1
|
Wang C, Cai H, Cai Q, Wu J, Stolzenberg-Solomon R, Guo X, Zhu C, Gao YT, Berlin J, Ye F, Zheng W, Setiawan VW, Shu XO. Circulating microRNAs in association with pancreatic cancer risk within 5 years. Int J Cancer 2024; 155:519-531. [PMID: 38602070 PMCID: PMC11214275 DOI: 10.1002/ijc.34956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Early detection is critical for improving pancreatic cancer prognosis. Our study aims to identify circulating microRNAs (miRNAs) associated with pancreatic cancer risk. The two-stage study used plasma samples collected ≤5 years prior to cancer diagnosis, from case-control studies nested in five prospective cohort studies. The discovery stage included 185 case-control pairs from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Replication stage samples comprised 277 pairs from Shanghai Women's Health Study/Shanghai Men's Health Study, Southern Community Cohort Study, and Multiethnic Cohort Study. Seven hundred and ninety-eight miRNAs were measured using the NanoString nCounter Analysis System. Odds ratios (OR) and 95% confidence intervals (CI) for per 10% change in miRNAs in association with pancreatic cancer risk were derived from conditional logistic regression analysis in discovery and replication studies, separately, and then meta-analyzed. Stratified analysis was conducted by age at diagnosis (<65/≥65 years) and time interval between sample collection and diagnosis (≤2/>2 years). In the discovery stage, 120 risk associated miRNAs were identified at p < .05. Three were validated in the replication stage: hsa-miR-199a-3p/hsa-miR-199b-3p, hsa-miR-767-5p, and hsa-miR-191-5p, with respective ORs (95% CI) being 0.89 (0.84-0.95), 1.08 (1.02-1.13), and 0.90 (0.85-0.95). Five additional miRNAs, hsa-miR-640, hsa-miR-874-5p, hsa-miR-1299, hsa-miR-22-3p, and hsa-miR-449b-5p, were validated among patients diagnosed at ≥65 years, with OR (95% CI) of 1.23 (1.09-1.39), 1.33 (1.16-1.52), 1.25 (1.09-1.43), 1.28 (1.12-1.46), 0.76 (0.65-0.89), and 1.22 (1.07-1.39), respectively. The miRNA targets were enriched in pancreatic carcinogenesis/progression-related pathways. Our study suggests that circulating miRNAs may identify individuals at high risk for pancreatic cancer ≤5 years prior to diagnosis, indicating its potential utility in cancer screening and surveillance.
Collapse
Affiliation(s)
- Cong Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claire Zhu
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Bai B, Wang T, Zhang X, Ba X, Zhang N, Zhao Y, Wang X, Yu Y, Wang B. PTPN22 activates the PI3K pathway via 14-3-3τ in T cells. FEBS J 2023; 290:4562-4576. [PMID: 37255287 DOI: 10.1111/febs.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor-mediated signalling pathway, and its negative regulatory function protects organisms from autoimmune disease. 14-3-3τ is an adaptor protein that regulates target protein function through its intracellular localization. In the present study, we determined that PTPN22 binds to 14-3-3τ via the PTPN22-Ser640 phosphorylation side. PTPN22 binding to 14-3-3τ resulted in 14-3-3τ-Tyr179 dephosphorylation, and reduced the association between 14-3-3τ and Shc, which competitively increased 14-3-3ζ binding to Shc and activated phosphoinositide 3-kinase (PI3K) by bringing it to the membrane. In addition, PTPN22 decreased the tyrosine phosphorylation of p110 to activate PI3K. These two pathways cooperatively affect PI3K activity and the expression of PI3K downstream proteins, such as phosphorylated Akt, mammalian target of rapamycin and forkhead box O1, which inhibited the expression of some proinflammatory factors such as interleukin-1β, interleukin-2, interleukin-6, interferon-γ and tumour necrosis factor-α. Our research provides a preliminary theory for PTPN22 regulating T cell activation, development and immune response via the PI3K/Akt/mammalian target of rapamycin pathway and brings new information for clarifying the functions of PTPN22 in autoimmune diseases.
Collapse
Affiliation(s)
- Bin Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xipeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
3
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
4
|
Teppert K, Wang X, Anders K, Evaristo C, Lock D, Künkele A. Joining Forces for Cancer Treatment: From "TCR versus CAR" to "TCR and CAR". Int J Mol Sci 2022; 23:14563. [PMID: 36498890 PMCID: PMC9739809 DOI: 10.3390/ijms232314563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades, on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engineering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors and the type of antigen that is encountered, the requirements for proper antigen engagement and downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduction of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowledge about the molecular differences in CAR and TCR T cell signaling would greatly advance the further optimization of CAR designs and elucidate under which circumstances a combination of both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide a comprehensive review about similarities and differences by directly comparing the architecture, synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the second part of the review, we discuss the current status of combining CAR and TCR technologies, encouraging a change in perspective from "TCR versus CAR" to "TCR and CAR".
Collapse
Affiliation(s)
- Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Xueting Wang
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kathleen Anders
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - César Evaristo
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Annette Künkele
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
5
|
Kanegasaki S, Tsuchiya T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J Cell Biochem 2021; 122:1313-1325. [PMID: 33969922 DOI: 10.1002/jcb.29949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Tsuchiya
- Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Yan Z, Luo H, Xie B, Tian T, Li S, Chen Z, Liu J, Zhao X, Zhang L, Deng Y, Billiar TR, Jiang Y. Targeting adaptor protein SLP76 of RAGE as a therapeutic approach for lethal sepsis. Nat Commun 2021; 12:308. [PMID: 33436632 PMCID: PMC7804203 DOI: 10.1038/s41467-020-20577-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulating evidence shows that RAGE has an important function in the pathogenesis of sepsis. However, the mechanisms by which RAGE transduces signals to downstream kinase cascades during septic shock are not clear. Here, we identify SLP76 as a binding partner for the cytosolic tail of RAGE both in vitro and in vivo and demonstrate that SLP76 binds RAGE through its sterile α motif (SAM) to mediate downstream signaling. Genetic deficiency of RAGE or SLP76 reduces AGE-induced phosphorylation of p38 MAPK, ERK1/2 and IKKα/β, as well as cytokine release. Delivery of the SAM domain into macrophages via the TAT cell-penetrating peptide blocks proinflammatory cytokine production. Furthermore, administration of TAT-SAM attenuates inflammatory cytokine release and tissue damage in mice subjected to cecal ligation and puncture (CLP) and protects these mice from the lethality of sepsis. These findings reveal an important function for SLP76 in RAGE-mediated pro-inflammatory signaling and shed light on the development of SLP76-targeted therapeutics for sepsis.
Collapse
Affiliation(s)
- Zhengzheng Yan
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingyao Xie
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian Tian
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shan Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhixia Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuwen Zhao
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yongqiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Friesen L, Gu B, Kim C. A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunol 2021; 14:100-112. [PMID: 32518366 PMCID: PMC7725911 DOI: 10.1038/s41385-020-0311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
Vitamin A metabolites play important roles in T cell activation and differentiation. A conventional model of RARα function relies upon retinoic acid (RA)-liganded RARα binding to specific DNA motifs to regulate gene expression in the nucleus. However, this genomic function fails to explain many of the biological responses of the RA-RARα axis on T cells. We generated a mouse line where RARα is over-expressed in T cells to probe RARα function with unprecedented sensitivity. Using this model together with mice specifically lacking RARα in T cells, we found that RARα is required for prompt exit from metabolic quiescence in resting T cells upon T cell activation. The positive effect of RARα on metabolism is mediated through PI3K and subsequent activation of the Akt and mTOR signaling pathway. This largely non-genomic function of RARα is surprisingly ligand-independent and controls the differentiation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- L.R. Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - B. Gu
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - C.H. Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109,Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600-612. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.
Collapse
Affiliation(s)
- Ling Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Poli A, Fiume R, Mongiorgi S, Zaurito A, Sheth B, Vidalle MC, Hamid SA, Kimber S, Campagnoli F, Ratti S, Rusciano I, Faenza I, Manzoli L, Divecha N. Exploring the controversial role of PI3K signalling in CD4 + regulatory T (T-Reg) cells. Adv Biol Regul 2020; 76:100722. [PMID: 32362560 DOI: 10.1016/j.jbior.2020.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.
Collapse
Affiliation(s)
- Alessandro Poli
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Sara Mongiorgi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonio Zaurito
- Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Magdalena Castellano Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Shidqiyyah Abdul Hamid
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - ScottT Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Francesca Campagnoli
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Isabella Rusciano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Luu TT, Wagner AK, Schmied L, Meinke S, Freund JE, Kambayashi T, Ravens I, Achour A, Bernhardt G, Chambers BJ, Höglund P, Kadri N. IL-15 and CD155 expression regulate LAT expression in murine DNAM1 + NK cells, enhancing their effectors functions. Eur J Immunol 2020; 50:494-504. [PMID: 31834938 DOI: 10.1002/eji.201948233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023]
Abstract
NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jacquelyn E Freund
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inga Ravens
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Gunter Bernhardt
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Benedict J Chambers
- Center for Infectious Medicine, Department of Medicine, Huddinge, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinic for Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
13
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
14
|
Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annu Rev Immunol 2019; 36:549-578. [PMID: 29677469 DOI: 10.1146/annurev-immunol-042617-053344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.
Collapse
Affiliation(s)
- Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA;
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| |
Collapse
|
15
|
Chen Y, Wang J, Wang X, Li X, Song J, Fang J, Liu X, Liu T, Wang D, Li Q, Wen S, Ma D, Xia J, Luo L, Zheng SG, Cui J, Zeng G, Chen L, Cheng B, Wang Z. Pik3ip1 Is a Negative Immune Regulator that Inhibits Antitumor T-Cell Immunity. Clin Cancer Res 2019; 25:6180-6194. [PMID: 31350312 DOI: 10.1158/1078-0432.ccr-18-4134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple negative regulators restrict the ability of T cells to attack tumors. This work demonstrates the role of PI3K-interacting protein 1 (Pik3ip1) in restraining T-cell responses and antitumor immunity. EXPERIMENTAL DESIGN An anti-Pik3ip1 mAb was generated to identify the Pik3ip1 expression pattern of hematopoietic cells. Pik3ip1 -/- mice and a Pik3ip1 fusion protein were generated to investigate the effect of Pik3ip1 on T-cell-mediated antitumor immunity in MC38 and B16-F10 tumor models. Immunoblotting and confocal microscopy were used to identify inhibitory effects of Pik3ip1 on T-cell receptor (TCR) signaling. Pik3ip1 expression was quantified, and its impact on T-cell function in human tumors was measured. RESULTS We demonstrated that Pik3ip1 was predominantly expressed on T cells and served as an essential rheostat for T-cell-mediated immunity. A Pik3ip1 genetic deficiency led to enhanced T-cell responsiveness upon immunization with a neoantigen. Pik3ip1 -/- mice exhibited a marked increase in antitumor immunity and were resistant to tumor growth. Furthermore, Pik3ip1 extracellular domain fusion protein enhanced MC38 tumor growth was observed. Mechanistically, we found that Pik3ip1 inhibited TCR signaling by mediating the degradation of SLP76 through Pik3ip1 oligomerization via its extracellular region. Consistent with the results from the mouse models, PIK3IP1 expression correlated with T-cell dysfunction in human tumors. CONCLUSIONS Our data reveal a critical role for Pik3ip1 as a novel inhibitory immune regulator of T-cell responses and provide a potential molecular target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yichen Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jun Wang
- Department of Immunobiology and Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Xi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xinye Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jingjing Song
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xiangqi Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Dikan Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunxing Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shuqiong Wen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Da Ma
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Xia
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Liqun Luo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lieping Chen
- Department of Immunobiology and Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Bin Cheng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
16
|
Singh MD, Ni M, Sullivan JM, Hamerman JA, Campbell DJ. B cell adaptor for PI3-kinase (BCAP) modulates CD8 + effector and memory T cell differentiation. J Exp Med 2018; 215:2429-2443. [PMID: 30093532 PMCID: PMC6122975 DOI: 10.1084/jem.20171820] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Singh et al. show that expression of B cell adaptor for PI3-kinase (BCAP) is induced upon T cell activation and that this helps control effector and memory CD8+ T cell differentiation. CD8+ T cells respond to signals via the T cell receptor (TCR), costimulatory molecules, and immunoregulatory cytokines by developing into diverse populations of effector and memory cells. The relative strength of phosphoinositide 3-kinase (PI3K) signaling early in the T cell response can dramatically influence downstream effector and memory T cell differentiation. We show that initial PI3K signaling during T cell activation results in up-regulation of the signaling scaffold B cell adaptor for PI3K (BCAP), which further potentiates PI3K signaling and promotes the accumulation of CD8+ T cells with a terminally differentiated effector phenotype. Accordingly, BCAP-deficient CD8+ T cells have attenuated clonal expansion and altered effector and memory T cell development following infection with Listeria monocytogenes. Thus, induction of BCAP serves as a positive feedback circuit to enhance PI3K signaling in activated CD8+ T cells, thereby acting as a molecular checkpoint regulating effector and memory T cell development.
Collapse
Affiliation(s)
- Mark D Singh
- Immunology Program, Benaroya Research Institute, Seattle, WA
| | - Minjian Ni
- Immunology Program, Benaroya Research Institute, Seattle, WA
| | - Jenna M Sullivan
- Immunology Program, Benaroya Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA .,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
17
|
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol Psychiatry 2017; 22:836-849. [PMID: 27240531 PMCID: PMC5508252 DOI: 10.1038/mp.2016.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.
Collapse
|
18
|
Vacaflores A, Freedman SN, Chapman NM, Houtman JCD. Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production. Mol Immunol 2016; 81:1-15. [PMID: 27883938 DOI: 10.1016/j.molimm.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 10/24/2022]
Abstract
During the immune response to pathogens and autoantigens, CD8T cells are exposed to numerous inflammatory agents including the cytokine IL-12. Previous studies have focused on how IL-12 regulates T cell functions when present during or after the activation of the T cell receptor (TCR). However, recent studies suggest that prior exposure to IL-12 also alters the TCR responsiveness of murine T cells. Whether similar phenomena occur in human activated CD8T cells and the mechanisms mediating these effects remain unexplored. In this study, we observed that pretreatment of human activated CD8T cells with IL-12 results in increased cytokine mRNA and protein production following subsequent TCR challenge. The potentiation of TCR-mediated cytokine release was transient and required low doses of IL-12 for at least 24h. Mechanistically, prior exposure to IL-12 increased the TCR induced activation of select MAPKs and AKT without altering the activation of more proximal TCR signaling molecules, suggesting that the IL-12 mediated changes in TCR signaling are responsible for the increased production of cytokines. Our data suggest that prior treatment with IL-12 potentiates human CD8T cell responses at sites of infection and inflammation, expanding our understanding of the function of this clinically important cytokine.
Collapse
Affiliation(s)
- Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
19
|
Zhang MS, Sandouk A, Houtman JCD. Glycerol Monolaurate (GML) inhibits human T cell signaling and function by disrupting lipid dynamics. Sci Rep 2016; 6:30225. [PMID: 27456316 PMCID: PMC4960522 DOI: 10.1038/srep30225] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid widely utilized in food, cosmetics, and homeopathic supplements. GML is a potent antimicrobial agent that targets a range of bacteria, fungi, and enveloped viruses but select findings suggest that GML also has immunomodulatory functions. In this study, we have mechanistically examined if GML affects the signaling and functional output of human primary T cells. We found that GML potently altered order and disorder dynamics in the plasma membrane that resulted in reduced formation of LAT, PLC-γ, and AKT microclusters. Altered membrane events induced selective inhibition of TCR-induced phosphorylation of regulatory P85 subunit of PI3K and AKT as well as abrogated calcium influx. Ultimately, GML treatment potently reduced TCR-induced production of IL-2, IFN-γ, TNF-α, and IL-10. Our data reveal that the widely used anti-microbial agent GML also alters the lipid dynamics of human T cells, leading to their defective signaling and function.
Collapse
Affiliation(s)
- Michael S Zhang
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aline Sandouk
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jon C D Houtman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Jung SH, Yoo EH, Yu MJ, Song HM, Kang HY, Cho JY, Lee JR. ARAP, a Novel Adaptor Protein, Is Required for TCR Signaling and Integrin-Mediated Adhesion. THE JOURNAL OF IMMUNOLOGY 2016; 197:942-52. [PMID: 27335501 DOI: 10.4049/jimmunol.1501913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
Abstract
A novel adaptor protein was identified by analyzing phosphotyrosine proteomes from membrane rafts of activated T cells. This protein showed sequence similarity to a well-known T cell adaptor protein, adhesion and degranulation-promoting adaptor protein (ADAP); therefore, the novel protein was designated activation-dependent, raft-recruited ADAP-like phosphoprotein (ARAP). Suppression of ARAP impaired the major signaling pathways downstream of the TCR. ARAP associated with the Src homology 2 domain of Src homology 2-containing leukocyte protein of 76 kDa via the phosphorylation of two YDDV motifs in response to TCR stimulation. ARAP also mediated integrin activation but was not involved in actin polymerization. The results of this study indicate that a novel T cell adaptor protein, ARAP, plays a unique role in T cells as a part of both the proximal activation signaling and inside-out signaling pathways that result in integrin activation and T cell adhesion.
Collapse
Affiliation(s)
- Seung Hee Jung
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Hye Yoo
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Mi Jin Yu
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Hyeon Myeong Song
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yoon Kang
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| |
Collapse
|
21
|
Lee MJ, Yoshimoto E, Saijo S, Iwakura Y, Lin X, Katz HR, Kanaoka Y, Barrett NA. Phosphoinositide 3-Kinase δ Regulates Dectin-2 Signaling and the Generation of Th2 and Th17 Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:278-87. [PMID: 27194783 DOI: 10.4049/jimmunol.1502485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/27/2016] [Indexed: 11/19/2022]
Abstract
The C-type lectin receptor Dectin-2 can trigger the leukotriene C4 synthase-dependent generation of cysteinyl leukotrienes and the caspase-associated recruitment domain 9- and NF-κB-dependent generation of cytokines, such as IL-23, IL-6, and TNF-α, to promote Th2 and Th17 immunity, respectively. Dectin-2 activation also elicits the type 2 cytokine IL-33, but the mechanism by which Dectin-2 induces these diverse innate mediators is poorly understood. In this study, we identify a common upstream requirement for PI3Kδ activity for the generation of each Dectin-2-dependent mediator elicited by the house dust mite species, Dermatophagoides farinae, using both pharmacologic inhibition and small interfering RNA knockdown of PI3Kδ in bone marrow-derived dendritic cells. PI3Kδ activity depends on spleen tyrosine kinase (Syk) and regulates the activity of protein kinase Cδ, indicating that PI3Kδ is a proximal Syk-dependent signaling intermediate. Inhibition of PI3Kδ also reduces cysteinyl leukotrienes and cytokines elicited by Dectin-2 cross-linking, confirming the importance of this molecule in Dectin-2 signaling. Using an adoptive transfer model, we demonstrate that inhibition of PI3Kδ profoundly reduces the capacity of bone marrow-derived dendritic cells to sensitize recipient mice for Th2 and Th17 pulmonary inflammation in response to D. farinae Furthermore, administration of a PI3Kδ inhibitor during the sensitization of wild-type mice prevents the generation of D. farinae-induced pulmonary inflammation. These results demonstrate that PI3Kδ regulates Dectin-2 signaling and its dendritic cell function.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Medicine, Harvard Medical School, Boston, MA 02115; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Eri Yoshimoto
- Department of Medicine, Harvard Medical School, Boston, MA 02115; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Howard R Katz
- Department of Medicine, Harvard Medical School, Boston, MA 02115; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School, Boston, MA 02115; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115;
| |
Collapse
|
22
|
Tan JC, Armstrong NJ, Yuan FF, Flower RL, Dyer WB. Identification of genetic polymorphisms that predict responder/non-responder profiles to the RhD antigen. Mol Immunol 2015; 68:628-33. [DOI: 10.1016/j.molimm.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
|
23
|
Bilal MY, Houtman JCD. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production. Front Immunol 2015; 6:141. [PMID: 25870599 PMCID: PMC4378308 DOI: 10.3389/fimmu.2015.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/16/2022] Open
Abstract
GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.
Collapse
Affiliation(s)
- Mahmood Yousif Bilal
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA ; Department of Microbiology, Carver College of Medicine, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
24
|
Bilal MY, Zhang EY, Dinkel B, Hardy D, Yankee TM, Houtman JCD. GADS is required for TCR-mediated calcium influx and cytokine release, but not cellular adhesion, in human T cells. Cell Signal 2015; 27:841-50. [PMID: 25636200 DOI: 10.1016/j.cellsig.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
Abstract
GRB2 related adaptor protein downstream of Shc (GADS) is a member of the GRB2 family of adaptors and is critical for TCR-induced signaling. The current model is that GADS recruits SLP-76 to the LAT complex, which facilitates the phosphorylation of SLP-76, the activation of PLC-γ1, T cell adhesion and cytokine production. However, this model is largely based on studies of disruption of the GADS/SLP-76 interaction and murine T cell differentiation in GADS deficient mice. The role of GADS in mediating TCR-induced signals in human CD4+ T cells has not been thoroughly investigated. In this study, we have suppressed the expression of GADS in human CD4+ HuT78 T cells. GADS deficient HuT78 T cells displayed similar levels of TCR-induced SLP-76 and PLC-γ1 phosphorylation but exhibited substantial decrease in TCR-induced IL-2 and IFN-γ release. The defect in cytokine production occurred because of impaired calcium mobilization due to reduced recruitment of SLP-76 and PLC-γ1 to the LAT complex. Surprisingly, both GADS deficient HuT78 and GADS deficient primary murine CD8+ T cells had similar TCR-induced adhesion when compared to control T cells. Overall, our results show that GADS is required for calcium influx and cytokine production, but not cellular adhesion, in human CD4+ T cells, suggesting that the current model for T cell regulation by GADS is incomplete.
Collapse
Affiliation(s)
- Mahmood Y Bilal
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Elizabeth Y Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Brittney Dinkel
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Daimon Hardy
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
25
|
Chapman NM, Yoder AN, Barbón KM, Bilal MY, Connolly SF, Houtman JCD. Proline-rich tyrosine kinase 2 controls PI3-kinase activation downstream of the T cell antigen receptor in human T cells. J Leukoc Biol 2014; 97:285-96. [PMID: 25387834 DOI: 10.1189/jlb.2a1013-568rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TCR-induced signaling controls T cell activation that drives adaptive immunity against infections, but it can also induce dysfunctional T cell responses that promote pathologic disease. The PI3K pathway regulates many downstream effector responses after TCR stimulation. However, the molecular mechanisms that induce PI3K function downstream of the TCR are not fully understood. We have previously shown that Pyk2 is activated downstream of the TCR in a PI3K-independent manner. Although Pyk2 controls adhesion, proliferation, and cytokine production in T cells, the mechanisms by which it controls these processes are not known. In this study, we generated Pyk2-deficient human T cells to elucidate further the role that this kinase plays in TCR-induced effector functions and signaling. We observed that Pyk2 localized with the p85 regulatory subunit of PI3K at the LAT complex and that PI3K-dependent signaling was impaired in Pyk2-deficient T cells. Likewise, functions downstream of PI3K, including IFN-γ production and proliferation, were also suppressed in human T cells deficient in Pyk2. Collectively, these data demonstrate that Pyk2 is a critical regulator of PI3K function downstream of the TCR.
Collapse
Affiliation(s)
- Nicole M Chapman
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ashley N Yoder
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kathryn M Barbón
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mahmood Y Bilal
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sean F Connolly
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jon C D Houtman
- *Interdisciplinary Graduate Program in Immunology and Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
27
|
Tomar N, De RK. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. PLoS One 2013; 8:e80918. [PMID: 24324645 PMCID: PMC3855681 DOI: 10.1371/journal.pone.0080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
28
|
Chapman NM, Connolly SF, Reinl EL, Houtman JCD. Focal adhesion kinase negatively regulates Lck function downstream of the T cell antigen receptor. THE JOURNAL OF IMMUNOLOGY 2013; 191:6208-21. [PMID: 24227778 DOI: 10.4049/jimmunol.1301587] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Focal adhesion kinase (FAK) is a critical regulator of signal transduction in multiple cell types. Although this protein is activated upon TCR engagement, the cellular function that FAK plays in mature human T cells is unknown. By suppressing the function of FAK, we revealed that FAK inhibits TCR-mediated signaling by recruiting C-terminal Src kinase to the membrane and/or receptor complex following TCR activation. Thus, in the absence of FAK, the inhibitory phosphorylation of Lck and/or Fyn is impaired. Together, these data highlight a novel role for FAK as a negative regulator TCR function in human T cells. These results also suggest that changes in FAK expression could modulate sensitivity to TCR stimulation and contribute to the progression of T cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | | | | | | |
Collapse
|
29
|
Le Floc'h A, Tanaka Y, Bantilan NS, Voisinne G, Altan-Bonnet G, Fukui Y, Huse M. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. ACTA ACUST UNITED AC 2013; 210:2721-37. [PMID: 24190432 PMCID: PMC3832928 DOI: 10.1084/jem.20131324] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In T cells, PI3K activation in the periphery of the immune synapse leads to PIP3 accumulation that promotes actin polymerization in a pathway important for cytotoxic function. The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Immunology Program, 2 Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | | | | | | | |
Collapse
|
30
|
Tremblay MM, Bilal MY, Houtman JCD. Prior TLR5 induction in human T cells results in a transient potentiation of subsequent TCR-induced cytokine production. Mol Immunol 2013; 57:161-70. [PMID: 24128895 DOI: 10.1016/j.molimm.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
Abstract
Activation of TLRs by components required for pathogen viability results in increased inflammation and an enhanced immune response to infection. Unlike their effects on other immune cells, TLR activation in the absence of T cell antigen receptor (TCR) induction has little effect on T cell activity. Instead, the simultaneous induction of TLR and TCR results in increased cytokine release compared to TCR treatment alone. Thus, the current model states that TLRs alter T cell function only if activated at the same time as the TCR. In this study, we tested the novel hypothesis that prior TLR induction can also alter TCR-mediated functions. We found that human T cells responded to ligands for TLR2 and TLR5. However, only prior TLR5 induction potentiated subsequent TCR-mediated cytokine production in human T cells. This response required at least 24h of TLR5 induction and lasted for approximately 24-36h after removal of a TLR5 ligand. Interestingly, prior TLR5 induction enhanced TCR-mediated activation of Akt without increasing Lck, LAT or ERK kinase phosphorylation. Together, our studies show that TLR5 induction leads to a transient increase in the sensitivity of T cells to TCR stimulation by selectively enhancing TCR-mediated Akt function, highlighting that timeframe when TLR5 can potentiate TCR-induced downstream functions are significantly longer that previously appreciated.
Collapse
Affiliation(s)
- Mikaela M Tremblay
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
31
|
Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect Immun 2013; 81:3912-22. [PMID: 23918783 DOI: 10.1128/iai.00533-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase-extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse.
Collapse
|
32
|
Chapman NM, Yoder AN, Houtman JCD. Non-catalytic functions of Pyk2 and Fyn regulate late stage adhesion in human T cells. PLoS One 2012; 7:e53011. [PMID: 23300847 PMCID: PMC3531412 DOI: 10.1371/journal.pone.0053011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022] Open
Abstract
T cell activation drives the protective immune response against pathogens, but is also critical for the development of pathological diseases in humans. Cytoskeletal changes are required for downstream functions in T cells, including proliferation, cytokine production, migration, spreading, and adhesion. Therefore, investigating the molecular mechanism of cytoskeletal changes is crucial for understanding the induction of T cell-driven immune responses and for developing therapies to treat immune disorders related to aberrant T cell activation. In this study, we used a plate-bound adhesion assay that incorporated near-infrared imaging technology to address how TCR signaling drives human T cell adhesion. Interestingly, we observed that T cells have weak adhesion early after TCR activation and that binding to the plate was significantly enhanced 30-60 minutes after receptor activation. This late stage of adhesion was mediated by actin polymerization but was surprisingly not dependent upon Src family kinase activity. By contrast, the non-catalytic functions of the kinases Fyn and Pyk2 were required for late stage human T cell adhesion. These data reveal a novel TCR-induced signaling pathway that controls cellular adhesion independent of the canonical TCR signaling cascade driven by tyrosine kinase activity.
Collapse
Affiliation(s)
- Nicole M. Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley N. Yoder
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. D. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bartelt RR, Houtman JCD. The adaptor protein LAT serves as an integration node for signaling pathways that drive T cell activation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 5:101-10. [PMID: 23150273 DOI: 10.1002/wsbm.1194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
T cells are essential for the adaptive immune response to pathogens. However, dysfunctional T cell activity has been implicated in numerous diseases, including the failure of organ transplants, allergic reactions, asthma, autoimmune disorders, and coronary artery disease. T cell responses to pathogens require the induction of the primary activating receptor, the T cell receptor (TCR), along with other costimulatory and adhesion receptors. Signal transduction pathways activated downstream of these receptors drive T cell responses required for the immune response and disease progression. A key question in our understanding of the mechanism of T cell activation is how signaling pathways emanating from multiple receptors integrate together to alter T cell effector functions. One integration node for intracellular signaling is the membrane-associated adaptor protein linker for the activation of T cells or LAT. Upon stimulation of the TCR and other receptors, LAT is phosphorylated at several tyrosines residues on its cytoplasmic tail. This leads to the binding of SH2 domain-containing proteins and their associated molecules and the formation of large multiprotein complexes. These dynamic and highly regulated signaling complexes facilitate the production of second messengers, activate downstream pathways, induce actin cytoskeleton polymerization, and stimulate the activity of multiple transcription factors. Thus, signaling pathways from several receptors feed into LAT, which then integrates this information and selectively induces pathways critical for T cell activation and the adaptive immune response.
Collapse
|
34
|
Cao L, Ding Y, Hung N, Yu K, Ritz A, Raphael BJ, Salomon AR. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS One 2012; 7:e46725. [PMID: 23071622 PMCID: PMC3469622 DOI: 10.1371/journal.pone.0046725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/07/2012] [Indexed: 12/14/2022] Open
Abstract
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Yiyuan Ding
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Norris Hung
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kebing Yu
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Anna Ritz
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
| | - Benjamin J. Raphael
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
| | - Arthur R. Salomon
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 2012; 28:9-18. [PMID: 22235780 DOI: 10.3109/02656736.2011.616182] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Clinical trials combining hyperthermia with radiation and/or chemotherapy for cancer treatment have resulted in improved overall survival and control of local recurrences. The contribution of thermally enhanced anti-immune function in these effects is of considerable interest, but not understood; studies on the fundamental effects of elevated temperature on immune effector cells are needed. The goal of this study is to investigate the potential of mild hyperthermia to impact tumour antigen-specific (Ag) effector CD8+ T cell functions. METHOD Pmel-1 Ag-specific CD8+ T cells were exposed to mild hyperthermia and tested for changes in IFN-γ production and cytotoxicity. Additionally, overall plasma membrane organisation and the phosphorylation of signalling proteins were also investigated following heat treatment. RESULTS Exposing effector Pmel-1-specific CD8+ T cells to mild hyperthermia (39.5°C) resulted in significantly enhanced Ag-specific IFN-γ production and tumour target cell killing compared to that seen using lower temperatures (33° and 37°C). Further, inhibition of protein synthesis during hyperthermia did not reduce subsequent Ag-induced IFN-γ production by CD8+ T cells. Correlated with these effects, we observed a distinct clustering of GM1(+) lipid microdomains at the plasma membrane and enhanced phosphorylation of LAT and PKCθ which may be related to an observed enhancement of Ag-specific effector CD8+ T cell IFN-γ gene transcription following mild hyperthermia. However, mitogen-mediated production of IFN-γ, which bypasses T cell receptor activation with antigen, was not enhanced. CONCLUSIONS Antigen-dependent effector T cell activity is enhanced following mild hyperthermia. These effects could potentially occur in patients being treated with thermal therapies. These data also provide support for the use of thermal therapy as an adjuvant for immunotherapies to improve CD8+ effector cell function.
Collapse
Affiliation(s)
- Thomas A Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|
36
|
Huang T, Wang J, Cai YD, Yu H, Chou KC. Hepatitis C virus network based classification of hepatocellular cirrhosis and carcinoma. PLoS One 2012; 7:e34460. [PMID: 22493692 PMCID: PMC3321022 DOI: 10.1371/journal.pone.0034460] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/01/2012] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a main risk factor for liver cirrhosis and hepatocellular carcinoma, particularly to those patients with chronic liver disease or injury. The similar etiology leads to a high correlation of the patients suffering from the disease of liver cirrhosis with those suffering from the disease of hepatocellular carcinoma. However, the biological mechanism for the relationship between these two kinds of diseases is not clear. The present study was initiated in an attempt to investigate into the HCV infection protein network, in hopes to find good biomarkers for diagnosing the two diseases as well as gain insights into their progression mechanisms. To realize this, two potential biomarker pools were defined: (i) the target genes of HCV, and (ii) the between genes on the shortest paths among the target genes of HCV. Meanwhile, a predictor was developed for identifying the liver tissue samples among the following three categories: (i) normal, (ii) cirrhosis, and (iii) hepatocellular carcinoma. Interestingly, it was observed that the identification accuracy was higher with the tissue samples defined by extracting the features from the second biomarker pool than that with the samples defined based on the first biomarker pool. The identification accuracy by the jackknife validation for the between-genes approach was 0.960, indicating that the novel approach holds a quite promising potential in helping find effective biomarkers for diagnosing the liver cirrhosis disease and the hepatocellular carcinoma disease. It may also provide useful insights for in-depth study of the biological mechanisms of HCV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|