1
|
Frischauf N, Strasser J, Borg EGF, Labrijn AF, Beurskens FJ, Preiner J. Complement activation by IgG subclasses is governed by their ability to oligomerize upon antigen binding. Proc Natl Acad Sci U S A 2024; 121:e2406192121. [PMID: 39436656 DOI: 10.1073/pnas.2406192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.
Collapse
Affiliation(s)
- Nikolaus Frischauf
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Jürgen Strasser
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz 4020, Austria
| | | | | | | | - Johannes Preiner
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz 4020, Austria
| |
Collapse
|
2
|
Hendriks A, Kerkman PF, Varkila MRJ, Haitsma Mulier JLG, Ali S, Ten Doesschate T, van der Vaart TW, de Haas CJC, Aerts PC, Cremer OL, Bonten MJM, Nizet V, Liu GY, Codée JDC, Rooijakkers SHM, van Strijp JAG, van Sorge NM. Glycan-specific IgM is critical for human immunity to Staphylococcus aureus. Cell Rep Med 2024; 5:101734. [PMID: 39293400 DOI: 10.1016/j.xcrm.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Staphylococcus aureus is a major human pathogen, yet the immune factors that protect against infection remain elusive. High titers of opsonic IgG antibodies, achieved in preclinical animal immunization studies, have consistently failed to provide protection in humans. Here, we investigate antibody responses to the conserved S. aureus surface glycan wall teichoic acid (WTA) and detect the presence of WTA-specific IgM and IgG antibodies in the plasma of healthy individuals. Functionally, WTA-specific IgM outperforms IgG in opsonophagocytic killing of S. aureus and protects against disseminated S. aureus bacteremia through passive immunization. In a clinical setting, patients with S. aureus bacteremia have significantly lower WTA-specific IgM but similar IgG levels compared to healthy controls. Importantly, low WTA-IgM levels correlate with disease mortality and impaired bacterial opsonization. Our findings may guide risk stratification of hospitalized patients and inform future design of antibody-based therapies and vaccines against serious S. aureus infection.
Collapse
Affiliation(s)
- Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Priscilla F Kerkman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Meri R J Varkila
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jelle L G Haitsma Mulier
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Thijs Ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas W van der Vaart
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands; Netherlands Reference Center for Bacterial Meningitis, Amsterdam UMC, location AMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Shen P, Zheng L, Qin X, Li D, Zhang Z, Zhao J, Lin H, Hong H, Zhou Z, Wu Z. Synthesis of structure-defined β-1,4-GlcNAc-modified wall teichoic acids as potential vaccine against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2023; 258:115553. [PMID: 37336068 DOI: 10.1016/j.ejmech.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a high priority pathogen due to its life-threating infections to human health. Development of prophylactic or therapeutic anti-MRSA vaccine is a potential approach to treat S. aureus infections and overcome the resistance crisis. β-1,4-GlcNAc glycosylated wall teichoic acids (WTAs) derived from S. aureus are a new type of antigen that is closely associated with β-lactam resistance. In this study, structure-defined β-1,4-GlcNAc-modified WTAs varied in chain length and numbers of GlcNAc modification were synthesized by an ionic liquid-supported oligosaccharide synthesis (ILSOS) strategy in high efficiency and chromatography-free approach. Then the obtained WTAs were conjugated with tetanus toxin (TT) as vaccine candidates and were further evaluated in a mouse model to determine the structure-immunogenicity relationship. In vivo immunological studies revealed that the WTAs-TT conjugates provoked robust T cell-dependent responses and elicited high levels of specific anti-WTAs IgG antibodies production associated with the WTAs structure including chain length as well as the β-1,4-GlcNAc modification pattern. Heptamer WTAs conjugate T6, carrying three copy of β-1,4-GlcNAc modified RboP, was identified to elicit the highest titers of specific antibody production. The T6 antisera exhibited the highest recognition and binding affinity and the most potent OP-killing activities to MSSA and MRSA cells. This study demonstrated that β-1,4-GlcNAc glycosylated WTAs are promising antigens for further development against MRSA.
Collapse
Affiliation(s)
- Peng Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijiang Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Han J, Poma A. Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers (Basel) 2022; 14:3198. [PMID: 35956712 PMCID: PMC9370930 DOI: 10.3390/polym14153198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is urgently required. A series of anti-biofilm strategies have been developed, and this review will focus in particular on the development of anti-biofilm antibodies. Based on the results previously reported in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm matrix and bacterial toxins, covering their antigenic properties (with the identification of potential promising epitopes), functional mechanisms, as well as the antibodies already developed against these targets and, where feasible, their clinical translation.
Collapse
Affiliation(s)
- Jiahe Han
- UCL Institute of Cardiovascular Science, The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
6
|
Shen P, Lin H, Bao Y, Hong H, Wu Z. Synthesis and immunological study of a glycosylated wall teichoic acid-based vaccine against Staphylococcus aureus. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Shinde P, Stamatos N, Doub JB. Human Plasma Significantly Reduces Bacteriophage Infectivity Against Staphylococcus aureus Clinical Isolates. Cureus 2022; 14:e23777. [PMID: 35509731 PMCID: PMC9063457 DOI: 10.7759/cureus.23777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteriophage therapy has been regaining interest as a potential therapeutic in treating a wide range of infections. However, there is a paucity of knowledge regarding numerous aspects of bacteriophage therapy, thereby hindering the development of proper treatment protocols and effective clinical trials. In this report, the activities of three bacteriophages are evaluated against clinical bacterial isolates in the presence and absence of human plasma (HP). The bacteriophages used in this experiment were residual therapeutic doses from the United States Food and Drug Administration (FDA) approved compassionate use cases to treat recalcitrant prosthetic joint infections (PJIs). Herein we demonstrate that in the presence of HP, the infectivity of these Staphylococcal bacteriophages was significantly reduced compared to the infectivity in the absence of HP. Inhibition of infectivity ranged from 48% to 81% for two methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates independently infected with the same bacteriophage and 98% for a third MRSA clinical isolate infected with a different bacteriophage. In contrast, bacteriophage infectivity of an Enterococcus faecalis clinical isolate was not affected by the presence of HP. We hypothesize that the inhibition is correlated with plasma proteins binding to Staphylococcal surface proteins masking the receptors associated with bacteriophage attachment, thereby reducing infectivity. This has clinical ramifications for bacteriophage therapy use in treating Staphylococcal bacteremia and periprosthetic joint infections.
Collapse
Affiliation(s)
- Prajakta Shinde
- Infectious Diseases, University of Maryland School of Medicine, Baltimore, USA
| | - Nicholas Stamatos
- Infectious Diseases, University of Maryland School of Medicine, Baltimore, USA
| | - James B Doub
- Infectious Diseases, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
8
|
Berni F, Kalfopoulou E, Gimeno Cardells AM, Carboni F, van der Es D, Romero-Saavedra F, Laverde D, Miklic K, Malic S, Rovis TL, Jonjic S, Ali S, Overkleeft HS, Hokke CH, van Diepen A, Adamo R, Jiménez-Barbero J, van der Marel GA, Huebner J, Codée JDC. Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid. ACS Chem Biol 2021; 16:1344-1349. [PMID: 34255482 PMCID: PMC8389533 DOI: 10.1021/acschembio.1c00422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.
Collapse
Affiliation(s)
- Francesca Berni
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Ermioni Kalfopoulou
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
- Institute
for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Ana M. Gimeno Cardells
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, 48160 Derio, Spain
- Ikerbasque, Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Filippo Carboni
- Research
and Development Centre, GlaxoSmithKline
(GSK), 53100 Siena, Italy
| | - Daan van der Es
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Felipe Romero-Saavedra
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Diana Laverde
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Karmela Miklic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Suzana Malic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Tihana L. Rovis
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Stipan Jonjic
- Centre
for Proteomics, Faculty of Medicine, University
of Rijeka, 51000 Rijeka, Croatia
| | - Sara Ali
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef
2, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef
2, 2333 ZA Leiden, The Netherlands
| | - Roberto Adamo
- Research
and Development Centre, GlaxoSmithKline
(GSK), 53100 Siena, Italy
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, 48160 Derio, Spain
- Ikerbasque, Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | | | - Johannes Huebner
- Division
of Pediatric Infectious Diseases, Dr. von Hauner Children’s
Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Abstract
Antibody-dependent complement activation plays a major role in various pathophysiological processes in our body, including infection, inflammation, autoimmunity, and transplant rejection. In order to activate complement, antibodies should bind to target cells and recruit complement component C1. C1 is a large, multimolecular complex that consists of the antibody recognition protein C1q and a heterotetramer of proteases (C1r2s2). Although it is believed that interactions between C1 and IgGs are solely mediated by C1q, we here show that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules. Furthermore, we demonstrate that C1q–IgG stability is influenced by IgG oligomerization and that promoting IgG oligomerization improves phagocytosis of the pathogenic bacterium Staphylococcus aureus. Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody’s constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q–IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q–IgG stability, both in the absence and presence of C1r2s2. In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.
Collapse
|
10
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
11
|
Li Z, Li Y, Wang Y, Hou Y, Cao H, Wu X, Hu S, Long D. Intranasal immunization with a rNMB0315 and combination adjuvants induces protective immunity against Neisseria meningitidis serogroup B in mice. Int Immunopharmacol 2021; 93:107411. [PMID: 33548582 DOI: 10.1016/j.intimp.2021.107411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/01/2022]
Abstract
Neisseria meningitidis (N. meningitidis) is a human-specific pathogen and a major cause of meningitis and septicemia with a high case fatality rate. N. meningitidis may penetrate the nasopharyngeal mucosal membrane and cause severe meningitis, a mucosal immune response plays a key role in the defense against meningococcal infections. Our previous study demonstrated that N. meningitidis serogroup B 0315 (NMB0315) was a vaccine candidate against N. meningitidis serogroup B (NMB) through parenteral immunization. In this study, immunopotentiators (C48/80 or CpG-ODN) were loaded into chitosan nanoparticle (Chi NP) to form combination adjuvants (Chi-CpG NP and Chi-C48/80 NP) and adopted to enhance the immunogenicity of NMB0315 through intranasal immunization. The experimental results have indicated that both Chi-CpG NP and Chi-C48/80 NP are effective mucosal adjuvants for the induction of significantly higher rNMB0315-specific IgG, IgG1, IgG2a and sIgA antibodies. Meanwhile, Chi-CpG NP and Chi-C48/80 NP could change the ratio of IgG1/IgG2a, inducing a more balanced cellular/humoral immune response. Chi-CpG NP and Chi-C48/80 NP also boosted interleukin-4 (IL-4), interferon-γ (IFN-γ) and interleukin-17 A (IL-17A) production by splenocytes. The bactericidal antibodies have been detected in sera from mice immunized with rNMB0315 + Chi-CpG NP and rNMB0315 + Chi-C48/80 NP. Overall, the combination adjuvants could be applicable to the development of a mucosal vaccine against NMB.
Collapse
Affiliation(s)
- Zhenyu Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Yan Wang
- Operating Room, The Second Hospital University of South China, Hengyang 421001, China
| | - Yongli Hou
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Hui Cao
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Xiaoxia Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Sihai Hu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China.
| | - Dingxin Long
- China School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Berni F, Wang L, Kalfopoulou E, Nguyen DL, van der Es D, Huebner J, Overkleeft HS, Hokke CH, van der Marel GA, van Diepen A, Codée JDC. Generation of glucosylated sn-1-glycerolphosphate teichoic acids: glycerol stereochemistry affects synthesis and antibody interaction. RSC Chem Biol 2021; 2:187-191. [PMID: 34458781 PMCID: PMC8341164 DOI: 10.1039/d0cb00206b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Lipoteichoic acids (LTAs) have been addressed as possible antigen candidates for vaccine development against several opportunistic Gram-positive pathogens. The study of structure-immunogenicity relationship represents a challenge due to the heterogenicity of LTA extracted from native sources. LTAs are built up from glycerol phosphate (GroP) repeating units and they can be substituted at the C-2-OH with carbohydrate appendages or d-alanine residues. The substitution pattern, but also the absolute chirality of the GroP residues can impact the interaction with chiral biomolecules including antibodies and biosynthesis enzymes. We have generated a set of diastereomeric GroP hexamers bearing a glucosyl modification at one of the residues. The chirality of the glycerol building block had an important impact on the stereoselectivity of the glycosylation reaction between the glycosyl donor and the glycerol C-2-OH acceptor. The GroP C-2-chirality also played an important role in the interaction with TA recognizing antibodies. These findings have important implications for the design and synthesis of synthetic TA fragments for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Francesca Berni
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Liming Wang
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ermioni Kalfopoulou
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Daan van der Es
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
13
|
Guo Y, Pfahler NM, Völpel SL, Stehle T. Cell wall glycosylation in Staphylococcus aureus: targeting the tar glycosyltransferases. Curr Opin Struct Biol 2021; 68:166-174. [PMID: 33540375 DOI: 10.1016/j.sbi.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Peptidoglycan (PG) is the major structural polymer of the bacterial cell wall. The PG layer of gram-positive bacterial pathogens such as Staphylococcus aureus (S. aureus) is permeated with anionic glycopolymers known as wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). In S. aureus, the WTA backbone typically consists of repeating ribitol-5-phosphate units, which are modified by enzymes that introduce glycosylation as well as amino acids at different locations. These modifications are key determinants of phage adhesion, bacterial biofilm formation and virulence of S. aureus. In this review, we examine differences in WTA structures in gram-positive bacteria, focusing in particular on three enzymes, TarM, TarS, and TarP that glycosylate the WTA of S. aureus at different locations. Infections with S. aureus pose an increasing threat to human health, particularly through the emergence of multidrug-resistant strains. Recently obtained structural information on TarM, TarS and TarP has helped to better understand the strategies used by S. aureus to establish resistance and to evade host defense mechanisms. Moreover, structures of complexes with poly-RboP and its analogs can serve as a platform for the development of new inhibitors that could form a basis for the development of antibiotic agents.
Collapse
Affiliation(s)
- Yinglan Guo
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Nina M Pfahler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Simon L Völpel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, USA.
| |
Collapse
|
14
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
15
|
Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends Microbiol 2020; 28:985-998. [DOI: 10.1016/j.tim.2020.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
|
16
|
Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020; 8:microorganisms8121852. [PMID: 33255499 PMCID: PMC7761167 DOI: 10.3390/microorganisms8121852] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Streptococcus gordonii, a Gram-positive bacterium, is a commensal bacterium that is commonly found in the skin, oral cavity, and intestine. It is also known as an opportunistic pathogen that can cause local or systemic diseases, such as apical periodontitis and infective endocarditis. S. gordonii, an early colonizer, easily attaches to host tissues, including tooth surfaces and heart valves, forming biofilms. S. gordonii penetrates into root canals and blood streams, subsequently interacting with various host immune and non-immune cells. The cell wall components of S. gordonii, which include lipoteichoic acids, lipoproteins, serine-rich repeat adhesins, peptidoglycans, and cell wall proteins, are recognizable by individual host receptors. They are involved in virulence and immunoregulatory processes causing host inflammatory responses. Therefore, S.gordonii cell wall components act as virulence factors that often progressively develop diseases through overwhelming host responses. This review provides an overview of S. gordonii, and how its cell wall components could contribute to the pathogenesis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Tae Hwan Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
17
|
de Vor L, Rooijakkers SHM, van Strijp JAG. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett 2020; 594:2556-2569. [PMID: 32144756 DOI: 10.1002/1873-3468.13767] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis can cause many types of infections, ranging from skin infections to implant-associated infections. The primary innate immune response against bacterial infections involves complement activation, recruitment of phagocytes (most importantly neutrophils), and subsequent killing of the pathogen. However, staphylococci are not innocent bystanders; they actively obstruct this immune attack. To do that, S. aureus secretes several immune-evasion proteins to resist attack by the innate immune system. Furthermore, S. aureus and S. epidermidis are known for their ability to form biofilms on implanted medical devices and host tissues, which provides another important immune-evasion mechanism. Understanding these different strategies to resist immune attack will help to develop novel therapies against staphylococcal infections.
Collapse
Affiliation(s)
- Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
18
|
Khantavee N, Chanthick C, Sookrung N, Prapasarakul N. Antibody levels to Malassezia pachydermatis and Staphylococcus pseudintermedius in atopic dogs and their relationship with lesion scores. Vet Dermatol 2019; 31:111-115. [PMID: 31696563 DOI: 10.1111/vde.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated immunoglobulin E (IgE) levels to Malassezia or Staphylococcus species in human atopic dermatitis are related to the skin severity index; a similar association has not been reported in atopic dogs. OBJECTIVES To investigate serum levels of allergen-specific IgE, total specific IgG and IgG subclasses (IgG1 and IgG2) for M. pachydermatis and S. pseudintermedius, and to correlate them with the severity of dermatitis in dogs. ANIMALS Serum samples were collected from dogs categorized by age and disease status. Groups 1 and 2: <3-year-old healthy (n = 9) and atopic dogs (n = 9), respectively; and groups 3 and 4: ≥3-year-old healthy (n = 11) and atopic dogs (n = 14), respectively. METHODS AND MATERIALS Antibody levels were measured by ELISA. The Canine Atopic Dermatitis Lesion Index (CADLI) was analyzed in relation to antibody levels. RESULTS Specific IgE and total IgG against M. pachydermatis and S. pseudintermedius were significantly increased in atopic dogs of all ages. Although differences between atopic and healthy dogs, with regard to specific IgG1 and IgG2 levels to each microbe, varied in significance within age groups. No significant relationships were found between the CADLI and any specific immunoglobulin levels for both microbe types. CONCLUSIONS AND CLINICAL IMPORTANCE In dog skin, microbes may act as allergens triggering inflammatory responses via IgE- and IgG-dependent pathway(s). The affinity of the IgG subclass produced may vary according to antigen type. Specific IgE levels may be related to clinical disease in dogs and not to skin lesion severity.
Collapse
Affiliation(s)
- Nathrada Khantavee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanettee Chanthick
- Dermatology Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, 50 Paholyothin Road, Ladyao, Chatuchuk, Bangkok, 10900, Thailand
| | - Nitat Sookrung
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok, 10700, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.,Diagnosis and Monitoring of Animal Pathogens Research Unit, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
19
|
Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature 2019; 572:E1-E2. [DOI: 10.1038/s41586-019-1416-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
|
20
|
Mistretta N, Brossaud M, Telles F, Sanchez V, Talaga P, Rokbi B. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions. Sci Rep 2019; 9:3212. [PMID: 30824758 PMCID: PMC6397182 DOI: 10.1038/s41598-019-39929-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/26/2023] Open
Abstract
Wall teichoic acid (WTA) are major constituents of Staphylococcus aureus (S. aureus) cell envelopes with important roles in the bacteria's physiology, resistance to antimicrobial molecules, host interaction, virulence and biofilm formation. They consist of ribitol phosphate repeat units in which the ribitol residue is substituted with D-alanine (D-Ala) and N-acetyl-D-glucosamine (GlcNAc). The complete S. aureus WTA biosynthesis pathways was recently revealed with the identification of the two glycosyltransferases, TarM and TarS, respectively responsible for the α- and β-GlcNAc anomeric substitutions. We performed structural analyses to characterize WTAs from a panel of 24 S. aureus strains responsible for invasive infections. A majority of the S. aureus strains produced the β-GlcNAc WTA form in accordance with the presence of the tarS gene in all strains assessed. The β-GlcNAc anomer was preferentially expressed at the expense of the α-GlcNAc anomer when grown on stress-inducing culture medium containing high NaCl concentration. Furthermore, WTA glycosylation of the prototype S. aureus Newman strain was characterized in vivo in two different animal models, namely peritonitis and deep wound infection. While the inoculum used to infect animals produced almost exclusively α-GlcNAc WTA, a complete switch to β-glycosylation was observed in infected kidneys, livers and muscles. Overall, our data demonstrate that S. aureus WTA glycosylation is strongly influenced by environmental conditions and suggest that β-GlcNAc WTA may bring competitive advantage in vivo.
Collapse
Affiliation(s)
- Noëlle Mistretta
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France.
| | - Marina Brossaud
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Fabienne Telles
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Violette Sanchez
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Philippe Talaga
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Bachra Rokbi
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| |
Collapse
|
21
|
Raafat D, Otto M, Reppschläger K, Iqbal J, Holtfreter S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol 2019; 27:303-322. [PMID: 30665698 DOI: 10.1016/j.tim.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the biofilm structure to shield bacteria from antibiotics as well as the host's immune system. Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. aureus antibodies can help in combating biofilms, including an up-to-date overview of monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in passive vaccination against S. aureus biofilm infections, with special emphasis on promising targets, and finally indicate the direction into which future research could be heading.
Collapse
Affiliation(s)
- Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Egypt; Current affiliation: Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin Reppschläger
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jawad Iqbal
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
22
|
Jung YC, Lee JH, Kim SA, Schmidt T, Lee W, Lee BL, Lee HS. Synthesis and Biological Activity of Tetrameric Ribitol Phosphate Fragments of Staphylococcus aureus Wall Teichoic Acid. Org Lett 2018; 20:4449-4452. [PMID: 30028624 DOI: 10.1021/acs.orglett.8b01725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A systematically designed and synthesized ribitol phosphate (RboP) oligomer using a series of building blocks, which make up the wall teichoic acid (WTA) of S. aureus, is presented. Based on the use of a solution-phase phosphodiester synthesis, a library of ribitol phosphate tetramers, decorated with d-alanine and N-acetylglucosamine (GlcNAc), were generated. The synthesized RboP tetramers showed increased cytokine levels in mice in a subcutaneous air pouch model.
Collapse
Affiliation(s)
- Yoon-Chul Jung
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Jae-Hyeok Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Sang Ah Kim
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Timo Schmidt
- National Research Laboratory of Defense Proteins, College of Pharmacy , Pusan National University , Busan , 46241 , Korea
| | - Wonchul Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy , Pusan National University , Busan , 46241 , Korea
| | - Hee-Seung Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| |
Collapse
|
23
|
Dos Santos DP, Muniz IPR, Queiroz AF, Pereira IS, Souza MPA, Lima LJ, Sousa LRO, Ribeiro IS, Galantini MPL, Marques LM, Figueiredo TB, da Silva RAA. Individual variation is the key to the development of a vaccine against Staphylococcus aureus: a comparative study between mice lineages. ACTA ACUST UNITED AC 2018; 51:e6773. [PMID: 29590259 PMCID: PMC5886559 DOI: 10.1590/1414-431x20186773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023]
Abstract
Bacterial infections occur worldwide and are a major public health problem. Among pathogens, Staphylococcus aureus is the main causative agent of bacterial diseases in the world. This study aimed to evaluate which components of the immune system could act protectively against a S. aureus infection in intradermally immunized mice. C57BL/6 and A/j mice were immunized intradermally with S. aureus inactivated by heat and then challenged with viable strains in an air pouch model. At 6, 12, and 24 h after the challenge, euthanasia was performed, and the cellular profile of the inflammatory infiltrate, cytokines, and the bacterial load were evaluated in the air pouch lavages. Immunized mice demonstrated that the intradermal immunization with S. aureus promoted protection in C57BL/6 mice by reducing the bacterial, which was correlated with increased serum concentration of IgG antibodies (IgG1 and IgG2a) against S. aureus. The increase in IgG2a antibody levels was correlated with a decrease of bacterial load in intradermally immunized C57BL/6 mice, along with production of IL-17A at the inflammation site, as well as IgG1consumption. Similar results were not found in the A/j lineage. In conclusion, a vaccine against S. aureus should focus more on the individual characteristics of the host because it is a determinant factor for the success of the immunization.
Collapse
Affiliation(s)
- D P Dos Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - I P R Muniz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - A F Queiroz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - I S Pereira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - M P A Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - L J Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - L R O Sousa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - I S Ribeiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - M P L Galantini
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - L M Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - T B Figueiredo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| | - R A A da Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brasil
| |
Collapse
|
24
|
van der Es D, Berni F, Hogendorf WFJ, Meeuwenoord N, Laverde D, van Diepen A, Overkleeft HS, Filippov DV, Hokke CH, Huebner J, van der Marel GA, Codée JDC. Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry 2018; 24:4014-4018. [PMID: 29389054 PMCID: PMC5887911 DOI: 10.1002/chem.201800153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/30/2022]
Abstract
Teichoic acids (TAs) are key components of the Gram-positive bacterial cell wall that are composed of alditol phosphate repeating units, decorated with alanine or carbohydrate appendages. Because of their microhetereogeneity, pure well-defined TAs for biological or immunological evaluation cannot be obtained from natural sources. We present here a streamlined automated solid-phase synthesis approach for the rapid generation of well-defined glycosylated, glycerol-based TA oligomers. Building on the use of a "universal" linker system and fluorous tag purification strategy, a library of glycerolphosphate pentadecamers, decorated with various carbohydrate appendages, is generated. These are used to create a structurally diverse TA-microarray, which is used to reveal, for the first time, the binding preferences of anti-LTA (lipoteichoic acids) antibodies at the molecular level.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Francesca Berni
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Wouter F. J. Hogendorf
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Diana Laverde
- Division of Paediatric Infectious DiseasesDr. von Hauner Children's HospitalLudwig-Maximilians-UniversityMunichGermany
| | - Angela van Diepen
- Department of ParasitologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Cornelis H. Hokke
- Department of ParasitologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Johannes Huebner
- Division of Paediatric Infectious DiseasesDr. von Hauner Children's HospitalLudwig-Maximilians-UniversityMunichGermany
| | | | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|
25
|
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Front Immunol 2017; 8:780. [PMID: 28725225 PMCID: PMC5495868 DOI: 10.3389/fimmu.2017.00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting "protective" HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients.
Collapse
Affiliation(s)
- Martyn A. French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| | - M. Christian Tjiam
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laila N. Abudulai
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
26
|
Production of IgG antibodies to pneumococcal polysaccharides is associated with expansion of ICOS+ circulating memory T follicular-helper cells which is impaired by HIV infection. PLoS One 2017; 12:e0176641. [PMID: 28463977 PMCID: PMC5413043 DOI: 10.1371/journal.pone.0176641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 11/26/2022] Open
Abstract
Dysfunction of T follicular-helper (TFH) cells is a possible cause of impaired germinal centre (GC) and IgG antibody responses in individuals with human immunodeficiency virus-1 (HIV-1) infection and might contribute to decreased magnitude and isotype diversification of IgG antibodies to pneumococcal polysaccharides (PcPs). We examined the production of IgG1 and IgG2 antibodies to PcPs 4, 6B, 9V and 14 by enumerating antibody secreting cells (ASCs) at day (D) 7 and determining fold-increase in serum antibody levels at D28 after vaccination with unconjugated PcPs in HIV seronegative subjects (n = 20) and in HIV patients who were receiving antiretroviral therapy (ART) (n = 28) or who were ART-naive (n = 11) and determined their association with ICOS+ and ICOS- circulating memory TFH (cmTFH) cells (CD4+CD45RA-CD27+CXCR5+PD-1+) and short lived plasmablasts (SPBs) at D7, and with PcP-specific and total IgM+ and IgG+ memory B cells at D0. In HIV seronegative subjects, production of IgG1+ and IgG2+ ASCs was consistently associated with the frequency of ICOS+ cmTFH cells but not ICOS- cmTFH cells or memory B cells. In contrast, post-vaccination ASCs in HIV patients, regardless of ART status, were lower than in HIV seronegative subjects and not associated with ICOS+ cmTFH cells, the expansion of which was absent (ART-naive patients) or much lower than in HIV seronegative subjects (ART-treated patients). Production of SPBs was also lower in ART-naive patients. Fold-increase in IgG2 antibodies at D28 also correlated with ICOS+ cmTFH cells at D7 in HIV seronegative subjects but not in HIV patients. These novel findings provide evidence that ICOS+ cmTFH cells contribute to the regulation of PcP-specific IgG antibody responses, including isotype diversification, and that TFH cell dysfunction may be a cause of impaired PcP-specific IgG antibody responses and increased susceptibility to pneumococcal disease in HIV patients.
Collapse
|
27
|
Yang Y, Huang Z, Zou X, Zhong X, Liang X, Zhou J. THE ANTIBACTERIAL EFFECT OF URENA LOBATA L. FROMV GUANGXI ON MICE WITH STAPHYLOCOCCUS AUREUS PNEUMONIA. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 14:73-88. [PMID: 28480385 PMCID: PMC5411887 DOI: 10.21010/ajtcam.v14i1.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Alcohol extract from the root of Urena lobata L. (ULL) had broad spectrum antimicrobial activity. Studies in vitro have sho that ULL aqueous extract has antibacterial effect on S. aureusis, and the combination therapy of the ULL aqueous extract with cefazolin sodium showed additive effect. Materials and Methods: The mice underwent nasal inhalation with S. aureus, a subset of mice were intra-gastric gavage with ULL and/or intravenous injection cefazolin sodium twice daily. After being exposed to S. aureus for 5 days, 10 days and 14 days respectively, the white blood cells count (WBC), neutrophils absolute value (NEU) and the neutrophil percentage (NEU%) in peripheral blood, as well as the levels of serum immunoglobulin (Ig) G and IgM were determined using commercial kits. The colony count of S. aureus, the levels of interleukin (IL) -6 and IL-10 of mice lung tissue were detected, and the pathological changes of lung tissue were examined using H & E staining. Results: ULL significantly protected against S. aureus pneumonia, as evidenced by the remarkable decrease in the rate of S. aureus colony count/lung weight, WBC, NEU and NEU% in peripheral blood, as well as the attenuation of lung histopathological damage. Additionally, ULL+cefazolin could have markedly reduced the rate of S. aureus colony count/lung weight when compared with cefazolin. Furthermore, ULL and ULL+cefazolin both could significantly decrease the serum levels of IgG and IgM, and the levels of IL-6, IL-10 in mice lung tissue. Conclusion: This study first demonstrated that ULL may have potential use as a therapeutic agent for S. aureus pneumonia, and the roles of IgG, IgM, IL-6 and IL-10 in ULL protection against S. aureus pneumonia remain to be further studied.
Collapse
Affiliation(s)
- Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhenguang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaobin Zhong
- Regenerative medicine research center of Guangxi Medical University. Post Graduate Students
| | - Xueyan Liang
- Regenerative medicine research center of Guangxi Medical University. Post Graduate Students
| | - Jinling Zhou
- Regenerative medicine research center of Guangxi Medical University. Post Graduate Students
| |
Collapse
|
28
|
The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 2016; 221:1091-101. [PMID: 27424796 DOI: 10.1016/j.imbio.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that is decorated by glycopolymers, including wall teichoic acid (WTA), peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These bacterial surface glycopolymers are recognized by serum antibodies and a variety of pattern recognition molecules, including mannose-binding lectin (MBL). Recently, we demonstrated that human serum MBL senses staphylococcal WTA. Whereas MBL in infants who have not yet fully developed adaptive immunity binds to S. aureus WTA and activates complement serum, MBL in adults who have fully developed adaptive immunity cannot bind to WTA because of an inhibitory effect of serum anti-WTA IgG. Furthermore, we showed that human anti-WTA IgGs purified from pooled adult serum IgGs triggered activation of classical complement-dependent opsonophagocytosis against S. aureus. Because the epitopes of WTA that are recognized by anti-WTA IgG and MBL have not been determined, we constructed several S. aureus mutants with altered WTA glycosylation. Our intensive biochemical studies provide evidence that the β-GlcNAc residues of WTA are required for the induction of anti-WTA IgG-mediated opsonophagocytosis and that both β- and α-GlcNAc residues are required for MBL-mediated complement activation. The molecular interactions of other S. aureus cell wall components and host recognition proteins are also discussed. In summary, in this review, we discuss the biological importance of S. aureus cell surface glycopolymers in complement activation and host defense responses.
Collapse
|
29
|
Bicart-See A, Rottman M, Cartwright M, Seiler B, Gamini N, Rodas M, Penary M, Giordano G, Oswald E, Super M, Ingber DE. Rapid Isolation of Staphylococcus aureus Pathogens from Infected Clinical Samples Using Magnetic Beads Coated with Fc-Mannose Binding Lectin. PLoS One 2016; 11:e0156287. [PMID: 27275840 PMCID: PMC4898724 DOI: 10.1371/journal.pone.0156287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
Here we describe how Staphylococcus aureus bacteria can be rapidly isolated from clinical samples of articular fluid and synovial tissue using magnetic beads coated with the engineered chimeric human opsonin protein, Fc-mannose-binding lectin (FcMBL). The FcMBL-beads were used to capture and magnetically remove bacteria from purified cultures of 12 S. aureus strains, and from 8 articular fluid samples and 4 synovial tissue samples collected from patients with osteoarthritis or periprosthetic infections previously documented by positive S. aureus cultures. While the capture efficiency was high (85%) with purified S. aureus strains grown in vitro, direct FcMBL-bead capture from the clinical samples was initially disappointing (< 5% efficiency). Further analysis revealed that inhibition of FcMBL binding was due to coating of the bacteria by immunoglobulins and immune cells that masked FcMBL binding sites, and to the high viscosity of these complex biological samples. Importantly, capture of pathogens using the FcMBL-beads was increased to 76% efficiency by pretreating clinical specimens with hypotonic washes, hyaluronidase and a protease cocktail. Using this approach, S. aureus bacteria could be isolated from infected osteoarthritic tissues within 2 hours after sample collection. This FcMBL-enabled magnetic method for rapid capture and concentration of pathogens from clinical samples could be integrated upstream of current processes used in clinical microbiology laboratories to identify pathogens and perform antibiotic sensitivity testing when bacterial culture is not possible or before colonies can be detected.
Collapse
Affiliation(s)
- A. Bicart-See
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Hospital Joseph-Ducuing, Toulouse, France
| | - M. Rottman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Universite de Versailles, St Quentin, France
| | - M. Cartwright
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - B. Seiler
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - N. Gamini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - M. Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | | | | | | | - M. Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - D. E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol Lett 2016; 172:29-39. [PMID: 26905931 DOI: 10.1016/j.imlet.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth.
Collapse
Affiliation(s)
- Robert E Jordan
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA.
| | - Jeffrey Fernandez
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Randall J Brezski
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - Allison R Greenplate
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - David M Knight
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - T Shantha Raju
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - A Simon Lynch
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
31
|
Gautam S, Kim T, Lester E, Deep D, Spiegel DA. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus. ACS Chem Biol 2016; 11:25-30. [PMID: 26502318 DOI: 10.1021/acschembio.5b00439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.
Collapse
Affiliation(s)
- Samir Gautam
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Taehan Kim
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Evan Lester
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Deeksha Deep
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - David A. Spiegel
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
32
|
Kim MJ, Rah SY, An JH, Kurokawa K, Kim UH, Lee BL. Human anti-peptidoglycan-IgG-mediated opsonophagocytosis is controlled by calcium mobilization in phorbol myristate acetate-treated U937 cells. BMB Rep 2015; 48:36-41. [PMID: 24856825 PMCID: PMC4345640 DOI: 10.5483/bmbrep.2015.48.1.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ΔtagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ΔtagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by Ca2(+) release from intracellular Ca2(+) stores and anti-PGN-IgG dependent Ca2(+) mobilization is controlled via a phospholipase Cγ-2-mediated pathway.
Collapse
Affiliation(s)
- Min Jung Kim
- The Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | - So-Young Rah
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Jang-Hyun An
- The Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | - Kenji Kurokawa
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Bok Luel Lee
- The Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
33
|
Surface Glycopolymers Are Crucial for In Vitro Anti-Wall Teichoic Acid IgG-Mediated Complement Activation and Opsonophagocytosis of Staphylococcus aureus. Infect Immun 2015; 83:4247-55. [PMID: 26283333 DOI: 10.1128/iai.00767-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023] Open
Abstract
The cell envelopes of many Gram-positive bacteria contain wall teichoic acids (WTAs). Staphylococcus aureus WTAs are composed of ribitol phosphate (RboP) or glycerol phosphate (GroP) backbones substituted with D-alanine and N-acetyl-D-glucosamine (GlcNAc) or N-acetyl-D-galactosamine (GalNAc). Two WTA glycosyltransferases, TarM and TarS, are responsible for modifying the RboP WTA with α-GlcNAc and β-GlcNAc, respectively. We recently reported that purified human serum anti-WTA IgG specifically recognizes β-GlcNAc of the staphylococcal RboP WTA and then facilitates complement C3 deposition and opsonophagocytosis of S. aureus laboratory strains. This prompted us to examine whether anti-WTA IgG can induce C3 deposition on a diverse set of clinical S. aureus isolates. To this end, we compared anti-WTA IgG-mediated C3 deposition and opsonophagocytosis abilities using 13 different staphylococcal strains. Of note, the majority of S. aureus strains tested was recognized by anti-WTA IgG, resulting in C3 deposition and opsonophagocytosis. A minority of strains was not recognized by anti-WTA IgG, which correlated with either extensive capsule production or an alteration in the WTA glycosylation pattern. Our results demonstrate that the presence of WTAs with TarS-mediated glycosylation with β-GlcNAc in clinically isolated S. aureus strains is an important factor for induction of anti-WTA IgG-mediated C3 deposition and opsonophagocytosis.
Collapse
|
34
|
Tjiam MC, Taylor JPA, Morshidi MA, Sariputra L, Burrows S, Martin JN, Deeks SG, Tan DBA, Lee S, Fernandez S, French MA. Viremic HIV Controllers Exhibit High Plasmacytoid Dendritic Cell-Reactive Opsonophagocytic IgG Antibody Responses against HIV-1 p24 Associated with Greater Antibody Isotype Diversification. THE JOURNAL OF IMMUNOLOGY 2015; 194:5320-8. [PMID: 25911748 DOI: 10.4049/jimmunol.1402918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/24/2015] [Indexed: 12/26/2022]
Abstract
Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG Abs against HIV-1 Gag proteins (e.g., p24) and/or production of IgG2 Abs against HIV-1 proteins. These Abs likely exert their effect by activating antiviral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG Ab response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcγRIIa would be associated with control of HIV and that this would be enhanced by Ab isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG Ab responses against HIV-1 p24 were higher in HIV controllers (HIV RNA < 2000 copies/ml) than noncontrollers (HIV RNA > 10,000 copies/ml), particularly in controllers with low but detectable viremia (HIV RNA 75-2000 copies/ml). Opsonophagocytic Ab responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and, notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these Abs was mediated via FcγRIIa. Isotype diversification (toward IgG2) was greatest in HIV controllers, and depletion of IgG2 from Ig preparations indicated that IgG2 Abs to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of Ab function, such as Ag opsonization. Our findings emulate those for pDC-reactive opsonophagocytic Ab responses against coxsackie, picorna, and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development.
Collapse
Affiliation(s)
- M Christian Tjiam
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - James P A Taylor
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Mazmah A Morshidi
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lucy Sariputra
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Sally Burrows
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jeffrey N Martin
- Division of Clinical Epidemiology, University of California, San Francisco, San Francisco, CA 94117
| | - Steven G Deeks
- School of Medicine, University of California, San Francisco, San Francisco, CA 94117
| | - Dino B A Tan
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6009, Australia; Centre for Asthma, Allergy and Respiratory Research, Lung Institute of Western Australia, Perth, Western Australia 6009, Australia; and
| | - Silvia Lee
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Microbiology and Infectious Diseases, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martyn A French
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia;
| |
Collapse
|
35
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
van Kessel KPM, Bestebroer J, van Strijp JAG. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus. Front Immunol 2014; 5:467. [PMID: 25309547 PMCID: PMC4176147 DOI: 10.3389/fimmu.2014.00467] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis.
Collapse
Affiliation(s)
- Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jovanka Bestebroer
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
37
|
Ying S, He J, Yu M, Zhang Y, Deng S, Zhang L, Xie M, Hu S. Recombinant Neisseria surface protein A is a potential vaccine candidate against Neisseria meningitides serogroup B. Mol Med Rep 2014; 10:1619-25. [PMID: 24926810 DOI: 10.3892/mmr.2014.2325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis is the pathogen of epidemic encephalomyelitis and is responsible for permanent damage to the brain and nervous system. In the present study, the prokaryotic expression vector pGEX-6p-1/neisseria surface protein A (NspA) was constructed and the immune protective effect was investigated with the purified recombinant rNspA. Female BALB/c mice were immunized by intraperitoneal inoculation of rNspA, glutathione S-transferase (GST) or phosphate-buffered saline (PBS). The protection experiment in mice demonstrated that the protection rate of the rNspA group was 85% against the N. meningitidis strain MC58, and a serum bactericidal assay in vitro revealed that the serum bactericidal titer of the rNspA group reached 1:64 following three immunizations. The levels of specific immunoglobulin (Ig) A (SIgA), IgG, IgG1, IgG2a, IgG2b and IgG3 of mice in the rNspA group peaked at week six and were higher than those in the mice in the GST and PBS groups. The levels of stimulation index, interleukin-4 and interferon-γ in the culture supernatant of the spleen lymphocytes of the rNspA group increased in a time-dependent manner and were higher than those of the mice in the GST and PBS groups over the same period. The results suggested that rNspA may induce increased specific humoral and cellular immune responses, and that it is effectively protective against N. meningitidis serogroup B in mice. The present study offered novel evidence that may lead to the development of a novel effective N. meningitidis serogroup B vaccine.
Collapse
Affiliation(s)
- Shangyun Ying
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun He
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Minjun Yu
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yukuai Zhang
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suhong Deng
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lusi Zhang
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meihua Xie
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Sihai Hu
- Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
38
|
Abstract
The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.
Collapse
|
39
|
Lu T, Porter AR, Kennedy AD, Kobayashi SD, DeLeo FR. Phagocytosis and killing of Staphylococcus aureus by human neutrophils. J Innate Immun 2014; 6:639-49. [PMID: 24713863 DOI: 10.1159/000360478] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percentage of bacteria were internalized by adherent neutrophils compared to those in suspension, and, unexpectedly, uptake of S. aureus by adherent neutrophils occurred efficiently in the absence of opsonins. An antibody specific for S. aureus promoted uptake of unopsonized bacteria in suspension, but had little or no capacity to enhance phagocytosis of S. aureus opsonized with normal human serum or by adherent neutrophils. Collectively, these results indicate that assay conditions can have a significant influence on the phagocytosis and killing of S. aureus by neutrophils. More importantly, the results suggest a vaccine approach directed to enhance opsonophagocytosis alone is not sufficient to promote increased killing of S. aureus by human neutrophils. With the emergence and reemergence of antibiotic-resistant microorganisms, establishing parameters that are optimal for studying neutrophil-S. aureus interactions will pave the way towards developing immune-directed strategies for anti-staphylococcal therapies.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Mont., USA
| | | | | | | | | |
Collapse
|
40
|
β-O-N-Acetyl-d-glucosamine residue of wall teichoic acid of Staphylococcus aureus is required for serum antibody-mediated complement activation. Mol Immunol 2013. [DOI: 10.1016/j.molimm.2013.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Zipfel PF, Skerka C. Staphylococcus aureus: the multi headed hydra resists and controls human complement response in multiple ways. Int J Med Microbiol 2013; 304:188-94. [PMID: 24461453 DOI: 10.1016/j.ijmm.2013.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram positive human pathogen Staphylococcus aureus causes a spectrum of human diseases including pneumonia, tissue and skin infections, endocarditis, pneumonia and sepsis. The increasing number of resistant bacteria and the threat of methicillin resistant S. aureus (MRSA) urge for the need to develop new antibacterial compounds. A prerequisite for development of such anti microbial compounds is a better understanding of the complex immune crosstalk between the pathogenic bacterium and its human host. To this end proteins staphylococcal proteins that contribute to innate immune evasion especially to complement control need to be identified and their mode of action needs to be analyzed in order to provide new targets for immune interference.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany; Friedrich Schiller University Jena, 07745 Jena, Germany.
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
42
|
Winstel V, Xia G, Peschel A. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. Int J Med Microbiol 2013; 304:215-21. [PMID: 24365646 DOI: 10.1016/j.ijmm.2013.10.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 01/10/2023] Open
Abstract
The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues.
Collapse
Affiliation(s)
- Volker Winstel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Guoqing Xia
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany.
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| |
Collapse
|
43
|
Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, Li X, Tateishi K, Park JA, Xia G, Matsushita M, Takahashi K, Park HJ, Peschel A, Lee BL. Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J Biol Chem 2013; 288:30956-68. [PMID: 24045948 DOI: 10.1074/jbc.m113.509893] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection.
Collapse
Affiliation(s)
- Kenji Kurokawa
- From the National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
An JH, Kurokawa K, Jung DJ, Kim MJ, Kim CH, Fujimoto Y, Fukase K, Coggeshall KM, Lee BL. Human SAP is a novel peptidoglycan recognition protein that induces complement-independent phagocytosis of Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2013; 191:3319-27. [PMID: 23966633 DOI: 10.4049/jimmunol.1300940] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer--a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an FcγR-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain-like receptors.
Collapse
Affiliation(s)
- Jang-Hyun An
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Takahashi K, Kurokawa K, Moyo P, Jung DJ, An JH, Chigweshe L, Paul E, Lee BL. Intradermal immunization with wall teichoic acid (WTA) elicits and augments an anti-WTA IgG response that protects mice from methicillin-resistant Staphylococcus aureus infection independent of mannose-binding lectin status. PLoS One 2013; 8:e69739. [PMID: 23936347 PMCID: PMC3732247 DOI: 10.1371/journal.pone.0069739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
The objectives of this study were to investigate the immune response to intradermal immunization with wall teichoic acid (WTA) and the effect of MBL deficiency in a murine model of infection with methicillin-resistant Staphylococcus aureus (MRSA). WTA is a bacterial cell wall component that is implicated in invasive infection. We tested susceptibility to MRSA infection in wild type (WT) and MBL deficient mice using two strains of MRSA: MW2, a community-associated MRSA (CA-MRSA); and COL, a healthcare-associated MRSA (HA-MRSA). We also performed in vitro assays to investigate the effects of anti-WTA IgG containing murine serum on complement activation and bacterial growth in whole blood. We found that MBL knockout (KO) mice are relatively resistant to a specific MRSA strain, MW2 CA-MRSA, compared to WT mice, while both strains of mice had similar susceptibility to a different strain, COL HA-MRSA. Intradermal immunization with WTA elicited and augmented an anti-WTA IgG response in both WT and MBL KO mice. WTA immunization significantly reduced susceptibility to both MW2 CA-MRSA and COL HA-MRSA, independent of the presence of MBL. The protective mechanisms of anti-WTA IgG are mediated at least in part by complement activation and clearance of bacteria from blood. The significance of these findings is that 1) Intradermal immunization with WTA induces production of anti-WTA IgG; and 2) This anti-WTA IgG response protects from infection with both MW2 CA-MRSA and COL HA-MRSA even in the absence of MBL, the deficiency of which is common in humans.
Collapse
Affiliation(s)
- Kazue Takahashi
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|