1
|
Kang S, Noh Y, Oh SJ, Yoon HJ, Im S, Kwon HT, Pak YK. Neuroprotective Effects of Aldehyde-Reducing Composition in an LPS-Induced Neuroinflammation Model of Parkinson's Disease. Molecules 2023; 28:7988. [PMID: 38138478 PMCID: PMC10745824 DOI: 10.3390/molecules28247988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson's disease.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Youngjin Noh
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
| | - Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
| | - Hung Taeck Kwon
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Yi JH, Jeon SJ, Kwon H, Cho E, Jeon J, Moon S, Park AY, Kwon HJ, Lee YH, Kwon KJ, Shin CY, Kim DH. Ethyl pyruvate prevents long-term stress-induced cognitive decline and modulates Akt/GSK-3β signaling. Life Sci 2023; 328:121901. [PMID: 37391067 DOI: 10.1016/j.lfs.2023.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Stress is an inevitable part of life and, simultaneously, a stimulus that can trigger various neuropsychiatric disorders. Therefore, proper stress management is essential for maintaining a healthy life. In this study, we investigated the suppression of stress-induced cognitive deficit by controlling changes in synaptic plasticity caused by stress and confirmed that ethyl pyruvate (EP) has such an effect. Corticosterone, a stress hormone, suppresses long-term potentiation (LTP) in mouse acute hippocampal slices. EP blocked the LTP inhibitory effect of corticosterone by regulating GSK-3β function. Restraint stress for 2 weeks increased the anxiety levels and caused the cognitive decline in the experimental animals. Administration of EP for 14 days did not affect the increase in anxiety caused by stress but improved cognitive decline caused by stress. In addition, the decrease in neurogenesis and synaptic function deficits in the hippocampus, which cause of cognitive decline due to stress, were improved by EP administration. These effects appear via regulation of Akt/GSK-3β signaling, as in in vitro studies. These results suggest that EP prevents stress-induced cognitive decline through the modulation of Akt/GSK-3β-mediated synaptic regulation.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Se Jin Jeon
- Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Huiyoung Kwon
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Somin Moon
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - A Young Park
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Ji Kwon
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ye Hee Lee
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology, Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Nascimento TS, Pinto DV, Dias RP, Raposo RS, Nunes PIG, Roque CR, Santos FA, Andrade GM, Viana JL, Fostier AH, Sussulini A, Alvarez-Leite JI, Fontes-Ribeiro C, Malva JO, Oriá RB. Chronic Methylmercury Intoxication Induces Systemic Inflammation, Behavioral, and Hippocampal Amino Acid Changes in C57BL6J Adult Mice. Int J Mol Sci 2022; 23:13837. [PMID: 36430321 PMCID: PMC9697706 DOI: 10.3390/ijms232213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Methylmercury (MeHg) is highly toxic to the human brain. Although much is known about MeHg neurotoxic effects, less is known about how chronic MeHg affects hippocampal amino acids and other neurochemical markers in adult mice. In this study, we evaluated the MeHg effects on systemic lipids and inflammation, hippocampal oxidative stress, amino acid levels, neuroinflammation, and behavior in adult male mice. Challenged mice received MeHg in drinking water (2 mg/L) for 30 days. We assessed weight gain, total plasma cholesterol (TC), triglycerides (TG), endotoxin, and TNF levels. Hippocampal myeloperoxidase (MPO), malondialdehyde (MDA), acetylcholinesterase (AChE), amino acid levels, and cytokine transcripts were evaluated. Mice underwent open field, object recognition, Y, and Barnes maze tests. MeHg-intoxicated mice had higher weight gain and increased the TG and TC plasma levels. Elevated circulating TNF and LPS confirmed systemic inflammation. Higher levels of MPO and MDA and a reduction in IL-4 transcripts were found in the hippocampus. MeHg-intoxication led to increased GABA and glycine, reduced hippocampal taurine levels, delayed acquisition in the Barnes maze, and poor locomotor activity. No significant changes were found in AChE activity and object recognition. Altogether, our findings highlight chronic MeHg-induced effects that may have long-term mental health consequences in prolonged exposed human populations.
Collapse
Affiliation(s)
- Tyciane S. Nascimento
- Neuroscience and Behavior Laboratory, Drug Research and Development Center, Federal University of Ceará, Fortaleza 60430-275, Brazil
| | - Daniel V. Pinto
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Ronaldo P. Dias
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Ramon S. Raposo
- Experimental Biology Core, Health Sciences Center, University of Fortaleza, Fortaleza 60812-020, Brazil
| | - Paulo Iury G. Nunes
- Natural Products Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Flávia A. Santos
- Natural Products Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Geanne M. Andrade
- Neuroscience and Behavior Laboratory, Drug Research and Development Center, Federal University of Ceará, Fortaleza 60430-275, Brazil
| | - José Lucas Viana
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Anne H. Fostier
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Jacqueline I. Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carlos Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Institute of Pharmacology and Experimental Therapeutics and Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Institute of Pharmacology and Experimental Therapeutics and Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| |
Collapse
|
5
|
Fernández-Espejo E, Rodríguez de Fonseca F, Gavito AL, Córdoba-Fernández A, Chacón J, Martín de Pablos Á. Myeloperoxidase and Advanced Oxidation Protein Products in the Cerebrospinal Fluid in Women and Men with Parkinson's Disease. Antioxidants (Basel) 2022; 11:1088. [PMID: 35739985 PMCID: PMC9219636 DOI: 10.3390/antiox11061088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Myeloperoxidase (MPO) and advanced oxidation protein products, or AOPP (a type of MPO-derived chlorinated adducts), have been implicated in Parkinson´s disease (PD). Human MPO also show sex-based differences in PD. The objective was to study the relationship of MPO and AOPP in the cerebrospinal fluid (CSF) with motor features of idiopathic PD in male and female patients. Methods: MPO concentration and activity and AOPP content were measured in the CSF and serum in 34 patients and 30 controls. CSF leukocytes and the integrity of the blood-brain barrier were evaluated. Correlations of MPO and AOPP with clinical variables were examined. Results: The blood-brain barrier was intact and CSF leukocyte count was normal in all patients. CSF MPO concentration and activity were similar in the cohort of patients and controls, but CSF MPO content was significantly higher in male patients than in PD women (p = 0.0084). CSF MPO concentration correlated with disease duration in male and female patients (p < 0.01). CSF MPO concentration was significantly higher in men with disease duration ≥12 years versus the remainder of the male subjects (p < 0.01). Changes in CSF MPO in women were not significant. Serum MPO concentration and activity were significantly higher in all PD patients relative to controls (p < 0.0001). CSF MPO was not correlated with serum MPO. Serum AOPP were detected in all patients, but CSF AOPP was undetectable in 53% of patients. AOPP were not quantifiable in controls. Conclusions: CSF MPO is not a good biomarker for PD because mean CSF MPO concentration and activity are not different between the cohort of patients and controls. CSF MPO concentration positively correlated with disease duration in men and women, but CSF MPO is significantly enhanced only in male patients with disease duration longer than 12 years. It can be hypothesized that the MPO-related immune response in early-stage PD might be weak in all patients, but then the MPO-related immune response is progressively enhanced in men, not women. Since the blood-brain barrier is intact, and CSF MPO is not correlated with serum MPO, CSF myeloperoxidase would reflect MPO content in brain cells, not blood-derived cells. Finally, serum AOPP was detected in all patients, but not controls, which is consistent with the occurrence of chlorinative stress in blood serum in PD. The study of CSF AOPP as biomarker could not be assessed because the ELISA assay was hampered by its detection limit in the CSF.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ana Luisa Gavito
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | | | - José Chacón
- Servicio de Neurología, Hospital Quirónsalud Infanta Luisa, 41010 Sevilla, Spain;
| | - Ángel Martín de Pablos
- Departamento de Cirugía, Universidad de Sevilla, 41009 Sevilla, Spain;
- Unidad de Anestesiología y Reanimación, Servicio de Cirugía, Hospital Macarena, 41009 Sevilla, Spain
| |
Collapse
|
6
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Tyagi S, Shekhar N, Thakur AK. Protective Role of Capsaicin in Neurological Disorders: An Overview. Neurochem Res 2022; 47:1513-1531. [PMID: 35150419 DOI: 10.1007/s11064-022-03549-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Different pathological conditions that begin with slow and progressive deformations, cause irreversible affliction by producing loss of neurons and synapses. Commonly it is referred to as 'protein misfolding' diseases or proteinopathies and comprises the latest definition of neurological disorders (ND). Protein misfolding dynamics, proteasomal dysfunction, aggregation, defective degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA damage, neuronal Golgi apparatus fragmentation, axonal transport disruption, Neurotrophins (NTFs) dysfunction, neuroinflammatory or neuroimmune processes, and neurohumoral changes are the several mechanisms that embark the pathogenesis of ND. Capsaicin (8-Methyl-N-vanillyl-6-nonenamide) one of the major phenolic components in chili peppers (Capsicum) distinctively triggers the unmyelinated C-fiber and acts on Transient Receptor Potential Vanilloid-1, which is a Ca2+ permeable, non-selective cation channel. Several studies have shown the neuroprotective role of capsaicin against oxidative damage, behavioral impairment, with 6-hydroxydopamine (6-OHDA) induced Parkinson's disease, pentylenetetrazol-induced seizures, global cerebral ischemia, and streptozotocin-induced Alzheimer's disease. Based on these lines of evidence, capsaicin can be considered as a potential constituent to develop suitable neuro-pharmacotherapeutics for the management and treatment of ND. Furthermore, exploring newer horizons and carrying out proper clinical trials would help to bring out the promising effects of capsaicin to be recommended as a neuroprotectant.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India.
| |
Collapse
|
8
|
Kang S, Piao Y, Kang YC, Lim S, Pak YK. DA-9805 protects dopaminergic neurons from endoplasmic reticulum stress and inflammation. Biomed Pharmacother 2022; 145:112389. [PMID: 34775235 DOI: 10.1016/j.biopha.2021.112389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 μg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1β, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ying Piao
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Young Cheol Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Suyeol Lim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
9
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
10
|
Jeong JY, Wi R, Chung YC, Jin BK. Interleukin-13 Propagates Prothrombin Kringle-2-Induced Neurotoxicity in Hippocampi In Vivo via Oxidative Stress. Int J Mol Sci 2021; 22:ijms22073486. [PMID: 33801783 PMCID: PMC8036367 DOI: 10.3390/ijms22073486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.
Collapse
Affiliation(s)
- Jae Yeong Jeong
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Rayul Wi
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
- Correspondence: (Y.C.C.); (B.K.J.)
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (Y.C.C.); (B.K.J.)
| |
Collapse
|
11
|
He Y, An J, Yin JJ, Miao Q, Sui RX, Han QX, Ding ZB, Huang JJ, Ma CG, Xiao BG. Ethyl Pyruvate-Derived Transdifferentiation of Astrocytes to Oligodendrogenesis in Cuprizone-Induced Demyelinating Model. Neurotherapeutics 2021; 18:488-502. [PMID: 33140235 PMCID: PMC8116372 DOI: 10.1007/s13311-020-00947-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Astrocytes redifferentiate into oligodendrogenesis, raising the possibility that astrocytes may be a potential target in the treatment of adult demyelinated lesion. Upon the basis of the improvement of behavior abnormality and demyelination by ethyl pyruvate (EP) treatment, we further explored whether EP affects the function of astrocytes, especially the transdifferentiation of astrocytes into oligodendrogenesis. The results showed that EP treatment increased the accumulation of astrocytes in myelin sheath and promoted the phagocytosis of myelin debris by astrocytes in vivo and in vitro. At the same time, EP treatment induced astrocytes to upregulate the expression of CNTF and BDNF in the corpus callosum and striatum as well as cultured astrocytes, accompanied by increased expression of nestin, Sox2, and β-catenin and decreased expression of Notch1 by astrocytes. As a result, EP treatment effectively promoted the generation of NG2+ and PDGF-Ra+ oligodendrocyte precursor cells (OPCs) that, in part, express astrocyte marker GFAP. Further confirmation was performed by intracerebral injection of primary astrocytes labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). As expected, NG2+ OPCs expressing CFSE and Sox2 were elevated in the corpus callosum of mice treated with EP following transplantation, revealing that EP can convert astrocytes into myelinating cells. Our results indicate the possibility that EP lead to effective myelin repair in patients suffering from myelination deficit.Graphical Abstract The diagram of EP action for promoting myelin regeneration in CPZ model. EP promoted migration and enrichment of astrocytes to demyelinated tissue and induced astrocytes to express neurotrophic CNTF and BDNF as well as translation factor nestin, Sox2, and β-catenin, which should contribute to astrocytes to differentiate of oligodendrogenesis. At the same time, EP promoted astrocytes to phagocytized myelin debris for removing the harmful substances of myelin regeneration.
Collapse
Affiliation(s)
- Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jian-Jun Huang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China.
- Department of Neurosurgery, First Hospital, Datong Coalmine Group, Datong, 037006, China.
| | - Bao-Guo Xiao
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
12
|
Chung YC, Jeong JY, Jin BK. Interleukin-4-Mediated Oxidative Stress Is Harmful to Hippocampal Neurons of Prothrombin Kringle-2-Lesioned Rat In Vivo. Antioxidants (Basel) 2020; 9:antiox9111068. [PMID: 33143310 PMCID: PMC7692580 DOI: 10.3390/antiox9111068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effects of reactive microglia/macrophages-derived interleukin-4 (IL-4) on hippocampal neurons in prothrombin kringle-2 (pKr-2)-lesioned rats. pKr-2 was unilaterally injected into hippocampus in the absence or presence of IL-4 neutralizing antibody (IL-4Nab). Immunohistochemical analysis showed a significant loss of Nissl+ and NeuN+ cells and activation of microglia/macrophages (increase in reactive OX-42+ and OX-6+ cells) in the hippocampus at 7 days after pKr-2 injection. The levels of IL-4 expression were upregulated in the reactive OX-42+ microglia/macrophages as early as 1 day, maximal at 3 days and maintained up to 7 days after pKr-2 injection. Treatment with IL-4Nab significantly increased neuronal survival in pKr-2-treated CA1 layer of hippocampus in vivo. Accompanying neuroprotection, IL-4 neutralization inhibited activation of microglia/macrophages, reactive oxygen species-derived oxidative damages, production of myeloperoxidase- and inducible nitric oxide synthase-derived reactive nitrogen species and nitrosative damages as analyzed by immunohistochemistry and hydroethidine histochemistry. These results suggest that endogenous IL-4 expressed on reactive microglia/macrophages mediates oxidative/nitrosative stress and play a critical role on neurodegeneration of hippocampal CA1 layer in vivo.
Collapse
Affiliation(s)
- Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jae Yeong Jeong
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9288; Fax: +82-2-969-4570
| |
Collapse
|
13
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
14
|
Functional Crosstalk between CB and TRPV1 Receptors Protects Nigrostriatal Dopaminergic Neurons in the MPTP Model of Parkinson's Disease. J Immunol Res 2020; 2020:5093493. [PMID: 33062722 PMCID: PMC7539109 DOI: 10.1155/2020/5093493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The present study examined whether crosstalk between cannabinoid (CB) and transient potential receptor vanilloid type 1 (TRPV1) could contribute to the survival of nigrostriatal dopamine neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). MPTP induced a significant loss of nigrostriatal dopamine neurons and glial activation in the substantia nigra (SN) and striatum (STR) as visualized by tyrosine hydroxylase (TH) or macrophage antigen complex-1 (MAC-1) or glial fibrillary acidic protein (GFAP) immunocytochemistry, respectively. RT-PCR analysis shows the upregulation of inducible nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α in microglia in the SN in vivo, indicating the activation of the inflammatory system. By contrast, treatment with capsaicin (a specific TRPV1 agonist) increased the survival of dopamine neurons in the SN and their fibers and dopamine levels in the STR in MPTP mice. Capsaicin neuroprotection is accompanied by inhibiting MPTP-induced glial activation and production of inflammatory cytokines. Treatment with AM251 and AM630 (CB1/2 antagonists) abolished capsaicin-induced beneficial effects, indicating the existence of a functional crosstalk between CB and TRPV1. Moreover, treatment with anandamide (an endogenous agonist for both CB and TRVP1) rescued nigrostriatal dopamine neurons and reduced gliosis-derived neuroinflammatory responses in MPTP mice. These results suggest that the cannabinoid and vanilloid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with neuroinflammation.
Collapse
|
15
|
HMGB1 A box protects neurons by potently inhibiting both microglia and T cell-mediated inflammation in a mouse Parkinson's disease model. Clin Sci (Lond) 2020; 134:2075-2090. [PMID: 32706028 DOI: 10.1042/cs20200553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
In the subacute Parkinson's disease (PD) mice model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), injection of HMGB1 competitive inhibitor protein HMGB1 A box and the ethyl pyruvate (EP) that inhibit the release of HMGB1 from cells restored the number of dopaminergic neurons and TH+ fibers in the SN and striatum. Our data show that A box up-regulated CD200-CD200R signal of microglia inhibited the activation of microglia mediated by HMGB1, and the production of TNF-α, IL-1β and IL-6 in vivo and in vitro mixed culture system. Microglia overexpressing CD200R produced less inflammatory chemokines and reduced the loss of TH+ neurons. In addition, HMGB1 A box decreased the level of CCL5 and significantly inhibited the infiltration of almost all T cells including Th17 and the proportion of Th17 in CD4+ T cells. In vitro MPP+ induced model and HMGB1-stimulated mesencephalic cell system activated microglia induced the differentiation of naïve T cells to Th17, and A box significantly inhibited this process. To sum up, our results show that HMGB1 A box targeting HMGB1, which effectively reduces the activation of microglia in MPTP PD model by restoring CD200-CD200R signal inhibit microglia mediated neuroinflammation and the differentiation of T cells to Th17.
Collapse
|
16
|
Yang Y, Kong F, Ding Q, Cai Y, Hao Y, Tang B. Bruceine D elevates Nrf2 activation to restrain Parkinson's disease in mice through suppressing oxidative stress and inflammatory response. Biochem Biophys Res Commun 2020; 526:1013-1020. [PMID: 32321640 DOI: 10.1016/j.bbrc.2020.03.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is neurodegenerative disease, featured by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characteristic motor symptoms and cognitive impairment. Development of effective therapeutic drugs for PD is necessary. In this study, we investigated the potential of Bruceine D (BD) during PD progression. After establishment of PD mouse models, we found that BD markedly improved the motor function of mice and alleviated chemically induced dopaminergic neuron loss of tyrosine hydroxylase (TH) in the SNpc area. BD treatments markedly repressed the neuroinflammation in SNpc by restricting nuclear factor κB (NF-κB) activation, accompanied with the reduced activity of astrocytes and microglial. BD also improved the antioxidant system in MPTP-challenged mice, as proved by the up-regulated superoxide dismutase (SOD) and glutathione (GSH), and down-regulated malondialdehyde (MDA) in SNpc and striatum (STR). The anti-oxidant effects of BD were regulated by the activation of nuclear factor E2-related factor 2 (Nrf2) signaling, contributing to the expression of Nrf2 down-streaming signals such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1) and glutathione cysteine ligase modulatory subunit (GCLM). In MPP+-challenged mouse neurons, BD exhibited cytoprotective effects by improving the Nrf2-meditated antioxidant system and abolished the MPP+-triggered inflammatory response through hindering the activation of the NF-κB signal. The pharmacokinetic parameters and organ distribution findings demonstrated that BD showed a brain tissue targeting function. Moreover, both in vivo and in vitro analysis indicated that BD had few side effects. Collectively, results here demonstrated that BD was effective for the inhibition of dopaminergic neuronal loss and PD progression by activating Nrf2 without toxicity.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Fancong Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Qingqing Ding
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Ying Cai
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Yanlei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
17
|
Neuroprotective Effects of Ethyl Pyruvate against Aluminum Chloride-Induced Alzheimer's Disease in Rats via Inhibiting Toll-Like Receptor 4. J Mol Neurosci 2020; 70:836-850. [PMID: 32030557 DOI: 10.1007/s12031-020-01489-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of insoluble deposits of β-amyloid (Aβ) plaques within the parenchyma of the brain. The present study aimed to investigate the neuroprotective role of ethyl pyruvate against in vitro and in vivo model of aluminum chloride (AlCl3)-induced AD. Effect of ethyl pyruvate (5, 10, 20, 40 mM) against AlCl3 (1250 μM)-induced neurotoxicity in primary neuron-glial mixed cell culture was evaluated using cell viability assays (MTT assay as well as calcein-AM/propidium iodide fluorescent dyes). In vivo model, AlCl3 (50 mg/kg) were given through intraperitoneal route (i.p.) once daily for 4 weeks in rats and after 2 weeks, ethyl pyruvate (50, 100, 200 mg/kg/day) was co-administered with AlCl3 once daily via the oral route. The present study, in addition to perform histopathology of the brain, also estimated oxidant and antioxidant parameters as well as memory impairment using pole test, plus maze, and Morris water maze test. The binding mode of ethyl pyruvate in the hMD-2 was also studied. Results of in vitro studies showed that the AlCl3 administration resulted in neuronal cell death. AlCl3 administration in rats resulted in memory loss, oxidative stress (increased lipid peroxide and nitric oxide), impairment of antioxidant mechanisms (superoxide dismutase, catalase, and reduced glutathione), and deposition of amyloid plaques in cerebral cortex region of the brain. AlCl3 also resulted in the overexpression of the TLR4 receptors in the brain tissues. Administration of ethyl pyruvate ameliorated the AlCl3-induced neurotoxicity in neuron-glial mixed cell culture as well as histopathological, neurochemical, and behavioral consequences of chronic administration of AlCl3 in the rat. Ethyl pyruvate showed a docking score of 4.048. Thus, ethyl pyruvate is effective against in vitro and in vivo models of AlCl3-induced AD.
Collapse
|
18
|
He Y, An J, Yin JJ, Sui RX, Miao Q, Ding ZB, Han QX, Wang Q, Ma CG, Xiao BG. Ethyl pyruvate enhances spontaneous remyelination by targeting microglia phagocytosis. Int Immunopharmacol 2019; 77:105929. [DOI: 10.1016/j.intimp.2019.105929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/21/2019] [Indexed: 01/09/2023]
|
19
|
Ji Y, Wang D, Zhang B, Lu H. Bergenin Ameliorates MPTP-Induced Parkinson’s Disease by Activating PI3K/Akt Signaling Pathway. J Alzheimers Dis 2019; 72:823-833. [PMID: 31658061 DOI: 10.3233/jad-190870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yangfei Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou, China
| | - Boai Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson's Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants (Basel) 2019; 8:antiox8080265. [PMID: 31374936 PMCID: PMC6719180 DOI: 10.3390/antiox8080265] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide; it is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta, but its etiology is not fully understood. Astrocytes, a class of glial cells in the central nervous system (CNS), provide critical structural and metabolic support to neurons, but growing evidence reveals that astrocytic oxidative and nitrosative stress contributes to PD pathogenesis. As astrocytes play a critical role in the production of antioxidants and the detoxification of reactive oxygen and nitrogen species (ROS/RNS), astrocytic oxidative/nitrosative stress has emerged as a critical mediator of the etiology of PD. Cellular stress and inflammation induce reactive astrogliosis, which initiates the production of astrocytic ROS/RNS and may lead to oxidative/nitrosative stress and PD pathogenesis. Although the cause of aberrant reactive astrogliosis is unknown, gene mutations and environmental toxicants may also contribute to astrocytic oxidative/nitrosative stress. In this review, we briefly discuss the physiological functions of astrocytes and the role of astrocytic oxidative/nitrosative stress in PD pathogenesis. Additionally, we examine the impact of PD-related genes such as α-synuclein, protein deglycase DJ-1( DJ-1), Parkin, and PTEN-induced kinase 1 (PINK1) on astrocytic function, and highlight the impact of environmental toxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, manganese, and paraquat, on astrocytic oxidative/nitrosative stress in experimental models.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - James Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
21
|
Haga H, Matsuo K, Yabuki Y, Zhang C, Han F, Fukunaga K. Enhancement of ATP production ameliorates motor and cognitive impairments in a mouse model of MPTP-induced Parkinson's disease. Neurochem Int 2019; 129:104492. [PMID: 31229554 DOI: 10.1016/j.neuint.2019.104492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Approximately 30-40% of patients with Parkinson's disease (PD) exhibit cognitive impairments. However, there are currently no clinically effective drugs for the treatment of cognitive impairment in patients with PD. Previous studies have suggested that mitochondrial dysfunction such as decreased adenosine triphosphate (ATP) production triggers dopaminergic neurodegeneration in patients with PD and that mitochondria represent a potential target for the development of novel treatments for preventing PD. Therefore, in the present study, we investigated the cognition-enhancing effects of ethyl pyruvate (EP) and 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl) piperazine dihydrochloride (SA4503) in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. PD model mice were generated via treatment with MPTP (25 mg/kg, i.p.) once a day for 5 consecutive days. Twenty-four hours after the final injection of MPTP, mice were intraperitoneally injected with EP (25, 50, 100 mg/kg) or SA4503 (1 mg/kg) once a day for 4 weeks. Chronic administration of EP (100 mg/kg i.p.) or SA4503 (1 mg/kg, i.p.) improved both motor deficits and cognitive impairments in MPTP-treated mice. Furthermore, treatment with EP or SA4503 attenuated decreases in the levels of ATP and tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc)/ventral tegmental area (VTA), striatum, and hippocampal CA1 region. Administration of EP or SA4503 protected the dopaminergic neurons from MPTP-induce toxicity and restored the dopamine levels in the striatum. Elevated 4-hydroxy-2-nonenal- (4-HNE-) and nitrotyrosine-reactive protein levels induced by MPTP-treatment were suppressed by EP or SA4503 treatment in the SNpc-VTA, striatum, and hippocampal CA1 region. These observations suggest that EP and SA4503 attenuate cognitive impairments and motor dysfunction in mice with MPTP-induced PD.
Collapse
Affiliation(s)
- Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Chen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 31005, China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
22
|
Aldana BI. Microglia-Specific Metabolic Changes in Neurodegeneration. J Mol Biol 2019; 431:1830-1842. [PMID: 30878483 DOI: 10.1016/j.jmb.2019.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The high energetic demand of the brain deems this organ rather sensitive to changes in energy supply. Therefore, even minor alterations in energy metabolism may underlie detrimental disturbances in brain function, contributing to the generation and progression of neurodegenerative diseases. Considerable evidence supports the key role of deficits in cerebral energy metabolism, particularly hypometabolism of glucose and mitochondrial dysfunction, in the pathophysiology of brain disorders. Major breakthroughs in the field of bioenergetics and neurodegeneration have been achieved through the use of in vitro and in vivo models of disease as well as sophisticated neuroimaging techniques in patients, yet these have been mainly focused on neuron and astrocyte function. Remarkably, the subcellular metabolic mechanisms linked to neurodegeneration that operate in other crucial brain cell types such as microglia have remain obscured, although they are beginning to be unraveled. Microglia, the brain-resident immune sentinels, perform a diverse range of functions that require a high-energy expenditure, namely, their role in brain development, maintenance of the neural environment, response to injury and infection, and activation of repair programs. Interestingly, another key mechanism underlying several neurodegenerative diseases is neuroinflammation, which can be associated with chronic microglia activation. Considering that many brain disorders are accompanied by changes in brain energy metabolism and sustained inflammation, and that energy metabolism has a strong influence on the inflammatory responses of microglia, the emerging significance of microglial energy metabolism in neurodegeneration is highlighted in this review.
Collapse
Affiliation(s)
- Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Norfluoxetine Prevents Degeneration of Dopamine Neurons by Inhibiting Microglia-Derived Oxidative Stress in an MPTP Mouse Model of Parkinson's Disease. Mediators Inflamm 2018; 2018:4591289. [PMID: 30692871 PMCID: PMC6332876 DOI: 10.1155/2018/4591289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022] Open
Abstract
Neuroinflammation is the neuropathological feature of Parkinson's disease (PD) and causes microglial activation and activated microglia-derived oxidative stress in the PD patients and PD animal models, resulting in neurodegeneration. The present study examined whether norfluoxetine (a metabolite of fluoxetine) could regulate neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD and rescue dopamine neurons. Analysis by tyrosine hydroxylase (TH) immunohistochemistry demonstrated that norfluoxetine prevents degeneration of nigrostriatal dopamine neurons in vivo in MPTP-lesioned mice compared to vehicle-treated MPTP-lesioned control mice. MAC-1 immunostaining and hydroethidine histochemical staining showed that norfluoxetine neuroprotection is accompanied by inhibiting MPTP-induced microglial activation and activated microglia-derived reactive oxygen species production in vivo, respectively. In the separate experiments, treatment with norfluoxetine inhibited NADPH oxidase activation and nitrate production in LPS-treated cortical microglial cultures in vitro. Collectively, these in vivo and in vitro results suggest that norfluoxetine could be employed as a novel therapeutic agent for treating PD, which is associated with neuroinflammation and microglia-derived oxidative stress.
Collapse
|
24
|
Neuroprotective effects of Astilbin on MPTP-induced Parkinson's disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int Immunopharmacol 2018; 66:19-27. [PMID: 30419450 DOI: 10.1016/j.intimp.2018.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022]
Abstract
Astilbin (AST), a dihydro-flavonol glycoside, is a major bioactive ingredient in Astilbe thunbergii, Engelhardia roxburghiana, Smilax corbularia and Erythroxylum gonocladum, and has been shown to have anti-inflammatory, antioxidative and neuroprotective effects, suggesting potential therapeutic value in the treatment of Parkinson's disease (PD). We explored the neuroprotective effects of AST in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice. Mice were administered with MPTP (30 mg/kg, i.p) daily for 5 days, to establish a subacute Parkinson's disease model, followed by daily treatment with AST or saline for 7 days. Pole and traction tests showed that AST ameliorated the impaired motor functions in MPTP-induced Parkinson's disease mice. High performance liquid chromatography analysis revealed that AST treatment prevented MPTP-induced decreases in striatal dopamine levels. Immunofluorescence assays showed that AST reduced the loss of dopaminergic neurons and the activation of microglia and astrocytes in the substantia nigra. Western blot analyses revealed that AST suppressed α-synuclein overexpression and activated PI3K/Akt in the striatum following MPTP treatment. AST also prevented the MPTP-induced reduction in total superoxide dismutase and glutathione activity in the striatum. AST exerts neuroprotective effects on MPTP-induced PD mice by suppressing gliosis, α-synuclein overexpression and oxidative stress, suggesting that AST could serve as a therapeutic drug to ameliorate PD.
Collapse
|
25
|
Su J, Wang H, Yang Y, Wang J, Li H, Huang D, Huang L, Bai X, Yu M, Fei J, Huang F. RESP18 deficiency has protective effects in dopaminergic neurons in an MPTP mouse model of Parkinson's disease. Neurochem Int 2018; 118:195-204. [DOI: 10.1016/j.neuint.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
26
|
Bok E, Cho EJ, Chung ES, Shin WH, Jin BK. Interleukin-4 Contributes to Degeneration of Dopamine Neurons in the Lipopolysaccharide-treated Substantia Nigra in vivo. Exp Neurobiol 2018; 27:309-319. [PMID: 30181693 PMCID: PMC6120964 DOI: 10.5607/en.2018.27.4.309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
The present study investigated the effects of interleukin (IL)-4 on dopamine (DA) neurons in the substantia nigra (SN) in vivo of lipopolysaccharide (LPS)-treated rat. Tyrosine hydroxylase immunohistochemistry showed a significant loss of nigral DA neurons at 3 and 7 day post-LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 day and remained elevated at 7 day post-LPS. IL-4 immunoreactivity was detected exclusively in microglia. IL-4 neutralizing antibody (NA) significantly increased survival of DA neurons in LPS-treated SN in vivo by inhibiting microglial activation and production of proinflammatory mediator such as IL-1β as assessed by immunihistochemical, RT-PCR and ELISA analysis, respectively. Accompanying neuroprotection are IL-4NA effects on decreased disruption of blood-brain barrier and astrocytes. The present data suggest that endogenously expressed IL-4 from reactive microglia may be involved in the neuropathological processes of degeneration of DA neurons occurring in Parkinson's disease.
Collapse
Affiliation(s)
- Eugene Bok
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Eun Ju Cho
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Eun Sook Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
27
|
Kang YC, Son M, Kang S, Im S, Piao Y, Lim KS, Song MY, Park KS, Kim YH, Pak YK. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease models. Exp Mol Med 2018; 50:1-13. [PMID: 30120245 PMCID: PMC6098059 DOI: 10.1038/s12276-018-0124-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
An excess of reactive oxygen species (ROS) relative to the antioxidant capacity causes oxidative stress, which plays a role in the development of Parkinson’s disease (PD). Because mitochondria are both sites of ROS generation and targets of ROS damage, the delivery of antioxidants to mitochondria might prevent or alleviate PD. To transduce the antioxidant protein human metallothionein 1A (hMT1A) into mitochondria, we computationally designed a cell-penetrating artificial mitochondria-targeting peptide (CAMP). The recombinant CAMP-conjugated hMT1A fusion protein (CAMP-hMT1A) successfully localized to the mitochondria. Treating a cell culture model of PD with CAMP-hMT1A restored tyrosine hydroxylase expression and mitochondrial activity and reduced ROS production. Furthermore, injection of CAMP-hMT1A into the brain of a mouse model of PD rescued movement impairment and dopaminergic neuronal degeneration. CAMP-hMT1A delivery into mitochondria might be therapeutic against PD by alleviating mitochondrial damage, and we predict that CAMP could be used to deliver other cargo proteins to the mitochondria. A peptide targeting mitochondria can help deliver an antioxidant protein to mitigate the effects of Parkinson’s disease in cellular and mouse models. Youngmi Pak from Kyung Hee University, Seoul, South Korea, and co-workers engineered bacteria to express the human version of an antioxidant protein called metallothionein 1A fused to a short peptide sequence so that it localizes to mitochondria, the cellular power plants. Once inside the mitochondria, the peptide is removed, leaving the mature antioxidant protein to mop up damaging free radicals, a common problem seen in the cells of patients with Parkinson’s disease, and restore mitochondria to a healthier state. The protein improved mitochondrial function in both a human cell line and in the neurons of mice with a Parkinson’s-like disease, suggesting it might also help patients with this devastating neurological condition.
Collapse
Affiliation(s)
- Young Cheol Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Minuk Son
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Suyeol Im
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ying Piao
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.,Department of Emergency, Yanbian University Hospital, Yanji City, Jilin Province, China
| | - Kwang Suk Lim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133-791, Korea
| | - Min-Young Song
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.,Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, South Korea
| | - Kang-Sik Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133-791, Korea
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
28
|
Chang SC, Lee I, Ting H, Chang YJ, Yang NC. Parapyruvate, an Impurity in Pyruvate Supplements, Induces Senescence in Human Fibroblastic Hs68 Cells via Inhibition of the α-Ketoglutarate Dehydrogenase Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7504-7513. [PMID: 29931974 DOI: 10.1021/acs.jafc.8b01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Commercial dietary supplements of calcium pyruvate claim to be beneficial for losing weight, increasing muscle endurance, and regulating metabolism. Most industrial preparations have some impurities, including parapyruvate. Parapyruvate is an inhibitor of the α-ketoglutarate dehydrogenase complex (KGDHC). However, the effect and mechanism of parapyruvate on cell senescence and the content of parapyruvate in the dietary supplements of calcium pyruvate are unknown. In this study, we prepared pure parapyruvate with a purity of 99.8 ± 0.1% and investigated its ability to inhibit KGDHC activity and affect fibroblast senescence. Parapyruvate dose-dependently decreased KGDHC activity, with an IC50 of 4.13 mM and induced Hs68 cell senescence. Calcium ions, a KGDHC activator, antagonized the senescent effects of parapyruvate. The parapyruvate content was 1.4 ± 0.1% to 10.6 ± 0.2% in five brands of calcium pyruvate supplements. In this study, we showed that parapyruvate strongly induces Hs68 cell senescence by inhibiting KGDHC activity. Because of its KGDHC inhibition activity, the parapyruvate content should be an important issue for the food safety of calcium pyruvate supplements.
Collapse
Affiliation(s)
- Shih-Chung Chang
- Department of Physical Medicine and Rehabilitation , Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Inn Lee
- Department of Nutrition , Chung Shan Medical University , Taichung , Taiwan
| | - Hua Ting
- Department of Physical Medicine and Rehabilitation , Chung Shan Medical University Hospital , Taichung , Taiwan
- Sleep Medicine Center , Chung Shan Medical University Hospital , Taichung , Taiwan
- Institute of Medicine , Chung Shan Medical University , Taichung , Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health , Chung Shan Medical University , Taichung , Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition , Chung Shan Medical University , Taichung , Taiwan
- Department of Nutrition , Chung Shan Medical University Hospital , Taichung , Taiwan
| |
Collapse
|
29
|
Bok E, Chung YC, Kim KS, Baik HH, Shin WH, Jin BK. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp Mol Med 2018; 50:1-14. [PMID: 29968707 PMCID: PMC6030094 DOI: 10.1038/s12276-018-0111-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
The present study examined the neuroprotective effects of capsaicin (CAP) and explored their underlying mechanisms in a lipopolysaccharide (LPS)-lesioned inflammatory rat model of Parkinson’s dieases (PD). LPS was unilaterally injected into the substantia nigra (SN) in the absence or presence of CAP or capsazepine (CZP, a TRPV1 antagonist). The SN tissues were prepared for immunohistochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, western blot analysis, blood–brain barrier (BBB) permeability evaluation, and reactive oxygen species (ROS) detection. We found that CAP prevented the degeneration of nigral dopamine neurons in a dose-dependent manner and inhibited the expression of proinflammatory mediators in the LPS-lesioned SN. CAP shifted the proinflammatory M1 microglia/macrophage population to an anti-inflammatory M2 state as demonstrated by decreased expression of M1 markers (i.e., inducible nitric oxide synthase; iNOS and interleukin-6) and elevated expression of M2 markers (i.e., arginase 1 and CD206) in the SN. RT-PCR, western blotting, and immunohistochemical analysis demonstrated decreased iNOS expression and increased arginase 1 expression in the CAP-treated LPS-lesioned SN. Peroxynitrate production, reactive oxygen species levels and oxidative damage were reduced in the CAP-treated LPS-lesioned SN. The beneficial effects of CAP were blocked by CZP, indicating TRPV1 involvement. The present data indicate that CAP regulated the M1 and M2 activation states of microglia/macrophage in the LPS-lesioned SN, which resulted in the survival of dopamine neurons. It is therefore likely that TRPV1 activation by CAP has therapeutic potential for treating neurodegenerative diseases, that are associated with neuroinflammation and oxidative stress, such as PD. A drug that activates a neuron-protecting protein in the brain may help treat Parkinson’s disease (PD). Scientists believe neurons die during PD because of an over-activation of proinflammatory markers within immune cell populations, such as the microglia and macrophage cells found in the central nervous system and the brain. Now, Byung Kwan Jin at Kyung Hee University in Seoul and Won-Ho Shin at the Korea Institute of Toxicology in Daejeon and co-workers have demonstrated that a proinflammatory state can be reversed in rat PD models by administering capsaicin, an analgesic drug. Capsaicin activates a receptor protein that is highly expressed in neurons, microglia and astrocytes, and may play a role in neuronal function and motor control. The protein activation reversed the inflammatory state of the immune cells, providing a more protective environment for neurons.
Collapse
Affiliation(s)
- Eugene Bok
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Young Cheul Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
30
|
Lee SH, Suk K. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways. Expert Opin Drug Discov 2018; 13:627-641. [DOI: 10.1080/17460441.2018.1465925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
32
|
Pieroh P, Wagner DC, Ghadban C, Birkenmeier G, Dehghani F. Ethyl pyruvate does not require microglia for mediating neuroprotection after excitotoxic injury. CNS Neurosci Ther 2017; 23:798-807. [PMID: 28836378 DOI: 10.1111/cns.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
AIMS Ethyl pyruvate (EP) mediates protective effects after neuronal injury. Besides a direct conservation of damaged neurons, the modulation of indigenous glial cells has been suggested as one important mechanism for EP-related neuroprotection. However, the specific contribution of glial cells is still unknown. METHODS Organotypic hippocampal slice cultures (OHSC) were excitotoxically lesioned by 50 μmol/L N-methyl-D-aspartate (NMDA, for 4 hours) or left untreated. In an additional OHSC subset, microglia was depleted using the bisphosphonate clodronate (100 μg/mL) before lesion. After removal of NMDA, EP containing culture medium (0.84 μmol/L, 8.4 μmol/L, 42 μmol/L, 84 μmol/L, 168 μmol/L) was added and incubated for 72 hours. OHSC were stained with propidium iodide to visualize degenerating neurons and isolectin IB4 -FITC to identify microglia. Effects of EP at concentrations of 0.84, 8.4, and 84 μmol/L (0-48 hours) were analyzed in the astrocytic scratch wound assay. RESULTS EP significantly reduced neurodegeneration following induced excitotoxicity except for 168 μmol/L. For 84 μmol/L, a reduction in the microglia cells was observed. Microglia depletion did not affect neuronal survival after EP treatment. EP decelerated astrocytic wound closure at 48 hours after injury. CONCLUSION EP-mediated neuroprotection seems to be mediated by astrocytes and/or neurons.
Collapse
Affiliation(s)
- Philipp Pieroh
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | | | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Li W, Lou J, Wei L, Bai H, Zhang Y, He Y. Ethyl pyruvate protects PC12 cells from oxygen-glucose deprivation: A potential role in ischemic cerebrovascular disease. Biomed Pharmacother 2017; 92:168-174. [DOI: 10.1016/j.biopha.2017.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 02/02/2023] Open
|
34
|
Sampaio TB, Marcondes Sari MH, Pesarico AP, Nogueira CW. δ-Aminolevulinate Dehydratase Activity is Stimulated in a MPTP Mouse Model of Parkinson's Disease: Correlation with Myeloperoxidase Activity. Cell Mol Neurobiol 2017; 37:911-917. [PMID: 27650074 DOI: 10.1007/s10571-016-0428-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Myeloperoxidase (MPO) is an inducible heme peroxidase responsive to some stress situations. It is already known that its activity is stimulated in neurodegenerative disorders and in the animal model of parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). By contrast, the role of δ-aminolevulinate dehydratase (δ-ALA-D), an essential enzyme for heme synthesis, has not been investigated in the MPTP model. The aim of this study was to investigate the involvement of striatal δ-ALA-D activity in an acute model of PD, induced by MPTP, in C57Bl/6 mice and its correlation with MPO activity. Animals received four MPTP injections (20 mg/kg, i.p.) or saline (vehicle) to induce a PD model. 7 days after MPTP administration, the motor function was evaluated through rotarod and challenging beam tests in mice. Afterward, mice were killed, and the striata were removed for biochemical analyses. MPTP-treated mice showed impairment in motor skills, such as balance and motor coordination. Furthermore, there was a reduction of tyrosine hydroxylase levels in these animals, which characterizes the dopaminergic lesion. Striatal δ-ALA-D activity was stimulated by MPTP, as well as the MPO activity, and a significant positive correlation between δ-ALA-D and MPO activities was also demonstrated. These data suggest that δ-ALA-D activity could be stimulated due to the requirement of heme groups by peroxidases. Therefore, this study demonstrated for the first time the involvement of striatal δ-ALA-D activity in the MPTP model and its correlation with the MPO activity.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
35
|
Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson's and Alzheimer's disease. Cell Tissue Res 2017; 369:445-454. [PMID: 28466093 PMCID: PMC5579172 DOI: 10.1007/s00441-017-2626-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
Abstract
Myeloperoxidase (MPO) is a key enzyme in inflammatory and degenerative processes, although conflicting reports have been presented concerning its expression in the brain. We studied the cellular localization of MPO and compared numbers of MPO cells in various brain regions between neurologically healthy individuals and patients with Parkinson's disease (PD) or Alzheimer's disease (AD; n = 10-25). We also investigated two rodent PD models. MPO immunoreactivity (ir) was detected in monocytes, perivascular macrophages and amoeboid microglia in the human brain parenchyma, whereas no co-localization with glial fibrillary acidic protein (GFAP) ir was observed. In the midbrain, caudate and putamen, we found a significant increase of MPO-immunoreactive cells in PD compared with control brains, whereas in the cerebellum, no difference was apparent. MPO ir was detected neither in neurons nor in occasional small beta-amyloid-immunoreactive plaques in PD or control cases. In the frontal cortex of AD patients, we found significantly more MPO-immunoreactive cells compared with control cases, together with intense MPO ir in extracellular plaques. In the hippocampus of several AD cases, MPO-like ir was observed in some pyramidal neurons. Neither rapid dopamine depletion in the rat PD model, nor slow degeneration of dopamine neurons in MitoPark mice induced the expression of MPO ir in any brain region. MPO mRNA was not detectable with radioactive in situ hybridization in any human or rodent brain area, although myeloid cells from bone marrow displayed clear MPO signals. Our results indicate significant increases of MPO-immunoreactive cells in brain regions affected by neurodegeneration in PD and AD, supporting investigations of MPO inhibitors in novel treatment strategies.
Collapse
|
36
|
Chung YC, Baek JY, Kim SR, Ko HW, Bok E, Shin WH, Won SY, Jin BK. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med 2017; 49:e298. [PMID: 28255166 PMCID: PMC5382554 DOI: 10.1038/emm.2016.159] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/06/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage.
Collapse
Affiliation(s)
- Young C Chung
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Jeong Y Baek
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sang R Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuk W Ko
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Eugene Bok
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ho Shin
- Predictive model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byung K Jin
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Lv T, Miao YF, Jin YC, Yang SF, Wu H, Dai J, Zhang XH. Ethyl Pyruvate Attenuates Early Brain Injury Following Subarachnoid Hemorrhage in the Endovascular Perforation Rabbit Model Possibly Via Anti-inflammation and Inhibition of JNK Signaling Pathway. Neurochem Res 2017; 42:1044-1056. [PMID: 28236213 DOI: 10.1007/s11064-016-2138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH + Vehicle (equal volume) and SAH + EP (30 mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72 h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72 h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72 h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72 h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi-Feng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Shao-Feng Yang
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Hui Wu
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Jiong Dai
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China.
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
38
|
Lee HK, Kim ID, Kim SW, Lee H, Park JY, Yoon SH, Lee JK. Anti-inflammatory and anti-excitoxic effects of diethyl oxopropanamide, an ethyl pyruvate bioisoster, exert robust neuroprotective effects in the postischemic brain. Sci Rep 2017; 7:42891. [PMID: 28220827 PMCID: PMC5318887 DOI: 10.1038/srep42891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust neuroprotective effects via its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop novel EP derivatives with greater protective potencies than EP, we generated four EP isosteres, among them the neuroprotective potency of N,N-diethyl-2-oxopropanamide (DEOPA), in which the ethoxy group of EP was replaced with diethylamine, was far greater than that of EP. When DEOPA was administered intravenously (5 mg/kg) to rat middle cerebral artery occlusion (MCAO) model at 6 hrs post-surgery, it suppressed infarct formation, ameliorated neurological and sensory/motor deficits, and inhibited microglial activation and neutrophil infiltrations in the postischemic brain more effectively than EP. In particular, DEOPA markedly suppressed LPS-induced nitrite production and cytokine/chemokine inductions in microglia, neutrophils, and endothelial cells and these effects are attributable to inhibition of the activity of NF-κB by suppressing IκB-α degradation and p65 to DNA binding. In addition, DEOPA suppressed NMDA-induced neuronal cell death in primary cortical neuron cultures by NAD replenishment and suppression of NF-κB activity. Together, these results indicate DEOPA has multi-modal protective effects against ischemic brain damage targeting numerous cell types in the brain and also against other inflammation-related diseases.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| |
Collapse
|
39
|
Tefera TW, Borges K. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci 2017; 10:611. [PMID: 28119559 PMCID: PMC5222822 DOI: 10.3389/fnins.2016.00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.
Collapse
Affiliation(s)
| | - Karin Borges
- Laboratory for Neurological Disorders and Metabolism, School of Biomedical Sciences, Department of Pharmacology, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
40
|
Birkenmeier G, Hemdan NYA, Kurz S, Bigl M, Pieroh P, Debebe T, Buchold M, Thieme R, Wichmann G, Dehghani F. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells. PLoS One 2016; 11:e0161571. [PMID: 27579985 PMCID: PMC5006986 DOI: 10.1371/journal.pone.0161571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 01/17/2023] Open
Abstract
Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors.
Collapse
Affiliation(s)
- Gerd Birkenmeier
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
- * E-mail:
| | - Nasr Y. A. Hemdan
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Susanne Kurz
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Marina Bigl
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Philipp Pieroh
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle (Saale), Germany
| | - Tewodros Debebe
- Institute of Medical Microbiology, Medical Faculty, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Martin Buchold
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Rene Thieme
- University Medical Center, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Gunnar Wichmann
- ENT-Research Lab, Department of Otolaryngology, Head and Neck Surgery, University Hospital Leipzig, Medical Faculty, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle (Saale), Germany
| |
Collapse
|
41
|
Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH, Kim SR, Won SY, Jin BK. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Exp Mol Med 2016; 48:e205. [PMID: 27534533 PMCID: PMC4892852 DOI: 10.1038/emm.2015.100] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023] Open
Abstract
The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. However, the mechanisms underlying CB2 receptor-mediated neuroprotection in MPTP mice have not been elucidated. The mechanisms underlying CB2 receptor-mediated neuroprotection of dopamine neurons in the substantia nigra (SN) were evaluated in the MPTP mouse model of Parkinson's disease (PD) by immunohistochemical staining (tyrosine hydroxylase, macrophage Ag complex-1, glial fibrillary acidic protein, myeloperoxidase (MPO), and CD3 and CD68), real-time PCR and a fluorescein isothiocyanate-labeled albumin assay. Treatment with the selective CB2 receptor agonist JWH-133 (10 μg kg(-1), intraperitoneal (i.p.)) prevented MPTP-induced degeneration of dopamine neurons in the SN and of their fibers in the striatum. This JWH-133-mediated neuroprotection was associated with the suppression of blood-brain barrier (BBB) damage, astroglial MPO expression, infiltration of peripheral immune cells and production of inducible nitric oxide synthase, proinflammatory cytokines and chemokines by activated microglia. The effects of JWH-133 were mimicked by the non-selective cannabinoid receptor WIN55,212 (10 μg kg(-1), i.p.). The observed neuroprotection and inhibition of glial-mediated neurotoxic events were reversed upon treatment with the selective CB2 receptor antagonist AM630, confirming the involvement of the CB2 receptor. Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.
Collapse
Affiliation(s)
- Young C Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Won-Ho Shin
- Korea Institute of Toxicology, Daejon, Korea
| | - Jeong Y Baek
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun J Cho
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyung H Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea
| | - Sang R Kim
- School of Life Sciences, BK21 Plus KNU Creative Bio Research Group, Kyungpook National University, Daejon, Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Byung K Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
42
|
Peña-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, Monti B. Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 2015; 20:627-40. [PMID: 26568363 DOI: 10.1517/14728222.2016.1121237] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The importance of microglia in most neurodegenerative pathologies, from Parkinson's disease to amyotrophic lateral sclerosis and Alzheimer's disease, is increasingly recognized. Until few years ago, microglial activation in pathological conditions was considered dangerous to neurons due to its causing inflammation. Today we know that these glial cells also play a crucial physiological and neuroprotective role, which is altered in neurodegenerative conditions. AREAS COVERED The neuroinflammatory hypothesis for neurodegenerative diseases has led to the trial of anti-inflammatory agents as therapeutics with largely disappointing results. New information about the physiopathological role of microglia has highlighted the importance of immunomodulation as a potential new therapeutic approach. This review summarizes knowledge on microglia as a potential therapeutic target in the most common neurodegenerative diseases, with focus on compounds directed toward the modulation of microglial immune response through specific molecular pathways. EXPERT OPINION Here we support the innovative concept of targeting microglial cells by modulating their activity, rather than simply trying to counteract their inflammatory neurotoxicity, as a potential therapeutic approach for neurodegenerative diseases. The advantage of this therapeutic approach could be to reduce neuroinflammation and toxicity, while at the same time strengthening intrinsic neuroprotective properties of microglia and promoting neuroregeneration.
Collapse
Affiliation(s)
| | - Federica Prati
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Francesca Massenzio
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Marco Virgili
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Antonio Contestabile
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Maria Laura Bolognesi
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Barbara Monti
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| |
Collapse
|
43
|
Liu J, Huang D, Xu J, Tong J, Wang Z, Huang L, Yang Y, Bai X, Wang P, Suo H, Ma Y, Yu M, Fei J, Huang F. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation. Sci Rep 2015; 5:15720. [PMID: 26499517 PMCID: PMC4620555 DOI: 10.1038/srep15720] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Jie Liu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Research Center for Translational Medicine and Institute of Heart Failure, East Hospital, Tongji University, Shanghai 200120, China
| | - Dongping Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jing Xu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiabin Tong
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zishan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Li Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufang Yang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaochen Bai
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Pan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Haiyun Suo
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.,Shanghai Research Center for Model Organisms, Pudong, Shanghai 201203, China
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| |
Collapse
|
44
|
Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol 2015; 78:441-53. [PMID: 25279404 DOI: 10.1111/bcp.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer's disease and Parkinson's disease.
Collapse
|
45
|
Martire S, Mosca L, d'Erme M. PARP-1 involvement in neurodegeneration: A focus on Alzheimer's and Parkinson's diseases. Mech Ageing Dev 2015; 146-148:53-64. [PMID: 25881554 DOI: 10.1016/j.mad.2015.04.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
Abstract
DNA damage is the prime activator of the enzyme poly(ADP-ribose)polymerase1 (PARP-1) whose overactivation has been proven to be associated with the pathogenesis of numerous central nervous system disorders, such as ischemia, neuroinflammation, and neurodegenerative diseases. Under oxidative stress conditions PARP-1 activity increases, leading to an accumulation of ADP-ribose polymers and NAD(+) depletion, that induces energy crisis and finally cell death. This review aims to explain the contribution of PARP-1 in neurodegenerative diseases, focusing on Alzheimer's and Parkinson's disease, to stimulate further studies on this issue and thereby engage a new perspective regarding the design of possible therapeutic agents or the identification of biomarkers.
Collapse
Affiliation(s)
- Sara Martire
- Department of Biochemical Sciences, Sapienza University of Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University of Roma, Italy.
| |
Collapse
|
46
|
Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 2015; 89:1439-67. [DOI: 10.1007/s00204-015-1496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023]
|
47
|
EOP, a newly synthesized ethyl pyruvate derivative, attenuates the production of inflammatory mediators via p38, ERK and NF-κB pathways in lipopolysaccharide-activated BV-2 microglial cells. Molecules 2014; 19:19361-75. [PMID: 25429561 PMCID: PMC6271075 DOI: 10.3390/molecules191219361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022] Open
Abstract
Microglia-induced neuroinflammation is an important pathological mechanism influencing various neurodegenerative disorders. Excess activation of microglia produces a myriad of proinflammatory mediators that decimate neurons. Hence, therapeutic strategies aimed to suppress the activation of microglia might lead to advancements in the treatment of neurodegenerative diseases. In this study, we synthesized a novel ethyl pyruvate derivative, named EOP (S-ethyl 2-oxopropanethioate) and studied its effects on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in rat primary microglia and mouse BV-2 microglia. EOP significantly decreased the production of NO, inducible nitric oxide synthase, cyclooxygenase and other proinflammatory cytokines, such as interleukin (IL)-6, IL-1β and tumor necrosis factor-α, in LPS-stimulated BV-2 microglia. The phosphorylation levels of extracellular regulated kinase, p38 mitogen-activated protein kinase, and nuclear translocation of NF-κB were also inhibited by EOP in LPS-activated BV-2 microglial cells. Overall, our observations indicate that EOP might be a promising therapeutic agent to diminish the development of neurodegenerative diseases associated with microglia activation.
Collapse
|
48
|
Kim HJ, Kim HJ, Jeong JE, Baek JY, Jeong J, Kim S, Kim YM, Kim Y, Nam JH, Huh SH, Seo J, Jin BK, Lee KJ. N-terminal truncated UCH-L1 prevents Parkinson's disease associated damage. PLoS One 2014; 9:e99654. [PMID: 24959670 PMCID: PMC4069018 DOI: 10.1371/journal.pone.0099654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Eun Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeong Yeob Baek
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Young-Mee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Youhwa Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jin Han Nam
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sue Hee Huh
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jawon Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| |
Collapse
|
49
|
Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain Behav Immun 2014; 38:151-65. [PMID: 24576481 DOI: 10.1016/j.bbi.2014.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/15/2014] [Accepted: 01/26/2014] [Indexed: 01/17/2023] Open
Abstract
The potential neuroprotective value of ethyl pyruvate (EP) for the treatment of the striatal toxicity is largely unknown. We investigated whether EP promotes the survival of striatal neurons in a 3-nitropropionic acid (3-NP)-induced mouse model of Huntington's disease (HD). EP (5, 10, 20, and 40mg/kg/day, i.p.) was daily injected from 30min before 3-NP intoxication (pretreatment) and from onset/progression/peak point of neurological impairment by 3-NP intoxication. EP produced a neuroprotective effect in dose- and time-dependant manners. EP pretreatment of 40mg/kg/day produced the best neuroprotective effect among other conditions. Pretreatment of EP significantly attenuated neurological impairment and lethality and prevented formation of lesion area and neuronal loss in the striatum after 3-NP intoxication. This neuroprotection afforded by EP was associated with the suppression of succinate dehydrogenase activity, apoptosis, and microglial activation. The suppressive effect of EP corresponded to the down-regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signal pathways, and mRNA expression of inflammatory mediators including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP intoxication. Interestingly, the intrathecal introduction of inhibitors MAPKs and NF-κB into control mice decreased the lethality after 3-NP intoxication. Our findings indicate that EP may effectively alleviate 3-NP-induced striatal toxicity by inhibition of the MAPKs and NF-κB pathways in the striatum, and that EP has a wide therapeutic window, suggesting that EP may have therapeutic value in the treatment of aspects of HD's disease related to inflammation.
Collapse
|
50
|
Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 2014; 5:38. [PMID: 24653700 PMCID: PMC3948003 DOI: 10.3389/fphar.2014.00038] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer’s disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron–sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS) derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Natalia P Mena
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Marco T Núñez
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| |
Collapse
|