1
|
Singha I, Poria DK, Ray PS, Das SK. Role of Grape ( Vitis vinifera) Extracts of Different Cultivars Against γ-Radiation Induced DNA Damage and Gene Expression in Human Lymphocytes. Indian J Clin Biochem 2025; 40:127-135. [PMID: 39835232 PMCID: PMC11741972 DOI: 10.1007/s12291-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2025]
Abstract
Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation. Grape (Vitis vinifera) contains a variety of bioactive phytochemicals. We investigated the Ferric reducing antioxidant power assay for commonly available four grape (Vitis vinifera L.) cultivars, including 'Flame seedless', 'Kishmish chorni', 'Red globe' and 'Thompson seedless'. Grape seed showed the maximum reducing power and antioxidant capacity, followed by its skin, and then pulp of the same cultivars. Kishmish chorni seed showed maximum reducing and antioxidant power. Therefore, we had selected the Kishmish chorni cultivars to determine the protective efficacy against γ-ray irradiated DNA damage and apoptotic gene expression in human peripheral lymphocytes, and their efficacy was compared with widely cultivated Thompson seedless Cultivars. Annexin V-FITC and propidium iodide double staining suggested that apoptosis is a major mode of induction of cell death after irradiation in human lymphocytes. Comet assay revealed that DNA damage in human lymphocytes due to gamma irradiation at a dose of 4-Gy is significantly (P < 0.05) mitigated by pretreatment with grape extracts. Bax and p53 mRNA levels that were up-regulated in gamma irradiated lymphocytes, were significantly down-regulated when irradiated lymphocytes were pretreated with grape extracts. In conclusion, the grape extracts of different cultivars act as an essential source of natural antioxidants at varying degree, which are able to attenuate DNA damage by scavenging free radicals, and regulate apoptosis by modulating apoptotic genes such as p53 and Bax in human lymphocytes induced by IR.
Collapse
Affiliation(s)
- Indrani Singha
- Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India
| | - Dipak Kumar Poria
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India
| |
Collapse
|
2
|
Dai D, Li X, Zhuang H, Ling Y, Chen L, Long C, Zhang J, Wang Y, Li Y, Tang H, Chen B. Landscape of the Peripheral Immune Response Induced by Intraoperative Radiotherapy Combined with Surgery in Early Breast Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308174. [PMID: 39494578 PMCID: PMC11714210 DOI: 10.1002/advs.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/12/2024] [Indexed: 11/05/2024]
Abstract
A comprehensive analysis of the immune response triggered by intraoperative radiation therapy (IORT) remains incomplete. In this study, single-cell RNA sequencing and single-cell T cell receptor sequencing are conducted on peripheral blood mononuclear cells (PBMCs) from patient with early-stage breast cancer before and after IORT. Following IORT combined with surgery (defined as IORT+Surgery), PBMC counts remained stable, with increased proportions of T cells, mononuclear phagocytes, and plasma cells, and a reduction in neutrophil proportions. The cytotoxic score of CD8Teff_GZMK cells increased significantly post-IORT. Communication between CD8Teff_GZMK cells and other immune cells via MIF_CD74 and MIF_TNFRSF14 is decreased after IORT. cDCs showed an upregulation of the MCH II signaling pathway, while memory B cells exhibited enhanced activation of the B cell pathway. T cell clones expanded significantly after treatment. IORT+Surgery demonstrated the ability to partially suppress the anti-tumor effects of neutrophils. Flow cytometry analysis and co-culture experiments are utilized to delve deeper into the functional alterations in T cells. IORT+Surgery significantly enhanced T cell cytotoxic activity. Blockade of PD-1 of post-IORT PBMCs shows higher T-cell activity than that of pre-IORT PBMCs. This research highlights IORT's impact on immune cells, offering insights for targeting immune responses in breast cancer.
Collapse
Affiliation(s)
- Danian Dai
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Xuerui Li
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120China
| | - Yun Ling
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510260China
| | - Lezi Chen
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Cheng Long
- Department of PathologyYueyang Maternal Child Health‐Care HospitalYueyangHunan414000China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Yunjie Wang
- School of MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yuehua Li
- Department of Oncology, The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Bo Chen
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| |
Collapse
|
3
|
Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 2023; 13:1201500. [PMID: 37601664 PMCID: PMC10435323 DOI: 10.3389/fonc.2023.1201500] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
It is well known that radiation therapy causes lymphopenia in patients and that this is correlated with a negative outcome. The mechanism is not well understood because radiation can have both immunostimulatory and immunosuppressive effects. How tumor dose conformation, dose fractionation, and selective lymph node irradiation in radiation therapy does affect lymphopenia and immune response is an active area of research. In addition, understanding the impact of radiation on the immune system is important for the design and interpretation of clinical trials combining radiation with immune checkpoint inhibitors, both in terms of radiation dose and treatment schedules. Although only a few percent of the total lymphocyte population are circulating, it has been speculated that their increased radiosensitivity may contribute to, or even be the primary cause of, lymphopenia. This review summarizes published data on lymphocyte radiosensitivity based on human, small animal, and in vitro studies. The data indicate differences in radiosensitivity among lymphocyte subpopulations that affect their relative contribution and thus the dynamics of the immune response. In general, B cells appear to be more radiosensitive than T cells and NK cells appear to be the most resistant. However, the reported dose-response data suggest that in the context of lymphopenia in patients, aspects other than cell death must also be considered. Not only absolute lymphocyte counts, but also lymphocyte diversity and activity are likely to be affected by radiation. Taken together, the reviewed data suggest that it is unlikely that radiation-induced cell death in lymphocytes is the sole factor in radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston MA, United States
- Harvard Medical School, Boston MA, United States
| |
Collapse
|
4
|
Lowsky R, Strober S. Establishment of Chimerism and Organ Transplant Tolerance in Laboratory Animals: Safety and Efficacy of Adaptation to Humans. Front Immunol 2022; 13:805177. [PMID: 35222384 PMCID: PMC8866443 DOI: 10.3389/fimmu.2022.805177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The definition of immune tolerance to allogeneic tissue and organ transplants in laboratory animals and humans continues to be the acceptance of the donor graft, rejection of third-party grafts, and specific unresponsiveness of recipient immune cells to the donor alloantigens in the absence of immunosuppressive treatments. Actively acquired tolerance was achieved in mice more than 60 years ago by the establishment of mixed chimerism in neonatal mice. Once established, mixed chimerism was self-perpetuating and allowed for acceptance of tissue transplants in adults. Successful establishment of tolerance in humans has now been reported in several clinical trials based on the development of chimerism after combined transplantation of hematopoietic cells and an organ from the same donor. This review examines the mechanisms of organ graft acceptance after establishment of mixed chimerism (allo-tolerance) or complete chimerism (self-tolerance), and compares the development of graft versus host disease (GVHD) and graft versus tumor (GVT) activity in complete and mixed chimerism. GVHD, GVT activity, and complete chimerism are also discussed in the context of bone marrow transplantation to treat hematologic malignancies. The roles of transient versus persistent mixed chimerism in the induction and maintenance of tolerance and organ graft acceptance in animal models and clinical studies are compared. Key differences in the stability of mixed chimeras and tolerance induction in MHC matched and mismatched rodents, large laboratory animals, and humans are examined to provide insights into the safety and efficacy of translation of results of animal models to clinical trials.
Collapse
Affiliation(s)
- Robert Lowsky
- Division of Blood and Marrow Transplantation and Cancer Cellular Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel Strober
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Gosmann D, Russelli L, Weber WA, Schwaiger M, Krackhardt AM, D'Alessandria C. Promise and challenges of clinical non-invasive T-cell tracking in the era of cancer immunotherapy. EJNMMI Res 2022; 12:5. [PMID: 35099641 PMCID: PMC8804060 DOI: 10.1186/s13550-022-00877-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, our understanding of the role of the immune system in cancer has significantly improved and led to the discovery of new immunotherapeutic targets and tools, which boosted the advances in cancer immunotherapy to fight a growing number of malignancies. Approved immunotherapeutic approaches are currently mainly based on immune checkpoint inhibitors, antibody-derived targeted therapies, or cell-based immunotherapies. In essence, these therapies induce or enhance the infiltration and function of tumor-reactive T cells within the tumors, ideally resulting in complete tumor eradication. While the clinical application of immunotherapies has shown great promise, these therapies are often accompanied either by a variety of side effects as well as partial or complete unresponsiveness of a number of patients. Since different stages of disease progression elicit different local and systemic immune responses, the ability to longitudinally interrogate the migration and expansion of immune cells, especially T cells, throughout the whole body might greatly facilitate disease characterization and understanding. Furthermore, it can serve as a tool to guide development as well as selection of appropriate treatment regiments. This review provides an overview about a variety of immune-imaging tools available to characterize and study T-cell responses induced by anti-cancer immunotherapy. Moreover, challenges are discussed that must be taken into account and overcome to use immune-imaging tools as predictive and surrogate markers to enhance assessment and successful application of immunotherapies.
Collapse
Affiliation(s)
- Dario Gosmann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lisa Russelli
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wolfgang A Weber
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Calogero D'Alessandria
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
6
|
Kalinina AA, Khromykh LM, Kazansky DB, Deykin AV, Silaeva YY. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae 2021; 13:116-126. [PMID: 33959391 PMCID: PMC8084293 DOI: 10.32607/actanaturae.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The peripheral T-cell pool consists of several, functionally distinct
populations of CD8+ T cells. CD44 and CD62L are among the major
surface markers that allow us to define T-cell populations. The expression of
these molecules depends on the functional status of a T lymphocyte. Under
lymphopenic conditions, peripheral T cells undergo homeostatic proliferation
and acquire the memory-like surface phenotype CD44hiCD62Lhi. However, the data
on the functional activity of these cells remains controversial. In this paper,
we analyzed the effects of the adoptive transfer of syngeneic splenocytes on
the recovery of CD8+ T cells in sublethally irradiated mice. Our
data demonstrate that under lymphopenia, donor lymphocytes form a population of
memory-like CD8+ T cells with the phenotype CD122+CD5+CD49dhiCXCR3+
that shares the phenotypic characteristics of true memory cells and suppressive
CD8+ T cells. Ex vivo experiments showed that after
adoptive transfer in irradiated mice, T cells lacked the functions of true
effector or memory cells; the allogeneic immune response and immune response to
pathogens were greatly suppressed in these mice.
Collapse
Affiliation(s)
- A. A. Kalinina
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - L. M. Khromykh
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - D. B. Kazansky
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - A. V. Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Yu. Yu. Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
7
|
An Agonistic Anti-CD137 Antibody Disrupts Lymphoid Follicle Structure and T-Cell-Dependent Antibody Responses. CELL REPORTS MEDICINE 2020; 1. [PMID: 32699843 PMCID: PMC7375459 DOI: 10.1016/j.xcrm.2020.100035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
CD137 is a costimulatory receptor expressed on natural killer cells, T cells, and subsets of dendritic cells. An agonistic monoclonal antibody (mAb) against CD137 has been used to reduce tumor burden or reverse autoimmunity in animal models and clinical trials. Here, we show that mice treated with an agonistic anti-CD137 mAb have reduced numbers of germinal center (GC) B cells and follicular dendritic cells (FDCs) in lymphoid tissues, which impair antibody responses to multiple T-cell-dependent antigens, including infectious virus, viral proteins, and conjugated haptens. These effects are not due to enhanced apoptosis or impaired proliferation of B cells but instead correlate with changes in lymphoid follicle structure and GC B cell dispersal and are mediated by CD137 signaling in CD4+ and CD8+ T cells. Our experiments in mice suggest that agonistic anti-CD137 mAbs used in cancer and autoimmunity therapy may impair long-term antibody and B cell memory responses. Anti-CD137 antibody impairs B cell responses during chikungunya virus infection Anti-CD137 antibody impairs T-cell-dependent antibody responses to subunit vaccines Anti-CD137 antibody alters lymphoid follicle structure during virus infection Enhanced CD137 signaling in T cells results in defects in germinal B cell responses
Collapse
|
8
|
Schlaak RA, Frei A, Fish BL, Harmann L, Gasperetti T, Pipke JL, Sun Y, Rui H, Flister MJ, Gantner BN, Bergom C. Acquired Immunity Is Not Essential for Radiation-Induced Heart Dysfunction but Exerts a Complex Impact on Injury. Cancers (Basel) 2020; 12:E983. [PMID: 32316187 PMCID: PMC7226421 DOI: 10.3390/cancers12040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Leanne Harmann
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee WI 53226, USA;
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Michael J. Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin N. Gantner
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020; 21:120-134. [PMID: 31873291 DOI: 10.1038/s41590-019-0561-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic irradiation of the tumor microenvironment causes differential activation of pro-survival and pro-death pathways in malignant, stromal, endothelial and immune cells, hence causing a profound cellular and biological reconfiguration via multiple, non-redundant mechanisms. Such mechanisms include the selective elimination of particularly radiosensitive cell types and consequent loss of specific cellular functions, the local release of cytokines and danger signals by dying radiosensitive cells, and altered cytokine secretion by surviving radioresistant cells. Altogether, these processes create chemotactic and immunomodulatory cues for incoming and resident immune cells. Here we discuss how cytoprotective and cytotoxic signaling modules activated by radiation in specific cell populations reshape the immunological tumor microenvironment.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Ilio Vitale
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Ignacio Melero
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
- Université de Paris, Paris, France.
| |
Collapse
|
10
|
Busque S, Scandling JD, Lowsky R, Shizuru J, Jensen K, Waters J, Wu HH, Sheehan K, Shori A, Choi O, Pham T, Fernandez Vina MA, Hoppe R, Tamaresis J, Lavori P, Engleman EG, Meyer E, Strober S. Mixed chimerism and acceptance of kidney transplants after immunosuppressive drug withdrawal. Sci Transl Med 2020; 12:eaax8863. [PMID: 31996467 PMCID: PMC8051148 DOI: 10.1126/scitranslmed.aax8863] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Preclinical studies have shown that persistent mixed chimerism is linked to acceptance of organ allografts without immunosuppressive (IS) drugs. Mixed chimerism refers to continued mixing of donor and recipient hematopoietic cells in recipient tissues after transplantation of donor cells. To determine whether persistent mixed chimerism and tolerance can be established in patients undergoing living donor kidney transplantation, we infused allograft recipients with donor T cells and hematopoietic progenitors after posttransplant lymphoid irradiation. In 24 of 29 fully human leukocyte antigen (HLA)-matched patients who had persistent mixed chimerism for at least 6 months, complete IS drug withdrawal was achieved without subsequent evidence of rejection for at least 2 years. In 10 of 22 HLA haplotype-matched patients with persistent mixed chimerism for at least 12 months, reduction of IS drugs to tacrolimus monotherapy was achieved. Withdrawal of tacrolimus during the second year resulted in loss of detectable chimerism and subsequent rejection episodes, unless tacrolimus therapy was reinstituted. Posttransplant immune reconstitution of naïve B cells and B cell precursors was more rapid than the reconstitution of naïve T cells and thymic T cell precursors. Robust chimerism was observed only among naïve T and B cells but not among memory T cells. No evidence of rejection was observed in all surveillance graft biopsies obtained from mixed chimeric patients withdrawn from IS drugs, and none developed graft-versus-host disease. In conclusion, persistent mixed chimerism established in fully HLA- or haplotype-matched patients allowed for complete or partial IS drug withdrawal without rejection.
Collapse
Affiliation(s)
- Stephan Busque
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John D Scandling
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert Lowsky
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Judith Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kent Jensen
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey Waters
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hsin-Hsu Wu
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin Sheehan
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Shori
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Okmi Choi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Pham
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Richard Hoppe
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Tamaresis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Lavori
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Squeri G, Passerini L, Ferro F, Laudisa C, Tomasoni D, Deodato F, Donati MA, Gasperini S, Aiuti A, Bernardo ME, Gentner B, Naldini L, Annoni A, Biffi A, Gregori S. Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Mol Ther 2019; 27:1215-1227. [PMID: 31060789 PMCID: PMC6612662 DOI: 10.1016/j.ymthe.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I) is a severe genetic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) enzyme. Ex vivo hematopoietic stem cell (HSC) gene therapy is a promising therapeutic approach for MPS-I, as demonstrated by preclinical studies performed in naive MPS-I mice. However, after enzyme replacement therapy (ERT), several MPS-I patients develop anti-IDUA immunity that may jeopardize ex vivo gene therapy efficacy. Here we treat MPS-I mice with an artificial immunization protocol to mimic the ERT effect in patients, and we demonstrate that IDUA-corrected HSC engraftment is impaired in pre-immunized animals by IDUA-specific CD8+ T cells spared by pre-transplant irradiation. Conversely, humoral anti-IDUA immunity does not impact on IDUA-corrected HSC engraftment. The inclusion of lympho-depleting agents in pre-transplant conditioning of pre-immunized hosts allowes rescue of IDUA-corrected HSC engraftment, which is proportional to CD8+ T cell eradication. Overall, these data demonstrate the relevance of pre-existing anti-transgene T cell immunity on ex vivo HSC gene therapy, and they suggest the application of tailored immune-depleting treatments, as well as a deeper immunological characterization of patients, to safeguard the therapeutic effects of ex vivo HSC gene therapy in immunocompetent hosts.
Collapse
Affiliation(s)
- Giorgia Squeri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; International PhD Program in Molecular Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cecilia Laudisa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Tomasoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital IRCSS, 00165 Rome, Italy
| | - Maria Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, 50139 Florence, Italy
| | - Serena Gasperini
- Pediatric Department, Fondazione MBBM San Gerardo Hospital, 20900 Monza, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
12
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Although elusive for many decades, transplantation tolerance can now be achieved in the clinic. This has prompted follow-up investigations into its stability and longevity, as well as into barriers to its induction, which include memory T and B cells. RECENT FINDINGS Clinical observations reveal that transplantation tolerance can be induced in adult recipients and that even episodes of acute rejection do not preclude successful weaning from immunosuppression to reveal tolerance. These observations appear to conflict with the currently accepted notion that adult transplant recipients harbor high frequencies of memory human leukocyte antigen-specific T cells that are a barrier to transplantation tolerance. We discuss how these observations may be rationalized, by proposing the generation of helpless effector CD8 T cells that cannot develop into memory, and by highlighting recent findings on the ability of transplantation tolerance to be spontaneously restored after rejection. We speculate that in individuals who develop tolerance while on immunosuppression and then experience rejection, it is this restored tolerance that is revealed upon successful weaning of immunosuppression. SUMMARY We have reviewed clinical and experimental data to explain how transplantation tolerance may be achieved in individuals who have experienced allograft rejection.
Collapse
|
14
|
Schaue D. A Century of Radiation Therapy and Adaptive Immunity. Front Immunol 2017; 8:431. [PMID: 28443099 PMCID: PMC5387081 DOI: 10.3389/fimmu.2017.00431] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
The coming of age for immunotherapy (IT) as a genuine treatment option for cancer patients through the development of new and effective agents, in particular immune checkpoint inhibitors, has led to a huge renaissance of an old idea, namely to harness the power of the immune system to that of radiation therapy (RT). It is not an overstatement to say that the combination of RT with IT has provided a new conceptual platform that has re-energized the field of radiation oncology as a whole. One only has to look at the immense rise in sessions at professional conferences and in grant applications dealing with this topic to see its emergence as a force, while the number of published reviews on the topic is staggering. At the time of writing, over 97 clinical trials have been registered using checkpoint inhibitors with RT to treat almost 7,000 patients, driven in part by strong competition between pharmaceutical products eager to find their market niche. Yet, for the most part, this enthusiasm is based on relatively limited recent data, and on the clinical success of immune checkpoint inhibitors as single agents. A few preclinical studies on RT-IT combinations have added real value to our understanding of these complex interactions, but many assumptions remain. It seems therefore appropriate to go back in time and pull together what actually has been a long history of investigations into radiation and the immune system (Figure 1) in an effort to provide context for this interesting combination of cancer therapies.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Förster M, Boora RK, Petrov JC, Fodil N, Albanese I, Kim J, Gros P, Nijnik A. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8 + T cells. Immunology 2017; 151:110-121. [PMID: 28066899 DOI: 10.1111/imm.12710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.
Collapse
Affiliation(s)
- Michael Förster
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Rupinder K Boora
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Isabella Albanese
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jamie Kim
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Wirsdörfer F, Jendrossek V. The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 2016; 7:591. [PMID: 28018357 PMCID: PMC5155013 DOI: 10.3389/fimmu.2016.00591] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| |
Collapse
|
17
|
Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants. Blood 2016; 127:1539-43. [PMID: 26796362 DOI: 10.1182/blood-2015-12-685107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism.
Collapse
|
18
|
Moon H, Park C, Lee JG, Shin SH, Lee JH, Kho I, Kang K, Cha HS, Kim TJ. Early Development in the Peritoneal Cavity of CD49dhigh Th1 Memory Phenotype CD4+ T Cells with Enhanced B Cell Helper Activity. THE JOURNAL OF IMMUNOLOGY 2015; 195:564-75. [DOI: 10.4049/jimmunol.1401661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 05/15/2015] [Indexed: 01/10/2023]
|
19
|
Pugh JL, Sukhina AS, Seed TM, Manley NR, Sempowski GD, van den Brink MRM, Smithey MJ, Nikolich-Žugich J. Histone deacetylation critically determines T cell subset radiosensitivity. THE JOURNAL OF IMMUNOLOGY 2014; 193:1451-8. [PMID: 24990082 DOI: 10.4049/jimmunol.1400434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphocytes are sensitive to ionizing radiation and naive lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naive (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and 1) levels of pro- and antiapoptotic Bcl-2 family members or 2) the H2AX content and maximal γH2AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences.
Collapse
Affiliation(s)
- Jason L Pugh
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724; Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85719
| | - Alona S Sukhina
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724
| | - Thomas M Seed
- Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA 30602
| | - Gregory D Sempowski
- Department of Medicine, Duke University, Durham, NC 27710; Department of Pathology, Duke University, Durham, NC 27710; Duke Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Marcel R M van den Brink
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; and
| | - Megan J Smithey
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724; Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85719; BIO5 Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
20
|
Regulators help new immigrants settle down? Blood 2014; 123:2754-6. [PMID: 24786456 DOI: 10.1182/blood-2014-03-562173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Müller et al showed, using a nonmyeloablative conditioning regimen consisting of total lymphoid irradiation (TLI) and anti-T-cell globulin (ATG), that donor long-term hematopoietic stem cell (LT-HSC) engraftment requires the presence of host regulatory T cells that promote host HSC cycling, which could potentially provide bone marrow niches to donor HSCs.
Collapse
|
21
|
Donor hematopoiesis in mice following total lymphoid irradiation requires host T-regulatory cells for durable engraftment. Blood 2014; 123:2882-92. [PMID: 24591203 DOI: 10.1182/blood-2013-10-530212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc(-/-) recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc(-/-) recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc(-/-) recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity.
Collapse
|
22
|
Wang L, Wang J, Jin Y, Gao H, Lin X. Oral administration of all-trans retinoic acid suppresses experimental periodontitis by modulating the Th17/Treg imbalance. J Periodontol 2013; 85:740-50. [PMID: 23952076 DOI: 10.1902/jop.2013.130132] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A T-helper 17 (Th17)/regulatory T (Treg) imbalance has been suggested recently to play a role in the development of periodontitis. All-trans retinoic acid (ATRA) has been reported to modulate Th17/Treg imbalances in some diseases. However, the effect of ATRA on periodontitis remains unknown. This study observes the effect of ATRA on Th17/Treg imbalance modulation in experimental periodontitis. METHODS Experimental periodontitis was induced in mice by oral infection with Porphyromonas gingivalis (P. gingivalis). ATRA was orally administered every other day. Alveolar bone resorption (ABR) was estimated by measuring the distance from the cemento-enamel junction to the alveolar bone crest. CD4(+) T-cell subsets in the cervical lymph nodes (CLNs) and spleen were analyzed by flow cytometry. Th17/Treg cell-related cytokine messenger ribonucleic acid expression was quantified by real-time reverse transcription-polymerase chain reaction. RESULTS The present data shows that ATRA suppressed ABR and inhibited inflammatory cell infiltration into periodontal tissues. These effects were closely associated with reduced CD4(+) retinoid-related orphan receptor γτ(+) cells and increased CD4(+) forkhead box P3(+) cells in the CLNs. Furthermore, ATRA downregulated interleukin (IL)-17A expression and upregulated IL-10 and transforming growth factor-β1 expression in both the CLNs and P. gingivalis-infected gingival tissues. CONCLUSIONS These results suggest that ATRA modulation of the Th17/Treg imbalance provides protection against periodontitis by enhancing Treg cell activation and inhibiting Th17 cell activation. These results indicate the potential for clinical prevention of periodontitis.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | | | | | | | |
Collapse
|
23
|
Schaue D, McBride WH. T lymphocytes and normal tissue responses to radiation. Front Oncol 2012; 2:119. [PMID: 23050243 PMCID: PMC3445965 DOI: 10.3389/fonc.2012.00119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/02/2012] [Indexed: 01/17/2023] Open
Abstract
There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | | |
Collapse
|