotherapeutic strategies to eradicate micrometastatic cells and prevent relapse in high-risk disease.
Collapse
|
41
|
Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, Buddingh' EP, Egeler RM, Hogendoorn PC, Lankester AC. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res 2012; 2:8. [PMID: 22587892 PMCID: PMC3351702 DOI: 10.1186/2045-3329-2-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
Background Ewing sarcoma patients have a poor prognosis despite multimodal therapy. Integration of combination immunotherapeutic strategies into first-/second-line regimens represents promising treatment options, particularly for patients with intrinsic or acquired resistance to conventional therapies. We evaluated the susceptibility of Ewing sarcoma to natural killer cell-based combination immunotherapy, by assessing the capacity of histone deacetylase inhibitors to improve immune recognition and sensitize for natural killer cell cytotoxicity. Methods Using flow cytometry, ELISA and immunohistochemistry, expression of natural killer cell receptor ligands was assessed in chemotherapy-sensitive/-resistant Ewing sarcoma cell lines, plasma and tumours. Natural killer cell cytotoxicity was evaluated in Chromium release assays. Using ATM/ATR inhibitor caffeine, the contribution of the DNA damage response pathway to histone deacetylase inhibitor-induced ligand expression was assessed. Results Despite comparable expression of natural killer cell receptor ligands, chemotherapy-resistant Ewing sarcoma exhibited reduced susceptibility to resting natural killer cells. Interleukin-15-activation of natural killer cells overcame this reduced sensitivity. Histone deacetylase inhibitor-pretreatment induced NKG2D-ligand expression in an ATM/ATR-dependent manner and sensitized for NKG2D-dependent cytotoxicity (2/4 cell lines). NKG2D-ligands were expressed in vivo, regardless of chemotherapy-response and disease stage. Soluble NKG2D-ligand plasma concentrations did not differ between patients and controls. Conclusion Our data provide a rationale for combination immunotherapy involving immune effector and target cell manipulation in first-/second-line treatment regimens for Ewing sarcoma.
Collapse
Affiliation(s)
- Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Almeida CR, Ashkenazi A, Shahaf G, Kaplan D, Davis DM, Mehr R. Human NK cells differ more in their KIR2DL1-dependent thresholds for HLA-Cw6-mediated inhibition than in their maximal killing capacity. PLoS One 2011; 6:e24927. [PMID: 21949790 PMCID: PMC3176315 DOI: 10.1371/journal.pone.0024927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 01/15/2023] Open
Abstract
In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature.
Collapse
Affiliation(s)
- Catarina R. Almeida
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Amit Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Deborah Kaplan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daniel M. Davis
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
43
|
Wilson EB, El-Jawhari JJ, Neilson AL, Hall GD, Melcher AA, Meade JL, Cook GP. Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One 2011; 6:e22842. [PMID: 21909397 PMCID: PMC3167809 DOI: 10.1371/journal.pone.0022842] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/05/2011] [Indexed: 01/09/2023] Open
Abstract
Immune evasion is now recognized as a key feature of cancer progression. In animal models, the activity of cytotoxic lymphocytes is suppressed in the tumour microenvironment by the immunosuppressive cytokine, Transforming Growth Factor (TGF)-β. Release from TGF-β-mediated inhibition restores anti-tumour immunity, suggesting a therapeutic strategy for human cancer. We demonstrate that human natural killer (NK) cells are inhibited in a TGF-β dependent manner following chronic contact-dependent interactions with tumour cells in vitro. In vivo, NK cell inhibition was localised to the human tumour microenvironment and primary ovarian tumours conferred TGF-β dependent inhibition upon autologous NK cells ex vivo. TGF-β antagonized the interleukin (IL)-15 induced proliferation and gene expression associated with NK cell activation, inhibiting the expression of both NK cell activation receptor molecules and components of the cytotoxic apparatus. Interleukin-15 also promotes NK cell survival and IL-15 excluded the pro-apoptotic transcription factor FOXO3 from the nucleus. However, this IL-15 mediated pathway was unaffected by TGF-β treatment, allowing NK cell survival. This suggested that NK cells in the tumour microenvironment might have their activity restored by TGF-β blockade and both anti-TGF-β antibodies and a small molecule inhibitor of TGF-β signalling restored the effector function of NK cells inhibited by autologous tumour cells. Thus, TGF-β blunts NK cell activation within the human tumour microenvironment but this evasion mechanism can be therapeutically targeted, boosting anti-tumour immunity.
Collapse
Affiliation(s)
- Erica B. Wilson
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Jehan J. El-Jawhari
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Abbie L. Neilson
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Geoffrey D. Hall
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Alan A. Melcher
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Josephine L. Meade
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Molecular Medicine, Wellcome Brenner Building, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O'Connor DH. Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 2011; 12:39. [PMID: 21762519 PMCID: PMC3155488 DOI: 10.1186/1471-2172-12-39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022] Open
Abstract
Background MHC class I proteins are partly responsible for shaping the magnitude and focus of the adaptive cellular immune response. In humans, conventional wisdom suggests that the HLA-A, -B, and -C alleles are equally expressed on the majority of cell types. While we currently have a thorough understanding of how total MHC class I expression varies in different tissues, it has been difficult to examine expression of single MHC class I alleles due to the homogeneity of MHC class I sequences. It is unclear how cDNA species are expressed in distinct cell subsets in humans and particularly in macaques which transcribe upwards of 20 distinct MHC class I alleles at variable levels. Results We examined MHC gene expression in human and macaque leukocyte subsets. In humans, while we detected overall differences in locus transcription, we found that transcription of MHC class I genes was consistent across the leukocyte subsets we studied with only small differences detected. In contrast, transcription of certain MHC cDNA species in macaques varied dramatically by up to 45% between different subsets. Although the Mafa-B*134:02 RNA is virtually undetectable in CD4+ T cells, it represents over 45% of class I transcripts in CD14+ monocytes. We observed parallel MHC transcription differences in rhesus macaques. Finally, we analyzed expression of select MHC proteins at the cell surface using fluorescent peptides. This technique confirmed results from the transcriptional analysis and demonstrated that other MHC proteins, known to restrict SIV-specific responses, are also differentially expressed among distinct leukocyte subsets. Conclusions We assessed MHC class I transcription and expression in human and macaque leukocyte subsets. Until now, it has been difficult to examine MHC class I allele expression due to the similarity of MHC class I sequences. Using two novel techniques we showed that expression varies among distinct leukocyte subsets of macaques but does not vary dramatically in the human cell subsets we examined. These findings suggest pathogen tropism may have a profound impact on the shape and focus of the MHC class I restricted CD8+ T cell response in macaques.
Collapse
Affiliation(s)
- Justin M Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, 53706 Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|