1
|
Mélique S, Vadel A, Rouquié N, Yang C, Bories C, Cotineau C, Saoudi A, Fazilleau N, Lesourne R. THEMIS promotes T cell development and maintenance by rising the signaling threshold of the inhibitory receptor BTLA. Proc Natl Acad Sci U S A 2024; 121:e2318773121. [PMID: 38713628 PMCID: PMC11098085 DOI: 10.1073/pnas.2318773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.
Collapse
Affiliation(s)
- Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Aurélie Vadel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cui Yang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Coline Cotineau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| |
Collapse
|
2
|
Marrocco R, Bernard I, Joulia E, Barascud R, Dejean AS, Lesourne R, Saoudi A. Positive regulation of Vav1 by Themis controls CD4 T cell pathogenicity in a mouse model of central nervous system inflammation. Cell Mol Life Sci 2024; 81:161. [PMID: 38565808 PMCID: PMC10987373 DOI: 10.1007/s00018-024-05203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility to autoimmune diseases is conditioned by the association of modest genetic alterations which altogether weaken self-tolerance. The mechanism whereby these genetic interactions modulate T-cell pathogenicity remains largely uncovered. Here, we investigated the epistatic interaction of two interacting proteins involved in T Cell Receptor signaling and which were previously associated with the development of Multiple Sclerosis. To this aim, we used mice expressing an hypomorphic variant of Vav1 (Vav1R63W), combined with a T cell-conditional deletion of Themis. We show that the combined mutations in Vav1 and Themis induce a strong attenuation of the severity of Experimental Autoimmune Encephalomyelitis (EAE), contrasting with the moderate effect of the single mutation in each of those two proteins. This genotype-dependent gradual decrease of EAE severity correlates with decreased quantity of phosphorylated Vav1 in CD4 T cells, establishing that Themis promotes the development of encephalitogenic Tconv response by enhancing Vav1 activity. We also show that the cooperative effect of Themis and Vav1 on EAE severity is independent of regulatory T cells and unrelated to the impact of Themis on thymic selection. Rather, it results from decreased production of pro-inflammatory cytokines (IFN-γ, IL-17, TNF and GM-CSF) and reduced T cell infiltration in the CNS. Together, our results provide a rationale to study combination of related genes, in addition to single gene association, to better understand the genetic bases of human diseases.
Collapse
Affiliation(s)
- Remi Marrocco
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Isabelle Bernard
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Emeline Joulia
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Rebecca Barascud
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Renaud Lesourne
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
3
|
Gautam N, Wojciech L, Yap J, Chua YL, Ding EM, Sim DC, Tan AS, Ahl PJ, Prasad M, Tung DW, Connolly JE, Adriani G, Brzostek J, Gascoigne NR. Themis controls T cell activation, effector functions, and metabolism of peripheral CD8 + T cells. Life Sci Alliance 2023; 6:e202302156. [PMID: 37739454 PMCID: PMC10517225 DOI: 10.26508/lsa.202302156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Themis is important in regulating positive selection of thymocytes during T cell development, but its role in peripheral T cells is less understood. Here, we investigated T cell activation and its sequelae using a tamoxifen-mediated, acute Themis deletion mouse model. We find that proliferation, effector functions including anti-tumor killing, and up-regulation of energy metabolism are severely compromised. This study reveals the phenomenon of peripheral adaptation to loss of Themis, by demonstrating direct TCR-induced defects after acute deletion of Themis that were not evident in peripheral T cells chronically deprived of Themis in dLck-Cre deletion model. Peripheral adaptation to long-term loss was compared using chronic versus acute tamoxifen-mediated deletion and with the (chronic) dLck-Cre deletion model. We found that upon chronic tamoxifen-mediated Themis deletion, there was modulation in the gene expression profile for both TCR and cytokine signaling pathways. This profile overlapped with (chronic) dLck-Cre deletion model. Hence, we found that peripheral adaptation induced changes to both TCR and cytokine signaling modules. Our data highlight the importance of Themis in the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Namrata Gautam
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lukasz Wojciech
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiawei Yap
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Leong Chua
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eyan Mw Ding
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Don Cn Sim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alrina Sm Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia J Ahl
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mukul Prasad
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Desmond Wh Tung
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John E Connolly
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Rj Gascoigne
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Translational Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
Choi S, Hatzihristidis T, Gaud G, Dutta A, Lee J, Arya A, Clubb LM, Stamos DB, Markovics A, Mikecz K, Love P. GRB2 promotes thymocyte positive selection by facilitating THEMIS-mediated inactivation of SHP1. J Exp Med 2023; 220:e20221649. [PMID: 37067793 PMCID: PMC10114920 DOI: 10.1084/jem.20221649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
The T-lineage restricted protein THEMIS has been shown to play a critical role in T cell development. THEMIS, via its distinctive CABIT domains, inhibits the catalytic activity of the tyrosine phosphatase SHP1 (PTPN6). SHP1 and THEMIS bind to the ubiquitous cytosolic adapter GRB2, and the purported formation of a tri-molecular THEMIS-GRB2-SHP1 complex facilitates inactivation of SHP1 by THEMIS. The importance of this function of GRB2 among its numerous documented activities is unclear as GRB2 binds to multiple proteins and participates in several signaling responses in thymocytes. Here, we show that similar to Themis-/- thymocytes, the primary molecular defect in GRB2-deficient thymocytes is increased catalytically active SHP1 and the developmental block in GRB2-deficient thymocytes is alleviated by deletion or inhibition of SHP1 and is exacerbated by SHP1 overexpression. Thus, the principal role of GRB2 during T cell development is to promote THEMIS-mediated inactivation of SHP1 thereby enhancing the sensitivity of TCR signaling in CD4+CD8+ thymocytes to low affinity positively selecting self-ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Awadhesh Arya
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
6
|
Choi S, Lee J, Hatzihristidis T, Gaud G, Dutta A, Arya A, Clubb LM, Stamos DB, Markovics A, Mikecz K, Love PE. THEMIS increases TCR signaling in CD4 +CD8 + thymocytes by inhibiting the activity of the tyrosine phosphatase SHP1. Sci Signal 2023; 16:eade1274. [PMID: 37159521 PMCID: PMC10410529 DOI: 10.1126/scisignal.ade1274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The T cell lineage-restricted protein THEMIS plays a critical role in T cell development at the positive selection stage. In the SHP1 activation model, THEMIS is proposed to enhance the activity of the tyrosine phosphatase SHP1 (encoded by Ptpn6), thereby dampening T cell antigen receptor (TCR) signaling and preventing the inappropriate negative selection of CD4+CD8+ thymocytes by positively selecting ligands. In contrast, in the SHP1 inhibition model, THEMIS is proposed to suppress SHP1 activity, rendering CD4+CD8+ thymocytes more sensitive to TCR signaling initiated by low-affinity ligands to promote positive selection. We sought to resolve the controversy regarding the molecular function of THEMIS. We found that the defect in positive selection in Themis-/- thymocytes was ameliorated by pharmacologic inhibition of SHP1 or by deletion of Ptpn6 and was exacerbated by SHP1 overexpression. Moreover, overexpression of SHP1 phenocopied the Themis-/- developmental defect, whereas deletion of Ptpn6, Ptpn11 (encoding SHP2), or both did not result in a phenotype resembling that of Themis deficiency. Last, we found that thymocyte negative selection was not enhanced but was instead impaired in the absence of THEMIS. Together, these results provide evidence favoring the SHP1 inhibition model, supporting a mechanism whereby THEMIS functions to enhance the sensitivity of CD4+CD8+ thymocytes to TCR signaling, enabling positive selection by low-affinity, self-ligand-TCR interactions.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Awadhesh Arya
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Shock, Trauma & Anesthesiology Research (STAR) Center, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23179784. [PMID: 36077185 PMCID: PMC9456003 DOI: 10.3390/ijms23179784] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/16/2022] Open
Abstract
Vitamin D intervenes in calcium and phosphate metabolism and bone homeostasis. Experimental studies have shown that 1,25-dihydroxyvitamin D (calcitriol) generates immunologic activities on the innate and adaptive immune system and endothelial membrane stability. Low levels of serum 25-hydroxyvitamin D (25(OH)D) are associated with an increased risk of developing immune-related diseases such as psoriasis, type 1 diabetes, multiple sclerosis, and autoimmune diseases. Various clinical trials describe the efficacy of supplementation of vitamin D and its metabolites for treating these diseases that result in variable outcomes. Different disease outcomes are observed in treatment with vitamin D as high inter-individual difference is present with complex gene expression in human peripheral blood mononuclear cells. However, it is still not fully known what level of serum 25(OH)D is needed. The current recommendation is to increase vitamin D intake and have enough sunlight exposure to have serum 25(OH)D at a level of 30 ng/mL (75 nmol/L) and better at 40–60 ng/mL (100–150 nmol/L) to obtain the optimal health benefits of vitamin D.
Collapse
|
8
|
Mélique S, Yang C, Lesourne R. Negative times negative equals positive, THEMIS sets the rule on thymic selection and peripheral T cell responses. Biomed J 2022; 45:334-346. [PMID: 35346866 PMCID: PMC9250082 DOI: 10.1016/j.bj.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.
Collapse
Affiliation(s)
- Suzanne Mélique
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Cui Yang
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Renaud Lesourne
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France.
| |
Collapse
|
9
|
Koivisto O, Hanel A, Carlberg C. Key Vitamin D Target Genes with Functions in the Immune System. Nutrients 2020; 12:E1140. [PMID: 32325790 PMCID: PMC7230898 DOI: 10.3390/nu12041140] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production. Both types of datasets allowed the categorization of the vitamin D target genes into three groups according to their role in (i) acute response to infection, (ii) infection in general and (iii) autoimmunity. In conclusion, 15 genes were identified as major mediators of the action of vitamin D in innate and adaptive immunity and their individual functions are explained based on different gene regulatory scenarios.
Collapse
Affiliation(s)
| | | | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (O.K.); (A.H.)
| |
Collapse
|
10
|
Abstract
Thymocyte-expressed molecule involved in selection (Themis) regulates T cell selection. Absence of Themis leads to severely reduced numbers of CD4 and CD8 T cells, indicating a defect in T cell selection. The molecular mechanism of Themis involvement is not clear. Themis was shown to bind to Src-homology domain containing phosphatase-1 (Shp1), which is a known negative regulator of T cell receptor signaling. Here, using a very sensitive technique to measure phosphatase activity from immunoprecipitated proteins, we find that Themis positively regulates Shp1 phosphatase activity in thymocytes. Shp1 activity is reduced in the absence of Themis, thus providing an explanation for why Themis-deficient thymocytes respond more strongly to positive-selecting ligands, resulting in fewer thymocytes reaching maturity. Thymocyte-expressed molecule involved in selection (Themis) has been shown to be important for T cell selection by setting the threshold for positive versus negative selection. Themis interacts with the protein tyrosine phosphatase (PTP) Src-homology domain containing phosphatase-1 (Shp1), a negative regulator of the T cell receptor (TCR) signaling cascade. However, how Themis regulates Shp1 is still not clear. Here, using a very sensitive phosphatase assay on ex vivo thymocytes, we have found that Themis enhances Shp1 phosphatase activity by increasing its phosphorylation. This positive regulation of Shp1 activity by Themis is found in thymocytes, but not in peripheral T cells. Shp1 activity is modulated by different affinity peptide MHC ligand binding in thymocytes. Themis is also associated with phosphatase activity, due to its constitutive interaction with Shp1. In the absence of Shp1 in thymocytes, Themis interacts with Shp2, which leads to almost normal thymic development in Shp1 conditional knockout (cKO) mice. Double deletion of both Themis and Shp1 leads to a thymic phenotype similar to that of Themis KO. These findings demonstrate unequivocally that Themis positively regulates Shp1 phosphatase activity in TCR-mediated signaling in developing thymocytes.
Collapse
|
11
|
Garreau A, Blaize G, Argenty J, Rouquié N, Tourdès A, Wood SA, Saoudi A, Lesourne R. Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2758-2766. [PMID: 28877990 DOI: 10.4049/jimmunol.1700566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
Themis is a new component of the TCR signaling machinery that plays a critical role during T cell development. The positive selection of immature CD4+CD8+ double-positive thymocytes and their commitment to the CD4+CD8- single-positive stage are impaired in Themis-/- mice, suggesting that Themis might be important to sustain TCR signals during these key developmental processes. However, the analysis of Themis mRNA levels revealed that Themis gene expression is rapidly extinguished during positive selection. We show in this article that Themis protein expression is increased in double-positive thymocytes undergoing positive selection and is sustained in immature single-positive thymocytes, despite the strong decrease in Themis mRNA levels in these subsets. We found that Themis stability is controlled by the ubiquitin-specific protease USP9X, which removes ubiquitin K48-linked chains on Themis following TCR engagement. Biochemical analyses indicate that USP9X binds directly to the N-terminal CABIT domain of Themis and indirectly to the adaptor protein Grb2, with the latter interaction enabling recruitment of Themis/USP9X complexes to LAT, thereby sustaining Themis expression following positive selection. Together, these data suggest that TCR-mediated signals enhance Themis stability upon T cell development and identify USP9X as a key regulator of Themis protein turnover.
Collapse
Affiliation(s)
- Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Nelly Rouquié
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Audrey Tourdès
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| |
Collapse
|
12
|
Choi S, Cornall R, Lesourne R, Love PE. THEMIS: Two Models, Different Thresholds. Trends Immunol 2017; 38:622-632. [PMID: 28697966 DOI: 10.1016/j.it.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022]
Abstract
THEMIS, a recently identified T-lineage-restricted protein, is the founding member of a large metazoan protein family. Gene inactivation studies have revealed a critical requirement for THEMIS during thymocyte positive selection, implicating THEMIS in signaling downstream of the T cell antigen receptor (TCR), but the mechanistic underpinnings of THEMIS function have remained elusive. A previous model posited that THEMIS prevents thymocytes from inappropriately crossing the positive/negative selection threshold by dampening TCR signaling. However, new data suggest an alternative model where THEMIS enhances TCR signaling enabling thymocytes to reach the threshold for positive selection, avoiding death by neglect. We review the data supporting each model and conclude that the preponderance of evidence favors an enhancing function for THEMIS in TCR signaling.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Cornall
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Golec DP, Hoeppli RE, Henao Caviedes LM, McCann J, Levings MK, Baldwin TA. Thymic progenitors of TCRαβ + CD8αα intestinal intraepithelial lymphocytes require RasGRP1 for development. J Exp Med 2017; 214:2421-2435. [PMID: 28652304 PMCID: PMC5551581 DOI: 10.1084/jem.20170844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
Golec et al. show that RasGRP1, a critical Ras activator in thymocytes, is required for TCRαβ+CD8αα IEL development by regulating the survival of a heterogeneous population of thymic progenitors that receive a strong TCR signal. Therefore, RasGRP1 is necessary for thymic selection events stemming from strong or weak TCR signals. Strong T cell receptor (TCR) signaling largely induces cell death during thymocyte development, whereas weak TCR signals induce positive selection. However, some T cell lineages require strong TCR signals for differentiation through a process termed agonist selection. The signaling relationships that underlie these three fates are unknown. RasGRP1 is a Ras activator required to transmit weak TCR signals leading to positive selection. Here, we report that, despite being dispensable for thymocyte clonal deletion, RasGRP1 is critical for agonist selection of TCRαβ+CD8αα intraepithelial lymphocyte (IEL) progenitors (IELps), even though both outcomes require strong TCR signaling. Bim deficiency rescued IELp development in RasGRP1−/− mice, suggesting that RasGRP1 functions to promote survival during IELp generation. Additionally, expression of CD122 and the adhesion molecules α4β7 and CD103 define distinct IELp subsets with differing abilities to generate TCRαβ+CD8αα IEL in vivo. These findings demonstrate that RasGRP1-dependent signaling underpins thymic selection processes induced by both weak and strong TCR signals and is differentially required for fate decisions derived from a strong TCR stimulus.
Collapse
Affiliation(s)
- Dominic P Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Jillian McCann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
|
15
|
THEMIS, the new kid on the block for T-cell development. Cell Mol Immunol 2017; 14:721-723. [PMID: 28552903 DOI: 10.1038/cmi.2017.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
|
16
|
Duguet F, Locard-Paulet M, Marcellin M, Chaoui K, Bernard I, Andreoletti O, Lesourne R, Burlet-Schiltz O, Gonzalez de Peredo A, Saoudi A. Proteomic Analysis of Regulatory T Cells Reveals the Importance of Themis1 in the Control of Their Suppressive Function. Mol Cell Proteomics 2017; 16:1416-1432. [PMID: 28373295 DOI: 10.1074/mcp.m116.062745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Regulatory T cells (Treg) represent a minor subpopulation of T lymphocytes that is crucial for the maintenance of immune homeostasis. Here, we present a large-scale quantitative mass spectrometry study that defines a specific proteomic "signature" of Treg. Treg and conventional T lymphocyte (Tconv) subpopulations were sorted by flow cytometry and subjected to global proteomic analysis by single-run nanoLC-MS/MS on a fast-sequencing Q-Exactive mass spectrometer. Besides "historical" proteins that characterize Treg, our study identified numerous new proteins that are up- or downregulated in Treg versus Tconv. We focused on Themis1, a protein particularly under-represented in Treg, and recently described as being involved in the pathogenesis of immune diseases. Using a transgenic mouse model overexpressing Themis1, we provided in vivo and in vitro evidence of its importance for Treg suppressive functions, in an animal model of inflammatory bowel disease and in coculture assays. We showed that this enhanced suppressive activity in vitro is associated with an accumulation of Tregs. Thus, our study highlights the usefulness of label free quantitative methods to better characterize the Treg cell lineage and demonstrates the potential role of Themis1 in the suppressive functions of these cells.
Collapse
Affiliation(s)
- Fanny Duguet
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France.,§Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Marie Locard-Paulet
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Marlène Marcellin
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Karima Chaoui
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Isabelle Bernard
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Olivier Andreoletti
- ¶UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 31000 Toulouse, France
| | - Renaud Lesourne
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Anne Gonzalez de Peredo
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France;
| | - Abdelhadi Saoudi
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| |
Collapse
|
17
|
Choi S, Warzecha C, Zvezdova E, Lee J, Argenty J, Lesourne R, Aravind L, Love PE. THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nat Immunol 2017; 18:433-441. [PMID: 28250424 PMCID: PMC5807080 DOI: 10.1038/ni.3692] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
THEMIS, a T cell-specific protein with high expression in CD4+CD8+ thymocytes, has a crucial role in positive selection and T cell development. THEMIS lacks defined catalytic domains but contains two tandem repeats of a distinctive module of unknown function (CABIT). Here we found that THEMIS directly regulated the catalytic activity of the tyrosine phosphatase SHP-1. This action was mediated by the CABIT modules, which bound to the phosphatase domain of SHP-1 and promoted or stabilized oxidation of SHP-1's catalytic cysteine residue, which inhibited the tyrosine-phosphatase activity of SHP-1. Deletion of SHP-1 alleviated the developmental block in Themis-/- thymocytes. Thus, THEMIS facilitates thymocyte positive selection by enhancing the T cell antigen receptor signaling response to low-affinity ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Claude Warzecha
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - L. Aravind
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Wiest DL. THEMIS-tery is solved. Nat Immunol 2017; 18:368-370. [PMID: 28323266 DOI: 10.1038/ni.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Cheng D, Deobagkar-Lele M, Zvezdova E, Choi S, Uehara S, Baup D, Bennett SC, Bull KR, Crockford TL, Ferry H, Warzecha C, Marcellin M, de Peredo AG, Lesourne R, Anzilotti C, Love PE, Cornall RJ. Themis2 lowers the threshold for B cell activation during positive selection. Nat Immunol 2016; 18:205-213. [PMID: 27992403 DOI: 10.1038/ni.3642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The positive and negative selection of lymphocytes by antigen is central to adaptive immunity and self-tolerance, yet how this is determined by different antigens is not completely understood. We found that thymocyte-selection-associated family member 2 (Themis2) increased the positive selection of B1 cells and germinal center B cells by self and foreign antigens. Themis2 lowered the threshold for B-cell activation by low-avidity, but not high-avidity, antigens. Themis2 constitutively bound the adaptor protein Grb2, src-kinase Lyn and signal transducer phospholipase γ2 (PLC-γ2), and increased activation of PLC-γ2 and its downstream pathways following B cell receptor stimulation. Our findings identify a unique function for Themis2 in differential signaling and provide insight into how B cells discriminate between antigens of different quantity and quality.
Collapse
Affiliation(s)
- Daian Cheng
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Shoji Uehara
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Delphine Baup
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophia C Bennett
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine R Bull
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen Ferry
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claude Warzecha
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, and Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard J Cornall
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Zvezdova E, Mikolajczak J, Garreau A, Marcellin M, Rigal L, Lee J, Choi S, Blaize G, Argenty J, Familiades J, Li L, Gonzalez de Peredo A, Burlet-Schiltz O, Love PE, Lesourne R. Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability. Sci Signal 2016; 9:ra51. [PMID: 27188442 DOI: 10.1126/scisignal.aad1576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell signaling protein Themis1 is essential for the positive and negative selection of thymocytes in the thymus. Although the developmental defect that results from the loss of Themis1 suggests that it enhances T cell receptor (TCR) signaling, Themis1 also recruits Src homology 2 domain-containing phosphatase-1 (SHP-1) to the vicinity of TCR signaling complexes, suggesting that it has an inhibitory role in TCR signaling. We used TCR signaling reporter mice and quantitative proteomics to explore the role of Themis1 in developing T cells. We found that Themis1 acted mostly as a positive regulator of TCR signaling in vivo when receptors were activated by positively selecting ligands. Proteomic analysis of the Themis1 interactome identified SHP-1, the TCR-associated adaptor protein Grb2, and the guanine nucleotide exchange factor Vav1 as the principal interacting partners of Themis1 in isolated mouse thymocytes. Analysis of TCR signaling in Themis1-deficient and Themis1-overexpressing mouse thymocytes demonstrated that Themis1 promoted Vav1 activity both in vitro and in vivo. The reduced activity of Vav1 and the impaired T cell development in Themis1(-/-) mice were due in part to increased degradation of Grb2, which suggests that Themis1 is required to maintain the steady-state abundance of Grb2 in thymocytes. Together, these data suggest that Themis1 acts as a positive regulator of TCR signaling in developing T cells, and identify a mechanism by which Themis1 regulates thymic selection.
Collapse
Affiliation(s)
- Ekaterina Zvezdova
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith Mikolajczak
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Lise Rigal
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Jan Lee
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seeyoung Choi
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Julien Familiades
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Liqi Li
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Paul E Love
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France.
| |
Collapse
|
21
|
Pioli PD, Whiteside SK, Weis JJ, Weis JH. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 2016; 221:618-33. [PMID: 26831822 DOI: 10.1016/j.imbio.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Sarah K Whiteside
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
22
|
Pedros C, Gaud G, Bernard I, Kassem S, Chabod M, Lagrange D, Andréoletti O, Dejean AS, Lesourne R, Fournié GJ, Saoudi A. An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. THE JOURNAL OF IMMUNOLOGY 2015; 195:1608-16. [PMID: 26163585 DOI: 10.4049/jimmunol.1402562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
The development of inflammatory diseases depends on complex interactions between several genes and various environmental factors. Discovering new genetic risk factors and understanding the mechanisms whereby they influence disease development is of paramount importance. We previously reported that deficiency in Themis1, a new actor of TCR signaling, impairs regulatory T cell (Treg) function and predisposes Brown-Norway (BN) rats to spontaneous inflammatory bowel disease (IBD). In this study, we reveal that the epistasis between Themis1 and Vav1 controls the occurrence of these phenotypes. Indeed, by contrast with BN rats, Themis1 deficiency in Lewis rats neither impairs Treg suppressive functions nor induces pathological manifestations. By using congenic lines on the BN genomic background, we show that the impact of Themis1 deficiency on Treg suppressive functions depends on a 117-kb interval coding for a R63W polymorphism that impacts Vav1 expression and functions. Indeed, the introduction of a 117-kb interval containing the Lewis Vav1-R63 variant restores Treg function and protects Themis1-deficient BN rats from spontaneous IBD development. We further show that Themis1 binds more efficiently to the BN Vav1-W63 variant and is required to stabilize its recruitment to the transmembrane adaptor LAT and to fully promote the activation of Erk kinases. Together, these results highlight the importance of the signaling pathway involving epistasis between Themis1 and Vav1 in the control of Treg suppressive function and susceptibility to IBD development.
Collapse
Affiliation(s)
- Christophe Pedros
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Guillaume Gaud
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Isabelle Bernard
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Sahar Kassem
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Marianne Chabod
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Dominique Lagrange
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Olivier Andréoletti
- Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 31000 Toulouse, France
| | - Anne S Dejean
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Renaud Lesourne
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Gilbert J Fournié
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| | - Abdelhadi Saoudi
- Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
| |
Collapse
|
23
|
Gascoigne NRJ, Acuto O. THEMIS: a critical TCR signal regulator for ligand discrimination. Curr Opin Immunol 2015; 33:86-92. [PMID: 25700024 DOI: 10.1016/j.coi.2015.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Genetic approaches identified THEMIS as a critical element driving positive selection of CD4(+)CD8(+) thymocytes towards maturation. THEMIS is expressed only in the T-cell lineage, and is recruited to the proximity of signaling T-cell antigen receptors (TCR) by association with the membrane scaffold LAT. However, its molecular role remained an enigma until recently. Conventionally positively-selected T-cells are lacking in THEMIS-deficient mice, leading to the initial hypothesis that THEMIS positively regulates TCR signaling. Recent data show that THEMIS deficiency increases rather than decreases TCR signaling, leading to augmented apoptosis. The finding that THEMIS is constitutively bound to the tyrosine phosphatases SHP1 or SHP2, provides a mechanism for THEMIS action. When recruited onto LAT, THEMIS-SHP promotes immediate dephosphorylation of TCR-proximal signaling components. This negative feedback is central in setting sharp signaling thresholds and helps explain the exquisite ligand discrimination by the TCR, particularly during thymocyte selection.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore.
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
24
|
THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun 2014; 83:759-68. [PMID: 25452553 DOI: 10.1128/iai.02586-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.
Collapse
|
25
|
Fu G, Rybakin V, Brzostek J, Paster W, Acuto O, Gascoigne NRJ. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 2014; 35:311-8. [PMID: 24951034 PMCID: PMC4119814 DOI: 10.1016/j.it.2014.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/23/2023]
Abstract
T cell development from immature CD4(+)CD8(+) double-positive (DP) thymocytes to the mature CD4 or CD8 single-positive (SP) stage requires proper T cell receptor (TCR) signaling. The current working model of thymocyte development is that the strength of the TCR-mediated signal - from little-or-none, through intermediate, to strong - received by the immature cells determines whether they will undergo death by neglect, positive selection, or negative selection, respectively. In recent years, several developmentally regulated, stage-specifically expressed proteins and miRNAs have been found that act like fine-tuners for signal transduction and propagation downstream of the TCR. This allows them to govern thymocyte positive selection. Here, we summarize recent findings on these molecules and suggest new concepts of TCR positive-selection signaling.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Joanna Brzostek
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597.
| |
Collapse
|
26
|
In vivo functional mapping of the conserved protein domains within murine Themis1. Immunol Cell Biol 2014; 92:721-8. [PMID: 24935457 PMCID: PMC4414023 DOI: 10.1038/icb.2014.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/20/2014] [Accepted: 05/11/2014] [Indexed: 12/19/2022]
Abstract
Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal initiating receptors are lineage-specific, most trigger ‘ubiquitous’ downstream signaling pathways. T-lineage specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T cell maturation. Themis1 orthologs contain three conserved domains: a proline rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1−/− progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.
Collapse
|
27
|
Hartweger H, Schweighoffer E, Davidson S, Peirce MJ, Wack A, Tybulewicz VLJ. Themis2 is not required for B cell development, activation, and antibody responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:700-7. [PMID: 24907343 PMCID: PMC4082722 DOI: 10.4049/jimmunol.1400943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Themis1 is a protein implicated in transducing signals from the TCR. Mice deficient in Themis1 show a strong impairment in T cell selection in the thymus and defective T cell activation. The related Themis2 protein is expressed in B cells where it associates with signaling proteins Grb2 and Vav1, and is tyrosine phosphorylated after BCR stimulation. Thus, it has been proposed that Themis2 may transduce BCR signals, and hence play important roles in B cell development and activation. In this article, we show that Themis2 is expressed in all developing subsets of B cells, in mature follicular and marginal zone B cells, and in activated B cells, including germinal center B cells and plasma cells. In contrast, B lineage cells express no other Themis-family genes. Activation of B cells leads to reduced Themis2 expression, although it remains the only Themis-family protein expressed. To analyze the physiological function of Themis2, we generated a Themis2-deficient mouse strain. Surprisingly, we found that Themis2 is not required for B cell development, for activation, or for Ab responses either to model Ags or to influenza viral infection.
Collapse
Affiliation(s)
- Harald Hartweger
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Edina Schweighoffer
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Sophia Davidson
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Matthew J Peirce
- Kennedy Institute of Rheumatology, Imperial College, London W6 8LH, United Kingdom
| | - Andreas Wack
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Victor L J Tybulewicz
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
28
|
Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, Goto M, Okamura T, Patrick MS, Suzuki H. Differential function of Themis CABIT domains during T cell development. PLoS One 2014; 9:e89115. [PMID: 24586531 PMCID: PMC3931654 DOI: 10.1371/journal.pone.0089115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Themis (also named Gasp) is a newly identified Grb2-binding protein that is essential for thymocyte positive selection. Despite the possible involvement of Themis in TCR-mediated signal transduction, its function remains unresolved and controversial. Themis contains two functionally uncharacterized regions called CABIT (cysteine-containing, all-β in Themis) domains, a nuclear localization signal (NLS), and a proline-rich sequence (PRS). To elucidate the role of these motifs in Themis’s function in vivo, we established a series of mutant Themis transgenic mice on a Themis−/− background. Deletion of the highly conserved Core motif of CABIT1 or CABIT2 (Core1 or Core2, respectively), the NLS, or the PRS abolished Grb2-association, as well as TCR-dependent tyrosine-phosphorylation and the ability to induce positive selection in the thymus. The NLS and Core1 motifs were required for the nuclear localization of Themis, whereas Core2 and PRS were not. Furthermore, expression of ΔCore1- but not ΔCore2-Themis conferred dominant negative-type inhibition on T cell development. Collectively, our current results indicate that PRS, NLS, CABIT1, and CABIT2 are all required for positive selection, and that each of the CABIT domains exerts distinct functions during positive selection.
Collapse
Affiliation(s)
- Toshiyuki Okada
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Kentaro Kaji
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Akiko Takashima
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Motohito Goto
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Michael S. Patrick
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
29
|
Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, Hoerter JAH, Paster W, Acuto O, Cheroutre H, Sauer K, Gascoigne NRJ. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013; 504:441-5. [PMID: 24226767 PMCID: PMC3977001 DOI: 10.1038/nature12718] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αβ-expressing 'single-positive' thymocytes from CD4(+)CD8αβ(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Javier Casas
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Stephanie Rigaud
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | - Vasily Rybakin
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Florence Lambolez
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Joanna Brzostek
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilde Cheroutre
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Karsten Sauer
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nicholas R J Gascoigne
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
30
|
Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riaño A, Hoerter JAH, Feller SM, Wülfing C, Gascoigne NRJ, Acuto O. GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. THE JOURNAL OF IMMUNOLOGY 2013; 190:3749-56. [PMID: 23460737 DOI: 10.4049/jimmunol.1203389] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocyte-expressed molecule involved in selection (THEMIS) is a recently identified regulator of thymocyte positive selection. THEMIS's mechanism of action is unknown, and whether it has a role in TCR-proximal signaling is controversial. In this article, we show that THEMIS and the adapter molecule growth factor receptor-bound protein 2 (GRB2) associate constitutively through binding of a conserved PxRPxK motif within the proline-rich region 1 of THEMIS to the C-terminal SH3-domain of GRB2. This association is indispensable for THEMIS recruitment to the immunological synapse via the transmembrane adapter linker for activation of T cells (LAT) and for THEMIS phosphorylation by Lck and ZAP-70. Two major sites of tyrosine phosphorylation were mapped to a YY-motif close to proline-rich region 1. The YY-motif was crucial for GRB2 binding, suggesting that this region of THEMIS might control local phosphorylation-dependent conformational changes important for THEMIS function. Finally, THEMIS binding to GRB2 was required for thymocyte development. Our data firmly assign THEMIS to the TCR-proximal signaling cascade as a participant in the LAT signalosome and suggest that the THEMIS-GRB2 complex might be involved in shaping the nature of Ras signaling, thereby governing thymic selection.
Collapse
Affiliation(s)
- Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|