1
|
González-Fernández C, García-Álvarez MA, Cuesta A. Identification and functional characterization of fish IL-17 receptors suggest important roles in the response to nodavirus infection. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:252-265. [PMID: 38827125 PMCID: PMC11136934 DOI: 10.1007/s42995-024-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
Th17 is a lymphocyte T helper (Th) subpopulation relevant in the control and regulation of the immune response characterized by the production of interleukin (IL)-17. This crucial cytokine family acts through their binding to the IL-17 receptors (IL-17R), having up to six members. Although the biology of fish Th17 is well-recognized, the molecular and functional characterization of IL-17 and IL-17R has been limited. Thus, our aim was to identify and characterize the IL-17R repertory and regulation in the two main Mediterranean cultured fish species, the gilthead seabream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Our in silico results showed the clear identification of six members in each fish species, from IL-17RA to IL-17RE-like, with well-conserved gene structure and protein domains with their human orthologues. All of them showed wide and constitutive transcription in naïve tissues but with highest levels in mucosal tissues, namely skin, gill or intestine. In leucocytes, T mitogens showed the strongest up-regulation in most of the il17 receptors though il17ra resulted in inhibition by most stimulants. Interestingly, in vivo nodavirus infection resulted in alterations on the transcription of il17 receptors. While nodavirus infection led to some increments in the il17ra, il17rb, il17rc and il17rd transcripts in the susceptible European sea bass, many down-regulations were observed in the resistant gilthead seabream. Our data identify the presence and conservation of six coding IL-17R in gilthead seabream and European sea bass as well as their differential regulation in vitro and upon nodavirus infection. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00225-1.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
- Laboratoire d’écotoxicologie, Centre de Lyon-Villeurbanne, INRAE, UR RiverLy, 69625 Villeurbanne, France
| | - Miguel A. García-Álvarez
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Lv Z, Guo M, Zhao X, Shao Y, Zhang W, Li C. IL-17/IL-17 Receptor Pathway-Mediated Inflammatory Response in Apostichopus japonicus Supports the Conserved Functions of Cytokines in Invertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:464-479. [PMID: 34965964 DOI: 10.4049/jimmunol.2100047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023]
Abstract
Inflammation participates in host defenses against infectious agents and contributes to the pathophysiology of many diseases. IL-17 is a well-known proinflammatory cytokine that contributes to various aspects of inflammation in vertebrates. However, the functional role of invertebrate IL-17 in inflammatory regulation is not well understood. In this study, we first established an inflammatory model in the Vibrio splendidus-challenged sea cucumber Apostichopus japonicus (Echinodermata). Typical inflammatory symptoms, such as increased coelomocyte infiltration, tissue vacuoles, and tissue fractures, were observed in the V. splendidus-infected and diseased tissue of the body wall. Interestingly, A. japonicus IL-17 (AjIL-17) expression in the body wall and coelomocytes was positively correlated with the development of inflammation. The administration of purified recombinant AjIL-17 protein also directly promoted inflammation in A. japonicus Through genome searches and ZDOCK prediction, a novel IL-17R counterpart containing FNIII and hypothetical TIR domains was identified in the sea cucumber genome. Coimmunoprecipitation, far-Western blotting, and laser confocal microscopy confirmed that AjIL-17R could bind AjIL-17. A subsequent cross-linking assay revealed that the AjIL-17 dimer mediates the inflammatory response by the specific binding of dimeric AjIL-17R upon pathogen infection. Moreover, silencing AjIL-17R significantly attenuated the LPS- or exogenous AjIL-17-mediated inflammatory response. Functional analysis revealed that AjIL-17/AjIL-17R modulated inflammatory responses by promoting A. japonicus TRAF6 ubiquitination and p65 nuclear translocation and evenly mediated coelomocyte proliferation and migration. Taken together, our results provide functional evidence that IL-17 is a conserved cytokine in invertebrates and vertebrates associated with inflammatory regulation via the IL-17-IL-17R-TRAF6 axis.
Collapse
Affiliation(s)
- Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Structure of a prokaryotic SEFIR domain reveals two novel SEFIR-SEFIR interaction modes. J Struct Biol 2018; 203:81-89. [PMID: 29549035 PMCID: PMC6057156 DOI: 10.1016/j.jsb.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
SEFIR domain-containing proteins are crucial for mammalian adaptive immunity. As a unique intracellular signaling domain, the SEFIR-SEFIR interactions mediate physical protein-protein interactions in the immune signaling network, especially the IL-17- and IL-25-mediated pathways. However, due to the lack of structural information, the detailed molecular mechanism for SEFIR-SEFIR assembly remains unclear. In the present study, we solved the crystal structures of a prokaryotic SEFIR domain from Bacillus cereus F65185 (BcSEFIR), where the SEFIR domain is located at the N terminus. The structure of BcSEFIR revealed two radically distinct SEFIR-SEFIR interaction modes. In the asymmetric form, the C-terminal tail of one SEFIR binds to the helix αA and βB-αB' segment of the other one, while in the symmetric form, the helices ηC and αE and the DE-segment compose the inter-protomer interface. The C-terminal tail of BcSEFIR, critical for asymmetric interaction, is highly conserved among the SEFIR domains of Act1 orthologs from different species, in particular three absolutely conserved residues that constitute an EXXXXPP motif. In the symmetric interaction mode, the most significant contacts made by residues on helix αE are highly conserved in Act1 SEFIR domains, constituted an RLI/LXE motif. The two novel SEFIR-SEFIR interaction modes might explain the structural basis for SEFIR domain-mediated complex assembly in signaling pathways.
Collapse
|
4
|
Jiang B, Li YW, Hu YZ, Luo HL, Li AX. Characterization and expression analysis of six interleukin-17 receptor genes in grouper (Epinephelus coioides) after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 69:46-51. [PMID: 28811226 DOI: 10.1016/j.fsi.2017.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-17 receptors (IL17Rs) mediate the activation of several downstream signal pathways to induce inflammatory response and contribute to the pathology of many autoimmune diseases. In this study, six IL17Rs (IL17RA1, RA2, RB, RC, RD and RE) were cloned and characterized from Epinephelus coioides, an orange-spotted grouper. Multiple sequence alignment and structural analysis revealed that all members of IL17Rs were low in sequence identity with each other. But their structures were conservative in grouper, which contain signal peptide, extracellular FNIII domain (IL17RA1/RA2/RB) or IL-17_R_N domain (IL17RC/RD/RE), transmembrane domain and SEFIR domain in their intracellular region. The analysis of tissue distribution showed these six genes were ubiquitously and differentially expressed in all major types of tissues. What's more, it is interesting to find their high expression in immune tissues (liver, gill, skin and thymus). IL17RA1 and IL17RA2 were significantly down-regulated at all time-points in gill and spleen after Cryptocaryon irritans infection, however, there was no significant change in other grouper IL17Rs. It suggests that the C. irritans may escape from the host immunity or the host prevents serious inflammation by inhibiting the expression of ILl7Rs.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Heng-Li Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
5
|
Cho HK, Kim J, Moon JY, Nam BH, Kim YO, Kim WJ, Park JY, An CM, Cheong J, Kong HJ. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2016; 49:66-78. [PMID: 26631808 DOI: 10.1016/j.fsi.2015.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/04/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Julan Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Ji Young Moon
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea.
| |
Collapse
|
6
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Berggren O, Alexsson A, Morris DL, Tandre K, Weber G, Vyse TJ, Syvanen AC, Ronnblom L, Eloranta ML. IFN- production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Hum Mol Genet 2015; 24:3571-81. [DOI: 10.1093/hmg/ddv095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
|
8
|
Murakami I, Matsushita M, Iwasaki T, Kuwamoto S, Kato M, Horie Y, Hayashi K, Imamura T, Morimoto A, Imashuku S, Gogusev J, Jaubert F, Takata K, Oka T, Yoshino T. Merkel cell polyomavirus DNA sequences in peripheral blood and tissues from patients with Langerhans cell histiocytosis. Hum Pathol 2014; 45:119-26. [PMID: 24321520 DOI: 10.1016/j.humpath.2013.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/25/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a group of granulomatous disorders in which abnormal Langerhans cells proliferate as either a localized lesion in a single bone or disseminated disease involving two or more organs or systems. Because the different LCH forms exhibit significantly elevated levels of inflammatory molecules, including pro-inflammatory cytokines and tissue-degrading enzymes, we investigated for a possible viral trigger in LCH pathogenesis. We looked for Merkel cell polyomavirus (MCPyV) in peripheral blood cells and tissues using quantitative real-time PCR and immunohistochemistry staining with anti-MCPyV large T-antigen antibody. Our findings revealed elevated amounts of MCPyV DNA in the peripheral blood cells of 2 of 3 patients affected by LCH with high-risk organ involvement (RO+) and absence of MCPyV DNA in the blood cells in all 12 LCH-RO- patients (P = .029). With lower viral loads (0.002-0.033 copies/cell), an elevated number of MCPyV DNA sequences was detected in 12 LCH tissues in comparison with control tissues obtained from patients with reactive lymphoid hyperplasia (0/5; P = .0007), skin diseases not related to LCH in children younger than 2 years (0/11; P = .0007), or dermatopathic lymphadenopathy (5/20; P = .0002). The data, including frequent but lower viral loads and low large-T antigen expression rate (2/13 LCH tissues), suggest that development of LCH as a reactive rather than a neoplastic process may be related to MCPyV infection.
Collapse
Affiliation(s)
- Ichiro Murakami
- Division of Molecular Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu B, Gong J, Yuan S, Zhang Y, Wei T. Patterns of evolutionary selection pressure in the immune signaling protein TRAF3IP2 in mammals. Gene 2013; 531:403-10. [PMID: 24021976 DOI: 10.1016/j.gene.2013.08.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/08/2023]
Abstract
TRAF3 interacting protein 2 (TRAF3IP2) is important for immune responses to pathogens, inflammatory signals and autoimmunity in mammals. In the present study, we collected 19 mammalian TRAF3IP2 sequences and investigated the various types of selection pressure acting on them. Maximum likelihood estimations of nonsynonymous (dN) to synonymous (dS) substitution (dN/dS) ratios for the aligned coding sequences indicated that, as a whole, TRAF3IP2 has been subject to purifying selection. However, the N-terminus of the protein has been subject to higher selection pressure than the C-terminal domain. While eight amino acid residues within the N-terminus appear to have evolved under positive selection, no evidence for such selection was found in the C-terminus. The positively selected residues, which fall outside the currently known functional sites within TRAF3IP2, may have novel functions. The different selection pressures acting on the N- and C-terminal regions are consistent with their protein structures: the C-terminal structure is an ordered structure, whereas the N-terminus is disordered. Taken together with the results of previous studies, it is plausible that positive selection on the N-terminus of TRAF3IP2 may have occurred by competitive coevolution between mammalian hosts and viruses.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defense against microbial organisms and in the development of inflammatory diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A and other IL-17 family cytokines have multiple sources ranging from immune cells to non-immune cells. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host defense and IL-17-driven autoimmune conditions. This review will give an overview and recent updates on the IL-17 family, the activation and regulation of IL-17 signaling as well as diseases associated with this cytokine family.
Collapse
Affiliation(s)
- Chunfang Gu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
11
|
Weidinger S, Willis-Owen SAG, Kamatani Y, Baurecht H, Morar N, Liang L, Edser P, Street T, Rodriguez E, O'Regan GM, Beattie P, Fölster-Holst R, Franke A, Novak N, Fahy CM, Winge MCG, Kabesch M, Illig T, Heath S, Söderhäll C, Melén E, Pershagen G, Kere J, Bradley M, Lieden A, Nordenskjold M, Harper JI, McLean WHI, Brown SJ, Cookson WOC, Lathrop GM, Irvine AD, Moffatt MF. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet 2013; 22:4841-56. [PMID: 23886662 PMCID: PMC3820131 DOI: 10.1093/hmg/ddt317] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci.
Collapse
Affiliation(s)
- Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|