1
|
Tarigan S, Sekarmila G, Apas, Sumarningsih, Tarigan R, Putri R, Setyawati DR. Challenges and strategies in the soluble expression of CTA1-(S14P5)4-DD and CTA1-(S21P2)4-DD fusion proteins as candidates for COVID-19 intranasal vaccines. PLoS One 2024; 19:e0306153. [PMID: 39724133 DOI: 10.1371/journal.pone.0306153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 12/28/2024] Open
Abstract
Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines. In this study, we constructed two fusion proteins containing CTA1, tandem repeat linear epitopes of the SARS-CoV-2 spike protein (S14P5 or S21P2), and DD. Structural predictions indicated that each component of the fusion proteins was compatible with its origin. In silico analyses predicted high solubility for both fusion proteins when overexpressed in Escherichia coli. However, contrary to these predictions, the constructs exhibited limited solubility. Lowering the cultivation temperature from 37°C to 18°C did not improve solubility. Inducing expression with IPTG at the early log phase significantly increased soluble CTA1-(S21P2)4-DD but not CTA1-(S14P5)4-DD. Adding non-denaturing detergents (Nonidet P40, Triton X100, or Tween 20) to the extraction buffer significantly enhanced solubility. Despite this, purification experiments yielded low amounts, only 1-2 mg/L of culture, due to substantial losses during the purification stages. These findings highlight the challenges and potential strategies for optimizing soluble expression of CTA1-DD fusion proteins for intranasal vaccines.
Collapse
Affiliation(s)
- Simson Tarigan
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Gita Sekarmila
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Apas
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Sumarningsih
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Ronald Tarigan
- School of Veterinary and Medical Sciences, IPB University, Bogor, Indonesia
| | - Riyandini Putri
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Damai Ria Setyawati
- Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| |
Collapse
|
2
|
Arabpour M, Paul S, Grauers Wiktorin H, Kaya M, Kiffin R, Lycke N, Hellstrand K, Martner A. An adjuvant-containing cDC1-targeted recombinant fusion vaccine conveys strong protection against murine melanoma growth and metastasis. Oncoimmunology 2022; 11:2115618. [PMID: 36046810 PMCID: PMC9423856 DOI: 10.1080/2162402x.2022.2115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Type 1 conventional dendritic cells (cDC1) efficiently cross-present antigens that prime cytotoxic CD8+ T cells. cDC1 therefore constitute conceivable targets in cancer vaccine development. We generated recombinant fusion cancer vaccines that aimed to concomitantly deliver tumor antigen and adjuvant to CD103+ migratory cDC1, following intranasal administration. The fusion vaccine constructs comprised a cDC1-targeting anti-CD103 single chain antibody (aCD103) and a cholera toxin A1 (CTA1) subunit adjuvant, fused with MHC class I and II- or class II-restricted tumor cell antigens to generate a CTA1-I/II-aCD103 vaccine and a CTA1-II-aCD103 vaccine. The immunostimulatory and anti-tumor efficacy of these vaccines was evaluated in murine B16F1-ovalbumin (OVA) melanoma models in C57BL/6 J mice. The CTA1-I/II-aCD103 vaccine was most efficacious and triggered robust tumor antigen-specific CD8+ T cell responses along with a Th17-polarized CD4+ T cell response. This vaccine construct reduced the local growth of implanted B16F1-OVA melanomas and efficiently prevented hematogenous lung metastasis after prophylactic and therapeutic vaccination. Anti-tumor effects of the CTA1-I/II-aCD103 vaccine were antigen-specific and long-lasting. These results imply that adjuvant-containing recombinant fusion vaccines that target and activate cDC1 trigger effective anti-tumor immunity to control tumor growth and metastasis.
Collapse
Affiliation(s)
- Mohammad Arabpour
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Lee J, Khang D. Mucosal delivery of nanovaccine strategy against COVID-19 and its variants. Acta Pharm Sin B 2022; 13:S2211-3835(22)00489-0. [PMID: 36438851 PMCID: PMC9676163 DOI: 10.1016/j.apsb.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.
Collapse
Affiliation(s)
- Junwoo Lee
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
4
|
Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience 2022; 25:105324. [PMID: 36304121 PMCID: PMC9593262 DOI: 10.1016/j.isci.2022.105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Efficient delivery of subunit vaccines to dendritic cells (DCs) is necessary to improve vaccine efficacy, because the vaccine antigen alone cannot induce sufficient protective immunity. Here, we identified DC-targeting peptides using a phage display system and demonstrated the potential of these peptides as antigen-delivery carriers to improve subunit vaccine effectiveness in mice. The fusion of antigen proteins and peptides with DC-targeting peptides induced strong antigen-specific IgG responses, even in the absence of adjuvants. In addition, the DC-targeting peptide improved the distribution of antigens to DCs and antigen presentation by DCs. The combined use of an adjuvant with a DC-targeting peptide improved the effectiveness of the vaccine. Furthermore, nucleolin, located on the DC surface, was identified as the receptor for DC-targeting peptide, and nucleolin was indispensable for the vaccine effect of the DC-targeting peptide. Overall, the findings of this study could be useful for developing subunit vaccines against infectious diseases. We successfully identified an efficient DC-targeting peptide using a phage display system Fusion of the peptide improves the efficacy of vaccine even in the absence of adjuvants The peptide improves the distribution of antigens to DCs and antigen presentation by DCs Nucleolin is indispensable for the vaccine effect of the DC-targeting peptide
Collapse
|
5
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
6
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Lightman SM, Peresie JL, Carlson LM, Holling GA, Honikel MM, Chavel CA, Nemeth MJ, Olejniczak SH, Lee KP. Indoleamine 2,3-dioxygenase 1 is essential for sustaining durable antibody responses. Immunity 2021; 54:2772-2783.e5. [PMID: 34788602 PMCID: PMC9323746 DOI: 10.1016/j.immuni.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023]
Abstract
Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.
Collapse
Affiliation(s)
- Shivana M. Lightman
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Jennifer L. Peresie
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Louise M. Carlson
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - G. Aaron Holling
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | | | - Colin A. Chavel
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
9
|
Cancro MP, Tomayko MM. Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol Rev 2021; 303:72-82. [PMID: 34396546 DOI: 10.1111/imr.13016] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Immunological memory is a composite of lasting antibody titers maintained by plasma cells in conjunction with memory T and B cells. Memory B cells are a critical reservoir for plasma cell generation in the secondary response. Identification of memory B cells requires that they be distinguished from naïve, activated, and germinal center precursors and from plasma cells. Memory B cells are heterogeneous in isotype usage, immunoglobulin mutational content, and phenotypic marker expression. Phenotypic subsets of memory B cells are defined by PD-L2, CD80, and CD73 expression in mice, by CD27 and FCRL4 expression in humans and by T-bet in both mice and humans. These subsets display marked functional heterogeneity, including the ability to rapidly differentiate into plasma cells versus seed germinal centers in the secondary response. Memory B cells are located in the spleen, blood, other lymphoid organs, and barrier tissues, and recent evidence indicates that some memory B cells may be dedicated tissue-resident populations. Open questions about memory B cell longevity, renewal and progenitor-successor relationships with plasma cells are discussed.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary M Tomayko
- Departments of Dermatology and Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Ratnapriya S, Perez-Greene E, Schifanella L, Herschhorn A. Adjuvant-mediated enhancement of the immune response to HIV vaccines. FEBS J 2021; 289:3317-3334. [PMID: 33705608 DOI: 10.1111/febs.15814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eva Perez-Greene
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Memory CD73+IgM+ B cells protect against Plasmodium yoelii infection and express Granzyme B. PLoS One 2020; 15:e0238493. [PMID: 32886698 PMCID: PMC7473529 DOI: 10.1371/journal.pone.0238493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
To better understand anti-malaria protective immune responses, we examined the cellular mechanisms that govern protective immunity in a murine Plasmodium yoelii 17X NL (PyNL) re-infection model. Initially, we confirmed that immune B cells generated during a primary PyNL infection were largely responsible for protection from a second PyNL infection. Using the previously identified memory B cell markers CD80, PD-L2, and CD73, we found an increase in the frequency of CD80-PD-L2-CD73+ B cells up to 55 days after a primary PyNL infection and at 4-6 days following a second PyNL infection. Moreover, injection of enriched immune CD19+CD73+ B cells into nonimmune mice were significantly more protective against a PyNL infection than CD73- B cells. Interestingly, a substantial fraction of these CD73+ B cells also expressed IgM and granzyme B, a biomolecule that has been increasingly associated with protective responses against malaria.
Collapse
|
12
|
Schussek S, Bernasconi V, Mattsson J, Wenzel UA, Strömberg A, Gribonika I, Schön K, Lycke NY. The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunol 2020; 13:545-557. [PMID: 31959882 PMCID: PMC7223721 DOI: 10.1038/s41385-020-0253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023]
Abstract
Vaccination of neonates and young infants is hampered by the relative immaturity of their immune systems and the lack of safe and efficacious vaccine adjuvants. Immaturity of the follicular dendritic cells (FDCs), in particular, appears to play a critical role for the inability to stimulate immune responses. Using the CD21mT/mG mouse model we found that at 7 days of life, FDCs exhibited a mature phenotype only in the Peyer´s patches (PP), but our unique adjuvant, CTA1-DD, effectively matured FDCs also in peripheral lymph nodes following systemic, as well as mucosal immunizations. This was a direct effect of complement receptor 2-binding to the FDC and a CTA1-enzyme-dependent enhancing effect on gene transcription, among which CR2, IL-6, ICAM-1, IL-1β, and CXCL13 encoding genes were upregulated. This way we achieved FDC maturation, increased germinal center B-cell- and Tfh responses, and enhanced specific antibody levels close to adult magnitudes. Oral priming immunization of neonates against influenza infection with CTA1-3M2e-DD effectively promoted anti-M2e-immunity and significantly reduced morbidity against a live virus challenge infection. To the best of our knowledge, this is the first study to demonstrate direct effects of an adjuvant on FDC gene transcriptional functions and the subsequent enhancement of neonatal immune responses.
Collapse
Affiliation(s)
- Sophie Schussek
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Mattsson
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Alexander Wenzel
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inta Gribonika
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Jash A, Zhou YW, Gerardo DK, Ripperger TJ, Parikh BA, Piersma S, Jamwal DR, Kiela PR, Boon ACM, Yokoyama WM, Hsieh CS, Bhattacharya D. ZBTB32 restrains antibody responses to murine cytomegalovirus infections, but not other repetitive challenges. Sci Rep 2019; 9:15257. [PMID: 31649328 PMCID: PMC6813321 DOI: 10.1038/s41598-019-51860-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
ZBTB32 is a transcription factor that is highly expressed by a subset of memory B cells and restrains the magnitude and duration of recall responses against hapten-protein conjugates. To define physiological contexts in which ZBTB32 acts, we assessed responses by Zbtb32-/- mice or bone marrow chimeras against a panel of chronic and acute challenges. Mixed bone marrow chimeras were established in which all B cells were derived from either Zbtb32-/- mice or control littermates. Chronic infection of Zbtb32-/- chimeras with murine cytomegalovirus led to nearly 20-fold higher antigen-specific IgG2b levels relative to controls by week 9 post-infection, despite similar viral loads. In contrast, IgA responses and specificities in the intestine, where memory B cells are repeatedly stimulated by commensal bacteria, were similar between Zbtb32-/- mice and control littermates. Finally, an infection and heterologous booster vaccination model revealed no role for ZBTB32 in restraining primary or recall antibody responses against influenza viruses. Thus, ZBTB32 does not limit recall responses to a number of physiological acute challenges, but does restrict antibody levels during chronic viral infections that periodically engage memory B cells. This restriction might selectively prevent recall responses against chronic infections from progressively overwhelming other antibody specificities.
Collapse
Affiliation(s)
- Arijita Jash
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - You W Zhou
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Diana K Gerardo
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Sytse Piersma
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Deepa R Jamwal
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Wayne M Yokoyama
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Chyi S Hsieh
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America. .,Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
14
|
Tomayko MM, Allman D. What B cell memories are made of. Curr Opin Immunol 2019; 57:58-64. [PMID: 30861463 DOI: 10.1016/j.coi.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In many ways, memory B cells represent the ultimate outcome of humoral immunity. Many of these cells express exceptionally high affinity antigen-specific B cell receptors for antigen, and these cells are a critical source of the long-lived plasma cells that secrete protective serum antibodies to protect against secondary exposure to pathogens and other life-threatening antigens. Evidence is now emerging that not all memory B cells are created via the same cellular pathways and molecular events. Similarly, it is becoming clear that different memory B cells can take on different functions, with some producing IgM rather than IgG antibodies upon reactivation, and others preferentially producing plasma cells rather than additional waves of memory B cells. With this review, we discuss the conceptual ides and early studies surrounding early work on B cell memory, then discuss the many pathways and functional attributes of subpopulations of memory B cells and current approaches to characterize these cells directly.
Collapse
Affiliation(s)
- Mary M Tomayko
- The Department of Dermatology, Yale University, New Haven, CT 06511, United States
| | - David Allman
- The Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and for the real world. Immunology 2019; 156:120-129. [PMID: 30488482 PMCID: PMC6328991 DOI: 10.1111/imm.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The production of pathogen-specific B cells and antibodies underlies protective immunity elicited by most vaccines and many infections. Humoral immunity follows a regulated process by which high-affinity antibody-secreting plasma cells and memory B cells are generated. Yet for certain pathogens, protective immunity is inefficiently generated and/or maintained. For example, Dengue virus infections lead to lasting immunity against re-infection by the same serotype. However, if infected with a different Dengue serotype, the individual is predisposed to more severe disease than if he/she was completely naive. As another example, both natural infections with or vaccination against malaria do not necessarily lead to lasting immunity, as the same individual can be re-infected many times over the course of a lifetime. In this review, we discuss how these real-world problems can both instruct and be informed by recent basic studies using model organisms and antigens. An emphasis is placed on protective epitopes and functional distinctions between memory B-cell subsets in both mice and humans. Using flavivirus and Plasmodium infections as examples, we also speculate on the differences between ineffective B-cell responses that actually occur in the real world, and perfect-world responses that would generate lasting immunity.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical SciencesWashington UniversitySt LouisMOUSA
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| | - Deepta Bhattacharya
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| |
Collapse
|
16
|
Intranasal inoculate of influenza virus vaccine against lethal virus challenge. Vaccine 2018; 36:4354-4361. [PMID: 29880240 DOI: 10.1016/j.vaccine.2018.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
Vaccine adjuvants are essential for enhancing immune responses during vaccination. However, only a limited number of safe and effective adjuvants, especially mucosal adjuvants, are available for use in vaccines. The development of a practically applicable mucosal adjuvant is therefore urgently needed. Here, we showed that the non-toxic CTA1-DD adjuvant, which combined the full enzymatic activity of the A1 subunit of cholera toxin (CT) with two immunoglobulin-binding domains of Staphylococcus aureus protein A (SpA), promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal administration with H1N1 split vaccine in mice. We demonstrated that CTA1-DD-adjuvant vaccine provided 100% protection against mortality and greatly reduced morbidity in a mouse model. We also showed that addition of CTA1-DD to the vaccine elicited significantly higher hemagglutination inhibition titers and IgG antibodies in sera than alum adjuvant. Furthermore, CTA1-DD significantly promoted the production of mucosal secretory IgA in lung lavages and vaginal lavages. We also showed that CTA1-DD could be used as a mucosal adjuvant to enhance T cell responses. Our results clearly indicated that CTA1-DD contributed to the elicitation of a protective cell-mediated immune response required for efficacious vaccination against influenza virus, which suggested that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for respiratory diseases and other mucosal diseases.
Collapse
|
17
|
ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol 2018; 41:42-51. [PMID: 29702466 DOI: 10.1016/j.coph.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
Abstract
Most infections are caused by pathogens that access the body at mucosal sites. Hence, development of mucosal vaccines to prevent local infection or invasion of pathogens appears highly warranted, especially since only mucosal immunization will stimulate strong local IgA responses and tissue resident memory CD4 and CD8 T cells. The most significant obstacle to developing such vaccines is the lack of approved adjuvants that can effectively and safely enhance relevant mucosal and systemic immune responses. The most potent mucosal adjuvants known today are the adenosine diphosphate (ADP)-ribosylating bacterial enterotoxins cholera toxin (CT) and Escherichia coli heat-labile toxins (LTs). Unfortunately, these molecules are also very toxic, which precludes their clinical use. However, much effort has been devoted to developing derivatives of these enterotoxins with low or no toxicity and retained adjuvant activity. Although it is fair to say that we know more about how these toxins affect the immune system than ever before, we still lack a detailed understanding of how and why these toxins are effective adjuvants. In the present review, we provide a state-of-the-art overview of the mechanism of action of the holotoxins and the strategies used for improving the toxin-based adjuvants.
Collapse
|
18
|
M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol 2018; 11:273-289. [PMID: 28295019 DOI: 10.1038/mi.2017.14] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
Matrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-Ad restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice. Whereas some M2e-tetramer-specific memory CD4 T cells resided in spleen and lymph nodes, the majority were lung-resident Th17 cells, that rapidly expanded upon a viral challenge infection. Indeed, immunized IL-17A-/- mice were significantly less well protected compared with wild-type mice despite exhibiting comparable antibody levels. Similarly, poor protection was also observed in congenic Balb/B (H-2b) mice, which failed to develop M2e-specific CD4 T cells, but exhibited comparable antibody levels. Lung-resident CD69+ CD103low M2e-specific memory CD4 T cells were αβ TCR+ and 50% were Th17 cells that were associated with an early influx of neutrophils after virus challenge. Adoptively transferred M2e memory CD4 T cells were strong helper T cells, which accelerated M2e- but more importantly also hemagglutinin-specific IgG production. Thus, for the first time we demonstrate that M2e-specific memory CD4 T cells are broadly protective.
Collapse
|
19
|
Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 2017; 10:1361-1374. [PMID: 28745325 DOI: 10.1038/mi.2017.62] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/20/2017] [Indexed: 02/04/2023]
Abstract
The majority of activated B cells differentiate into IgA plasma cells, with the gut being the largest producer of immunoglobulin in the body. Secretory IgA antibodies have numerous critical functions of which protection against infections and the role for establishing a healthy microbiota appear most important. Expanding our knowledge of the regulation of IgA B-cell responses and how effective mucosal vaccines can be designed are of critical importance. Here we discuss recent developments in the field that shed light on the uniqueness and complexity of mucosal IgA responses and the control of protective IgA responses in the gut, specifically.
Collapse
Affiliation(s)
- N Y Lycke
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - M Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
D'Souza L, Gupta SL, Bal V, Rath S, George A. CD73 expression identifies a subset of IgM + antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent. Immunology 2017; 152:602-612. [PMID: 28746783 DOI: 10.1111/imm.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM+ cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73+ IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory.
Collapse
Affiliation(s)
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
21
|
Patil HP, Herrera Rodriguez J, de Vries-Idema J, Meijerhof T, Frijlink HW, Hinrichs WLJ, Huckriede A. Adjuvantation of Pulmonary-Administered Influenza Vaccine with GPI-0100 Primarily Stimulates Antibody Production and Memory B Cell Proliferation. Vaccines (Basel) 2017; 5:vaccines5030019. [PMID: 28749414 PMCID: PMC5620550 DOI: 10.3390/vaccines5030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Adjuvants are key components in vaccines, they help in reducing the required antigen dose but also modulate the phenotype of the induced immune response. We previously showed that GPI-0100, a saponin-derived adjuvant, enhances antigen-specific mucosal and systemic antibody responses to influenza subunit and whole inactivated influenza virus (WIV) vaccine administered via the pulmonary route. However, the impact of the GPI-0100 dose on immune stimulation and the immune mechanisms stimulated by GPI-0100 along with antigen are poorly understood. Therefore, in this study we immunized C57BL/6 mice via the pulmonary route with vaccine consisting of WIV combined with increasing amounts of GPI-0100, formulated as a dry powder. Adjuvantation of WIV enhanced influenza-specific mucosal and systemic immune responses, with intermediate doses of 5 and 7.5 μg GPI-0100 being most effective. The predominant antibody subtype induced by GPI-0100-adjuvanted vaccine was IgG1. Compared to non-adjuvanted vaccine, GPI-0100-adjuvanted WIV vaccine gave rise to higher numbers of antigen-specific IgA- but not IgG-producing B cells in the lungs along with better mucosal and systemic memory B cell responses. The GPI-0100 dose was negatively correlated with the number of influenza-specific IFNγ- and IL17-producing T cells and positively correlated with the number of IL4-producing T cells observed after immunization and challenge. Overall, our results show that adjuvantation of pulmonary-delivered WIV with GPI-0100 mostly affects B cell responses and effectively induces B cell memory.
Collapse
Affiliation(s)
- Harshad P Patil
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, Maharashtra, India.
| | - José Herrera Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
22
|
O'Meara CP, Armitage CW, Andrew DW, Kollipara A, Lycke NY, Potter AA, Gerdts V, Petrovsky N, Beagley KW. Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a Chlamydia genital tract infection and pathology. Vaccine 2017; 35:3883-3888. [PMID: 28602608 DOI: 10.1016/j.vaccine.2017.05.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
Abstract
Pathogens with a complex lifecycles can effectively evade host immunity in part due to each developmental stage expressing unique sets of antigens. Multisubunit vaccines incorporating signature antigens reflecting distinct developmental stages (multistage vaccines) have proven effective against viral, bacterial and parasitic infection at preventing pathogen evasion of host immunity. Chlamydia trachomatis is characterized by a biphasic extra/intracellular developmental cycle and an acute/persistent (latent) metabolic state; hence a multistage vaccine may prevent immune evasion and enhance clearance. Here we tested the efficacy of a multistage vaccine containing outer membrane (MOMP and PmpG), type three secretion system (T3SS) (CdsF and TC0873) and inclusion membrane proteins (IncA and TC0500) in mice against an intravaginal challenge with Chlamydia muridarum. Comparison of single (eg. MOMP) and double antigen vaccines (eg. MOMP and PmpG), largely targeting the extracellular stage, elicited significant yet comparable protection against vaginal shedding when compared to unimmunized control mice. Utilization of different adjuvants (ISCOMATRIX - IMX, PCEP/polyI:C/IDR1002 - VIDO, CTA1-DD and ADVAX) and numerous immunization routes (subcutaneous - SQ and intranasal - IN) further enhanced protection against infection. However, a multistage vaccine elicited significantly greater protection against vaginal shedding and upper genital tract pathology than vaccines targeting only extra- or intracellular stages. This indicates that protection elicited by a vaccine targeting extracellular chlamydial antigens could be improved by including chlamydial antigen expressed during intracellular phase.
Collapse
Affiliation(s)
- Connor P O'Meara
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia; Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Wüttemburg, Germany
| | - Charles W Armitage
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Dean W Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Avinash Kollipara
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Centre, University of Gothenburg, Sweden
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, Canada
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Adelaide, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Abstract
We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.
Collapse
Affiliation(s)
- Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
24
|
Lemke A, Kraft M, Roth K, Riedel R, Lammerding D, Hauser AE. Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol 2016; 9:83-97. [PMID: 25943272 DOI: 10.1038/mi.2015.38] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 03/24/2015] [Indexed: 02/04/2023]
Abstract
During systemic immune responses, plasma blasts are generated in secondary lymphoid organs and migrate to the bone marrow, where they can become long-lived, being responsible for the maintenance of long-term antibody titers. Plasma blasts generated in mucosal immune responses of the small intestine home to the lamina propria (LP), producing mainly immunoglobulin A. The migration of these antibody-secreting cells is well characterized during acute immune responses. Less is known about their lifetime and contribution to the long-lived bone marrow compartment. Here we investigate the lifetime of plasma cells (PCs) and the relationship between the PC compartments of the gut and bone marrow after oral immunization. Our findings indicate that PCs in the LP can survive for extended time periods. PCs specific for orally administered antigens can be detected in the bone marrow for at least 9 months after immunization, indicating that the mucosal PC compartment can contribute to the long-lived PC pool in this organ, independent of the participation of splenic B cells. Our findings suggest that the compartmentalization between mucosal and systemic PC pools is less strict than previously thought. This may have implications for the development of vaccines as well as for autoantibody-mediated diseases.
Collapse
Affiliation(s)
- A Lemke
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - M Kraft
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - K Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - R Riedel
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - D Lammerding
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - A E Hauser
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
25
|
Fang Y, Xiang Z. Roles and relevance of mast cells in infection and vaccination. J Biomed Res 2015; 30:253-63. [PMID: 26565602 PMCID: PMC4946316 DOI: 10.7555/jbr.30.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 01/06/2023] Open
Abstract
In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yu Fang
- Department of Microbiology and Immunology; Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
26
|
Doria-Rose NA, Joyce MG. Strategies to guide the antibody affinity maturation process. Curr Opin Virol 2015; 11:137-47. [PMID: 25913818 DOI: 10.1016/j.coviro.2015.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Norton EB, Bauer DL, Weldon WC, Oberste MS, Lawson LB, Clements JD. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine 2015; 33:1909-15. [DOI: 10.1016/j.vaccine.2015.02.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
28
|
Long-term immunogenicity of an inactivated split-virion 2009 pandemic influenza A H1N1 virus vaccine with or without aluminum adjuvant in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:327-35. [PMID: 25589552 DOI: 10.1128/cvi.00662-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD(50)]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.
Collapse
|
29
|
Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H, Kleinstein SH, Good-Jacobson KL, Shlomchik MJ. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat Immunol 2014; 15:631-7. [PMID: 24880458 PMCID: PMC4105703 DOI: 10.1038/ni.2914] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) are long-lived sources of rapid, isotype-switched secondary antibody-forming cell (AFC) responses. Whether MBCs homogeneously retain the ability to self-renew and terminally differentiate or if these functions are compartmentalized into MBC subsets has remained unclear. It has been suggested that antibody isotype controls MBC differentiation upon restimulation. Here we demonstrate that subcategorizing MBCs on the basis of their expression of CD80 and PD-L2, independently of isotype, identified MBC subsets with distinct functions upon rechallenge. CD80(+)PD-L2(+) MBCs differentiated rapidly into AFCs but did not generate germinal centers (GCs); conversely, CD80(-)PD-L2(-) MBCs generated few early AFCs but robustly seeded GCs. The gene-expression patterns of the subsets supported both the identity and function of these distinct MBC types. Hence, the differentiation and regeneration of MBCs are compartmentalized.
Collapse
Affiliation(s)
| | - Saheli Sadanand
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Florian J Weisel
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mary M Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hailong Meng
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Steven H Kleinstein
- 1] Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Kim L Good-Jacobson
- 1] Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| | - Mark J Shlomchik
- 1] Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| |
Collapse
|
30
|
Wan Y, Ren X, Ren Y, Wang J, Hu Z, Xie X, Xu J. As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity- and IL-6-dependent manner. Vaccine 2014; 32:2173-80. [DOI: 10.1016/j.vaccine.2014.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/30/2023]
|
31
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization. Mucosal Immunol 2013; 6:1168-78. [PMID: 23571505 DOI: 10.1038/mi.2013.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023]
Abstract
We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.
Collapse
|
33
|
Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. The longevity of Th2 humoral response induced by proteases natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS One 2013; 8:e67135. [PMID: 23840604 PMCID: PMC3696013 DOI: 10.1371/journal.pone.0067135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/16/2013] [Indexed: 11/22/2022] Open
Abstract
The generation of long-lived antibody-secreting cells (ASC) and memory B cells are critical events for an effective vaccine and the choice of adjuvant can influence these processes. Various cellular and molecular mechanism involved in the protease action that determine Th2 responses have been identified. However, direct or indirect actions in the regulation of the induction, survival and longevity of ASC in differential compartments remain largely unknown. We investigated whether the proteolytic activity of proteins are determinant for the modulation of the memory immune response in mice, promoting the differentiation of memory B cells to terminally differentiated end stage cells. Here, we show that the proteolytic activity of Natterins, from the venom of Thalassophryne nattereri Brazilian fish, besides inducing a Th2 response with plasmatic titers of high-affinity antigen-specific IgE over extended periods is sufficient for the generation of signals that contribute to the formation of a survival niche in the spleen, essential for the longevity of the main subtype of ASC with B220neg phenotype.
Collapse
Affiliation(s)
- Evilin Naname Komegae
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
34
|
Ren W, Lagerstedt K, Grimsholm O, Stern A, Sun JB, Fang Y, Xiang Z, Mårtensson IL. Uncoupling of natural IgE production and CD23 surface expression levels. PLoS One 2013; 8:e62851. [PMID: 23646151 PMCID: PMC3639908 DOI: 10.1371/journal.pone.0062851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/26/2013] [Indexed: 11/19/2022] Open
Abstract
CD23, the low affinity receptor for immunoglobulin E (IgE), has been proposed to play a critical role in the regulation of IgE production, based on altered IgE levels in CD23-deficient mice and transgenic mouse models, as well as in mouse strains with mutations in the CD23 gene, e.g. 129 substrains. Here, we have investigated a mouse line termed LxT1 that expresses reduced CD23 surface levels on B cells, and its influence on natural IgE production. Extensive phenotypic analysis showed that CD23 surface expression was reduced in LxT1 compared to the control, without affecting B cell development in general. This CD23(low) surface level in LxT1 mice is not as a result of reduced CD23 mRNA expression levels or intracellular accumulation, but linked to a recessive locus, a 129-derived region spanning 28 Mb on chromosome 8, which includes the CD23 gene. Sequence analysis confirmed five mutations within the CD23 coding region in LxT1 mice, the same as those present in New Zealand Black (NZB) and 129 mice. However, this CD23(low) phenotype was not observed in all 129 substrains despite carrying these same CD23 mutations in the coding region. Moreover, serum IgE levels in LxT1 mice are as low as those in the C57BL/6 (B6) strain, and much lower than those in 129 substrains. These data indicate that the CD23 surface level and serum IgE level are uncoupled and that neither is directly regulated by the mutations within the CD23 coding region. This study suggests that caution should be taken when interpreting the immunological data derived from mice with different genetic background, especially if the gene of interest is thought to influence CD23 surface expression or serum IgE level.
Collapse
Affiliation(s)
- Weicheng Ren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Lagerstedt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna Stern
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jia-Bin Sun
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Yu Fang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Mucosal Immunobiology and Vaccine Center, University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Zou Xiang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Mucosal Immunobiology and Vaccine Center, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Mucosal Immunobiology and Vaccine Center, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
35
|
Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 2013; 31:1999-2007. [PMID: 23306367 DOI: 10.1016/j.vaccine.2012.12.077] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/24/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022]
Abstract
Although current HBV vaccines have an outstanding record of safety and efficacy, reduced immunogenicity is a problem in those of older age, or having renal impairment or diabetes mellitus. In this study, we tested the ability of Advax™ adjuvant, a novel polysaccharide adjuvant based on delta inulin, to enhance the immunogenicity of hepatitis B surface antigen (HBs) in mice and guinea pigs by comparison to the traditional alum adjuvant. Advax™ provided antigen-sparing, significantly enhanced both anti-HBs antibody titers, and anti-HBs CD4 and CD8 T-cells, with increases in Th1, Th2 and Th17 cytokine responses. Unlike alum, the adjuvant effect of Advax™ was seen even when injected 24h before the HBs antigen. Advax™ adjuvant similarly enhanced humoral and cellular immune responses in guinea pigs to a third generation preS-HBs antigen. Advax™ adjuvant when combined with HBs antigen could provide enhanced protection over current generation HBV vaccines for immunization of low responder populations.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia
| | | | | | | |
Collapse
|
36
|
Re-utilization of germinal centers in multiple Peyer's patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol 2013; 6:122-35. [PMID: 22785230 DOI: 10.1038/mi.2012.56] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Whereas gut IgA responses to the microbiota may be multi-centered and diverse, little is known about IgA responses to T-cell-dependent antigens following oral immunizations. Using a novel approach, gut IgA responses to oral hapten (4-hydroxy-3-nitrophenyl)acetyl-cholera toxin (NP-CT) conjugates were followed at the cellular and molecular level. Surprisingly, these responses were highly synchronized, strongly oligoclonal, and dominated by affinity matured cells. Extensive lineage trees revealed clonal relationships between NP-specific IgA cells in gut inductive and effector sites, suggesting expansion of the same B-cell clone in multiple Peyer's patches (PPs). Adoptive transfer experiments showed that this was achieved through re-utilization of already existing germinal centers (GCs) in multiple PPs by previously activated GC GL7(+) B cells, provided oral NP-CT was given before cell transfer. Taken together, these results explain why repeated oral immunizations are mandatory for an effective oral vaccine.
Collapse
|
37
|
Huntimer L, Wilson Welder JH, Ross K, Carrillo-Conde B, Pruisner L, Wang C, Narasimhan B, Wannemuehler MJ, Ramer-Tait AE. Single immunization with a suboptimal antigen dose encapsulated into polyanhydride microparticles promotes high titer and avid antibody responses. J Biomed Mater Res B Appl Biomater 2012; 101:91-8. [DOI: 10.1002/jbm.b.32820] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022]
|
38
|
Abstract
Because Peyer's patches (PP) are the main inductive sites for gut IgA responses we have focused this review on what we know about the function of PP germinal centers (GC). The vast majority of IgA gene sequences in the gut lamina propria (LP) are heavily mutated arguing for an origin in GC. Because PP GC formation is dependent on the presence of CD4 T cells, we speculate that all IgA responses in the normal gut are directly or indirectly T cell-dependent (TD). We hypothesize that the CD4 T cell involvement in gut IgA responses against the microbiota is different from that in systemic responses since cognate T-B cell interactions appear not to be required. In the absence of cognate interactions the function of CD4 follicular helper T cells (Tfh) in PP GC is unclear. However, production of IL-21 and IL-6 is more pronounced than in peripheral lymph nodes. Importantly, we discuss how multiple PP are involved in generating specific IgA responses to TD antigens given orally. Recently we found that oral immunization with NP-hapten conjugated to cholera toxin (NP-CT) stimulated a strong highly synchronized, oligoclonal and affinity matured IgA response. This was achieved through re-utilization of GC in multiple PP as GC IgA B cells emigrated into already established GC. Clonally related B cells were present in both inductive and effector lymphoid tissues in the gut and clonal trees involving multiple PP could be constructed in individual mice. Through adoptive transfer of B1-8(hi) NP-specific B cells we demonstrated that GL7(+) PP B cells could enter into pre-existing GC in PP, a process that was antigen-dependent but did not to require cognate Tfh interactions. Finally, we discuss the role of PP GC for the generation of memory B cells and long-lived plasma cells in the light of contrasting findings regarding IgA memory development to colonizing commensal bacteria versus that to oral immunization with enteropathogens or TD antigens.
Collapse
Affiliation(s)
- Nils Y Lycke
- Mucosal Immunobiology and Vaccines Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
39
|
Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012; 12:592-605. [DOI: 10.1038/nri3251] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Bemark M, Holmqvist J, Abrahamsson J, Mellgren K. Translational Mini-Review Series on B cell subsets in disease. Reconstitution after haematopoietic stem cell transplantation - revelation of B cell developmental pathways and lineage phenotypes. Clin Exp Immunol 2012; 167:15-25. [PMID: 22132880 DOI: 10.1111/j.1365-2249.2011.04469.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is an immunological treatment that has been used for more than 40 years to cure a variety of diseases. The procedure is associated with serious side effects, due to the severe impairment of the immune system induced by the treatment. After a conditioning regimen with high-dose chemotherapy, sometimes in combination with total body irradiation, haematopoietic stem cells are transferred from a donor, allowing a donor-derived blood system to form. Here, we discuss the current knowledge of humoral problems and B cell development after HSCT, and relate these to the current understanding of human peripheral B cell development. We describe how these studies have aided the identification of subsets of transitional B cells and also a robust memory B cell phenotype.
Collapse
Affiliation(s)
- M Bemark
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
41
|
Bemark M, Boysen P, Lycke NY. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann N Y Acad Sci 2012; 1247:97-116. [PMID: 22260403 DOI: 10.1111/j.1749-6632.2011.06378.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut immune system protects against mucosal pathogens, maintains a mutualistic relationship with the microbiota, and establishes tolerance against food antigens. This requires a balance between immune effector responses and induction of tolerance. Disturbances of this strictly regulated balance can lead to infections or the development inflammatory diseases and allergies. Production of secretory IgA is a unique effector function at mucosal surfaces, and basal mechanisms regulating IgA production have been the focus of much recent research. These investigations have aimed at understanding how long-term IgA-mediated mucosal immunity can best be achieved by oral or sublingual vaccination, or at analyzing the relationship between IgA production, the composition of the gut microbiota, and protection from allergies and autoimmunity. This research has lead to a better understanding of the IgA system; but at the same time seemingly conflicting data have been generated. Here, we discuss how gut IgA production is controlled, with special focus on how differences between T cell-dependent and T cell-independent IgA production may explain some of these discrepancies.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
42
|
Mattsson J, Yrlid U, Stensson A, Schön K, Karlsson MCI, Ravetch JV, Lycke NY. Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant. THE JOURNAL OF IMMUNOLOGY 2011; 187:3641-52. [PMID: 21880985 DOI: 10.4049/jimmunol.1101107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.
Collapse
Affiliation(s)
- Johan Mattsson
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|