1
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Gillan JL, Chokshi M, Hardisty GR, Clohisey Hendry S, Prasca-Chamorro D, Robinson NJ, Lasota B, Clark R, Murphy L, Whyte MK, Baillie JK, Davidson DJ, Bao G, Gray RD. CAGE sequencing reveals CFTR-dependent dysregulation of type I IFN signaling in activated cystic fibrosis macrophages. SCIENCE ADVANCES 2023; 9:eadg5128. [PMID: 37235648 PMCID: PMC10219589 DOI: 10.1126/sciadv.adg5128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
An intense, nonresolving airway inflammatory response leads to destructive lung disease in cystic fibrosis (CF). Dysregulation of macrophage immune function may be a key facet governing the progression of CF lung disease, but the underlying mechanisms are not fully understood. We used 5' end centered transcriptome sequencing to profile P. aeruginosa LPS-activated human CF macrophages, showing that CF and non-CF macrophages deploy substantially distinct transcriptional programs at baseline and following activation. This includes a significantly blunted type I IFN signaling response in activated patient cells relative to healthy controls that was reversible upon in vitro treatment with CFTR modulators in patient cells and by CRISPR-Cas9 gene editing to correct the F508del mutation in patient-derived iPSC macrophages. These findings illustrate a previously unidentified immune defect in human CF macrophages that is CFTR dependent and reversible with CFTR modulators, thus providing new avenues in the search for effective anti-inflammatory interventions in CF.
Collapse
Affiliation(s)
- Jonathan L. Gillan
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mithil Chokshi
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Gareth R. Hardisty
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | - Nicola J. Robinson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Benjamin Lasota
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Moira K. B. Whyte
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | - Donald J. Davidson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Robert D. Gray
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
3
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
4
|
Hendrix C, McCrary M, Hou R, Abate G. Diagnosis and Management of Pulmonary NTM with a Focus on Mycobacterium avium Complex and Mycobacterium abscessus: Challenges and Prospects. Microorganisms 2022; 11:microorganisms11010047. [PMID: 36677340 PMCID: PMC9861392 DOI: 10.3390/microorganisms11010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are ubiquitous. NTM can affect different organs and may cause disseminated diseases, but the pulmonary form is the most common form. Pulmonary NTM is commonly seen in patients with underlying diseases. Pulmonary Mycobacterium avium complex (MAC) is the most common NTM disease and M. abscessus (MAB) is the most challenging to treat. This review is prepared with the following objectives: (a) to evaluate new methods available for the diagnosis of pulmonary MAC or MAB, (b) to assess advances in developing new therapeutics and their impact on treatment of pulmonary MAC or MAB, and (c) to evaluate the prospects of preventive strategies including vaccines against pulmonary MAC or MAB. METHODS A literature search was conducted using PubMed/MEDLINE and multiple search terms. The search was restricted to the English language and human studies. The database query resulted in a total of 197 publications. After the title and abstract review, 64 articles were included in this analysis. RESULTS The guidelines by the American Thoracic Society (ATS), European Respiratory Society (ERS), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), and Infectious Diseases Society of America (IDSA) are widely applicable. The guidelines are based on expert opinion and there may be a need to broaden criteria to include those with underlying lung diseases who may not fulfill some of the criteria as 'probable cases' for better follow up and management. Some cases with only one culture-positive sputum sample or suggestive histology without a positive culture may benefit from new methods of confirming NTM infection. Amikacin liposomal inhalation suspension (ALIS), gallium containing compounds and immunotherapies will have potential in the management of pulmonary MAC and MAB. CONCLUSIONS the prevalence of pulmonary NTM is increasing. The efforts to optimize diagnosis and treatment of pulmonary NTM are encouraging. There is still a need to develop new diagnostics and therapeutics.
Collapse
|
5
|
Li X, Kolling FW, Aridgides D, Mellinger D, Ashare A, Jakubzick CV. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF. Life Sci Alliance 2022; 5:e202201458. [PMID: 35820705 PMCID: PMC9275597 DOI: 10.26508/lsa.202201458] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, ensuring proper gas exchange by ingesting cellular debris and pathogens, and regulating inflammatory responses. Therefore, understanding the heterogeneity and diverse roles played by AMs, interstitial macrophages, and recruited monocytes is critical for treating airway diseases. We performed single-cell RNA sequencing on 113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic fibrosis subjects and identified two MARCKS+LGMN+IMs, FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte subtypes, DC1, DC2, migDCs, plasmacytoid DCs, lymphocytes, epithelial cells, and four AM superclusters (families) based on the gene expression of IFI27 and APOC2 These four AM families have at least eight distinct functional members (subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, cholesterol, chemokine, metallothionein, interferon, and small-cluster AMs. Interestingly, the chemokine cluster further divides with each subcluster selectively expressing a unique combination of chemokines. One of the most striking observations, besides the heterogeneity, is the conservation of AM family members in relatively equal ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq technology were used to investigate cell surface markers that distinguish resident AMs from recruited monocytes. Last, other AM datasets were projected onto our dataset. Similar AM superclusters and functional subclusters were observed, along with a significant increase in chemokine and IFN AM subclusters in individuals infected with COVID-19. Overall, functional specializations of the AM subclusters suggest that there are highly regulated AM niches with defined programming states, highlighting a clear division of labor.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Fred W Kolling
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Daniel Aridgides
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane Mellinger
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
6
|
Ruttenberg M, Armstrong D, Mellinger D, Carroll J, Ashare A. The Impact of Chronic Electronic Cigarette Use on Alveolar Macrophage Lipid Content: Case Report. ARCHIVES OF CLINICAL AND MEDICAL CASE REPORTS 2022; 6:689-692. [PMID: 36465982 PMCID: PMC9718569 DOI: 10.26502/acmcr.96550545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background While acute respiratory distress following electronic cigarette (e-cig) use has been described, the effects of chronic e-cig use on lung health are currently unknown. Acute e-cigarette/vaping product use-associated lung injury (EVALI) has been highlighted recently in numerous cases across the United States. Numerous EVALI case reports highlight alterations in alveolar macrophages, justifying investigation of this key immune sentinel of the lung in habitual e-cig users. Case Presentation After informed consent, we performed a bronchoscopy on a 25 year asymptomatic woman who reported daily e-cig use. To evaluate for evidence of abnormal lipid homeostasis, we performed histologic and Oil Red O stain evaluation of alveolar macrophages obtained from bronchoalveolar lavage fluid. Our analyses demonstrate a prevalence of cells with high lipid accumulation in multiple, discrete cytoplasmic foci. We found a high lipid laden macrophage index within alveolar macrophages isolated from a chronic e-cig user. At the ultrastructural level, we found membrane-bound compartments filled with material of various densities segregated along curved phase separation lines reminiscent of suspensions of immiscible fluids. Conclusions We found a unique ultrastructural pattern in alveolar macrophages isolated from a chronic e-cig user that is unlike any other previously reported in aspiration syndromes and may represent a defining diagnostic feature of chronic e-cig use.
Collapse
Affiliation(s)
- Molly Ruttenberg
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - David Armstrong
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - James Carroll
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
7
|
Kyung Lee M, Armstrong DA, Hazlett HF, Dessaint JA, Mellinger DL, Aridgides DS, Christensen BC, Ashare A. Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages. Epigenetics 2021; 16:1187-1200. [PMID: 33380271 PMCID: PMC8813072 DOI: 10.1080/15592294.2020.1853318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
Various pathogens use differing strategies to evade host immune response including modulating the host's epigenome. Here, we investigate if EVs secreted from P. aeruginosa alter DNA methylation in human lung macrophages, thereby potentially contributing to a dysfunctional innate immune response. Using a genome-wide DNA methylation approach, we demonstrate that P. aeruginosa EVs alter certain host cell DNA methylation patterns. We identified 1,185 differentially methylated CpGs (FDR < 0.05), which were significantly enriched for distal DNA regulatory elements including enhancer regions and DNase hypersensitive sites. Notably, all but one of the 1,185 differentially methylated CpGs were hypomethylated in association with EV exposure. Significantly hypomethylated CpGs tracked to genes including AXL, CFB and CCL23. Gene expression analysis identified 310 genes exhibiting significantly altered expression 48 hours post P. aeruginosa EV treatment, with 75 different genes upregulated and 235 genes downregulated. Some CpGs associated with cytokines such as CSF3 displayed strong negative correlations between DNA methylation and gene expression. Our infection model illustrates how secreted products (EVs) from bacteria can alter DNA methylation of the host epigenome. Changes in DNA methylation in distal DNA regulatory regions in turn can modulate cellular gene expression and potential downstream cellular processes.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Haley F. Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A. Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane L. Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
8
|
Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR, Mantell LL. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function. Mol Med 2021; 27:79. [PMID: 34271850 PMCID: PMC8283750 DOI: 10.1186/s10020-021-00334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Thomas P Kennedy
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Xiaojing Yang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Sung Soo Mun
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA.
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA.
| |
Collapse
|
9
|
Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, Meng Y, Chen J, Feng X, Han Z, Shi M, Huang H, Han M, Jiang E. Critical Role of Lkb1 in the Maintenance of Alveolar Macrophage Self-Renewal and Immune Homeostasis. Front Immunol 2021; 12:629281. [PMID: 33968022 PMCID: PMC8100336 DOI: 10.3389/fimmu.2021.629281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated AM depletion experiments in wild type mice indicated a cause for AM reduction in aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and neutrophil migration, which might also contribute to the protective function of Lkb1 in AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and immune function of AMs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Animals
- Asthma/enzymology
- Asthma/genetics
- Asthma/immunology
- CD11 Antigens/genetics
- CD11 Antigens/metabolism
- Cell Self Renewal
- Disease Models, Animal
- Homeostasis
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lung/enzymology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration
- Pneumonia, Bacterial/enzymology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Staphylococcal Infections/enzymology
- Staphylococcal Infections/genetics
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiongmei Yang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Tao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiadi Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Aridgides D, Dessaint J, Atkins G, Carroll J, Ashare A. Safety of research bronchoscopy with BAL in stable adult patients with cystic fibrosis. PLoS One 2021; 16:e0245696. [PMID: 33481845 PMCID: PMC7822334 DOI: 10.1371/journal.pone.0245696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Data on adverse events from research bronchoscopy with bronchoalveolar lavage (BAL) in patients with cystic fibrosis (CF) is lacking. As research bronchoscopy with BAL is useful for isolation of immune cells and investigation of CF lung microbiome, we sought to investigate the safety of bronchoscopy in adult patients with CF. Between November 2016 and September 2019, we performed research bronchoscopies on CF subjects (32) and control subjects (82). Control subjects were nonsmokers without respiratory disease. CF subjects had mild or moderate obstructive lung disease (FEV1 > 50% predicted) and no evidence of recent CF pulmonary exacerbation. There was no significant difference in the age or sex of each cohort. Neither group experienced life threatening adverse events. The number of adverse events was similar between CF and control subjects. The most common adverse events were sore throat and cough, which occurred at similar frequencies in control and CF subjects. Fever and headache occurred more frequently in CF subjects. However, the majority of fevers were seen in CF subjects with FEV1 values below 65% predicted. We found that CF subjects had similar adverse event profiles following research bronchoscopy compared to healthy subjects. While CF subjects had a higher rate of fevers, this adverse event occurred with greater frequency in CF subjects with lower FEV1. Our data demonstrate that research bronchoscopy with BAL is safe in CF subjects and that safety profile is improved if bronchoscopies are limited to subjects with an FEV1 > 65% predicted.
Collapse
Affiliation(s)
- Daniel Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - John Dessaint
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Graham Atkins
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - James Carroll
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yan Z, Huang QL, Chen J, Liu F, Wei Y, Chen SL, Wu CY, Li Z, Lin XP. Chicoric acid alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in human lung A549 epithelial cells. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211038244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the effects and potential mechanisms of chicoric acid (CA) on LPS-induced inflammatory response in A549 cells. 0–800 μM CA was added to A549 cells to determine the toxicity of CA using MTT assay. Then, 2 μg/mL LPS and 50 μM CA were simultaneously added to A549 cells to investigate the effects of CA. In order to investigate the effects of miR-130a-3p and IGF-1 on LPS-induced A549 cells, cells were infected with inhibitor of miR-130a-3p and si RNA IGF-1. The levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α were measured by real-time RT-PCR and enzyme-linked immunosorbent (ELISA) assay. The IGF-1 pathway and NF-κB expression were measured using immunoblot assay. Moreover, a luciferase activity assay was used to indicate the binding site of miR-130a-3p on the 3′UTR of IGF-1. 0–50 μM CA had no toxicity on A549 cells. Thus, we chose 50 μM CA for the following study. CA attenuated the inflammatory response by LPS through decreasing IL-1β, IL-6, and TNF-α levels and increasing IGF-1/IGF-1R expression. Inhibition of miR-130a-3p reduced the inflammatory response and restored IGF-1/IGF-1R pathway induced by LPS. Furthermore, luciferase activity results indicated that miR-130a-3p directly targeted IGF-1 to regulate inflammatory response. CA alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in A549 cells.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Qing-Lan Huang
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Jun Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Fan Liu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Yi Wei
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Shu-Li Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Chun-Yan Wu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Zhen Li
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Xiao-Ping Lin
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
12
|
Armstrong DA, Lee MK, Hazlett HF, Dessaint JA, Mellinger DL, Aridgides DS, Hendricks GM, Abdalla MAK, Christensen BC, Ashare A. Extracellular Vesicles from Pseudomonas aeruginosa Suppress MHC-Related Molecules in Human Lung Macrophages. Immunohorizons 2020; 4:508-519. [PMID: 32819967 DOI: 10.4049/immunohorizons.2000026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the most common pathogens colonizing the lungs of cystic fibrosis patients. P. aeruginosa secrete extracellular vesicles (EVs) that contain LPS and other virulence factors that modulate the host's innate immune response, leading to an increased local proinflammatory response and reduced pathogen clearance, resulting in chronic infection and ultimately poor patient outcomes. Lung macrophages are the first line of defense in the airway innate immune response to pathogens. Proper host response to bacterial infection requires communication between APC and T cells, ultimately leading to pathogen clearance. In this study, we investigate whether EVs secreted from P. aeruginosa alter MHC Ag expression in lung macrophages, thereby potentially contributing to decreased pathogen clearance. Primary lung macrophages from human subjects were collected via bronchoalveolar lavage and exposed to EVs isolated from P. aeruginosa in vitro. Gene expression was measured with the NanoString nCounter gene expression assay. DNA methylation was measured with the EPIC array platform to assess changes in methylation. P. aeruginosa EVs suppress the expression of 11 different MHC-associated molecules in lung macrophages. Additionally, we show reduced DNA methylation in a regulatory region of gene complement factor B (CFB) as the possible driving mechanism of widespread MHC gene suppression. Our results demonstrate MHC molecule downregulation by P. aeruginosa-derived EVs in lung macrophages, which is consistent with an immune evasion strategy employed by a prokaryote in a host-pathogen interaction, potentially leading to decreased pulmonary bacterial clearance.
Collapse
Affiliation(s)
- David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756;
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Gregory M Hendricks
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Moemen A K Abdalla
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt; and
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
13
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Sci Rep 2020; 10:10935. [PMID: 32616918 PMCID: PMC7331733 DOI: 10.1038/s41598-020-67729-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in chronic bacterial lung infections and tissue damage. CF macrophages exhibit reduced bacterial killing and increased inflammatory signaling. Iron is elevated in the CF lung and is a critical nutrient for bacteria, including the common CF pathogen Pseudomonas aeruginosa (Pa). While macrophages are a key regulatory component of extracellular iron, iron metabolism has yet to be characterized in human CF macrophages. Secreted and total protein levels were analyzed in non-CF and F508del/F508del CF monocyte derived macrophages (MDMs) with and without clinically approved CFTR modulators ivacaftor/lumacaftor. CF macrophage transferrin receptor 1 (TfR1) was reduced with ivacaftor/lumacaftor treatment. When activated with LPS, CF macrophage expressed reduced ferroportin (Fpn). After the addition of exogenous iron, total iron was elevated in conditioned media from CF MDMs and reduced in conditioned media from ivacaftor/lumacaftor treated CF MDMs. Pa biofilm formation and viability were elevated in conditioned media from CF MDMs and biofilm formation was reduced in the presence of conditioned media from ivacaftor/lumacaftor treated CF MDMs. Defects in iron metabolism observed in this study may inform host–pathogen interactions between CF macrophages and Pa.
Collapse
|
15
|
Guérin S, Durieu I, Sermet-Gaudelus I. Cystic Fibrosis-Related Bone Disease: Current Knowledge and Future Directions. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Armstrong DA, Chen Y, Dessaint JA, Aridgides DS, Channon JY, Mellinger DL, Christensen BC, Ashare A. DNA Methylation Changes in Regional Lung Macrophages Are Associated with Metabolic Differences. Immunohorizons 2019; 3:274-281. [PMID: 31356157 PMCID: PMC6686200 DOI: 10.4049/immunohorizons.1900042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
A number of pulmonary diseases occur with upper lobe predominance, including cystic fibrosis and smoking-related chronic obstructive pulmonary disease. In the healthy lung, several physiologic and metabolic factors exhibit disparity when comparing the upper lobe of the lung to lower lobe, including differences in oxygenation, ventilation, lymphatic flow, pH, and blood flow. In this study, we asked whether these regional differences in the lung are associated with DNA methylation changes in lung macrophages that could potentially lead to altered cell responsiveness upon subsequent environmental challenge. All analyses were performed using primary lung macrophages collected via bronchoalveolar lavage from healthy human subjects with normal pulmonary function. Epigenome-wide DNA methylation was examined via Infinium MethylationEPIC (850K) array and validated by targeted next-generation bisulfite sequencing. We observed 95 CpG loci with significant differential methylation in lung macrophages, comparing upper lobe to lower lobe (all false discovery rate < 0.05). Several of these genes, including CLIP4, HSH2D, NR4A1, SNX10, and TYK2, have been implicated as participants in inflammatory/immune-related biological processes. Functionally, we identified phenotypic differences in oxygen use, comparing upper versus lower lung macrophages. Our results support a hypothesis that epigenetic changes, specifically DNA methylation, at a multitude of gene loci in lung macrophages are associated with metabolic differences regionally in lung.
Collapse
Affiliation(s)
- David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756;
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Jacqueline Y Channon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; .,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
17
|
Chen Y, Armstrong DA, Salas LA, Hazlett HF, Nymon AB, Dessaint JA, Aridgides DS, Mellinger DL, Liu X, Christensen BC, Ashare A. Genome-wide DNA methylation profiling shows a distinct epigenetic signature associated with lung macrophages in cystic fibrosis. Clin Epigenetics 2018; 10:152. [PMID: 30526669 PMCID: PMC6288922 DOI: 10.1186/s13148-018-0580-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Lung macrophages are major participants in the pulmonary innate immune response. In the cystic fibrosis (CF) lung, the inability of lung macrophages to successfully regulate the exaggerated inflammatory response suggests dysfunctional innate immune cell function. In this study, we aim to gain insight into innate immune cell dysfunction in CF by investigating alterations in DNA methylation in bronchoalveolar lavage (BAL) cells, composed primarily of lung macrophages of CF subjects compared with healthy controls. All analyses were performed using primary alveolar macrophages from human subjects collected via bronchoalveolar lavage. Epigenome-wide DNA methylation was examined via Illumina MethylationEPIC (850 K) array. Targeted next-generation bisulfite sequencing was used to validate selected differentially methylated CpGs. Methylation-based sample classification was performed using the recursively partitioned mixture model (RPMM) and was tested against sample case-control status. Differentially methylated loci were identified by fitting linear models with adjustment of age, sex, estimated cell type proportions, and repeat measurement. Results RPMM class membership was significantly associated with the CF disease status (P = 0.026). One hundred nine CpG loci were differentially methylated in CF BAL cells (all FDR ≤ 0.1). The majority of differentially methylated loci in CF were hypo-methylated and found within non-promoter CpG islands as well as in putative enhancer regions and DNase hyper-sensitive regions. Conclusions These results support a hypothesis that epigenetic changes, specifically DNA methylation at a multitude of gene loci in lung macrophages, may participate, at least in part, in driving dysfunctional innate immune cells in the CF lung. Electronic supplementary material The online version of this article (10.1186/s13148-018-0580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Haley F Hazlett
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
18
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
19
|
Barnaby R, Koeppen K, Nymon A, Hampton TH, Berwin B, Ashare A, Stanton BA. Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2017; 314:L432-L438. [PMID: 29146575 DOI: 10.1152/ajplung.00461.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by chronic bacterial lung infection and excessive inflammation, which lead to progressive loss of lung function and premature death. Although ivacaftor (VX-770) alone and ivacaftor in combination with lumacaftor (VX-809) improve lung function in CF patients with the Gly551Asp and del508Phe mutations, respectively, the effects of these drugs on the function of human CF macrophages are unknown. Thus studies were conducted to examine the effects of lumacaftor alone and lumacaftor in combination with ivacaftor (i.e., ORKAMBI) on the ability of human CF ( del508Phe/ del508Phe) monocyte-derived macrophages (MDMs) to phagocytose and kill Pseudomonas aeruginosa. Lumacaftor alone restored the ability of CF MDMs to phagocytose and kill P. aeruginosa to levels observed in MDMs obtained from non-CF (WT-CFTR) donors. This effect contrasts with the partial (~15%) correction of del508Phe Cl- secretion of airway epithelial cells by lumacaftor. Ivacaftor reduced the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa. Lumacaftor had no effect on P. aeruginosa-stimulated cytokine secretion by CF MDMs. Ivacaftor (5 µM) alone and ivacaftor in combination with lumacaftor reduced secretion of several proinflammatory cytokines. The clinical efficacy of ORKAMBI may be related in part to the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa by macrophages.
Collapse
Affiliation(s)
- Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
20
|
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2017; 18:ijms18010118. [PMID: 28075361 PMCID: PMC5297752 DOI: 10.3390/ijms18010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob A Lubamba
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
López IP, Piñeiro-Hermida S, Pais RS, Torrens R, Hoeflich A, Pichel JG. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation. PLoS One 2016; 11:e0166388. [PMID: 27861515 PMCID: PMC5115747 DOI: 10.1371/journal.pone.0166388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.
Collapse
Affiliation(s)
- Icíar P López
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Sergio Piñeiro-Hermida
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Rosete S Pais
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Raquel Torrens
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - José G Pichel
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| |
Collapse
|
22
|
The impact of impaired macrophage functions in cystic fibrosis disease progression. J Cyst Fibros 2016; 16:443-453. [PMID: 27856165 DOI: 10.1016/j.jcf.2016.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/29/2023]
Abstract
The underlying cause of morbidity in cystic fibrosis (CF) is the decline in lung function, which results in part from chronic inflammation. Inflammation and infection occur early in infancy in CF and the role of innate immune defense in CF has been highlighted in the last years. Once thought simply to be consumers of bacteria, macrophages have emerged as highly sensitive immune cells that are located at the balance point between inflammation and resolution of this inflammation in CF pathophysiology. In order to assess the potential role of macrophage in CF, we review the evidence that: (1) CF macrophage has a dysregulated inflammatory phenotype; (2) CF macrophage presents altered phagocytosis capacity and bacterial killing; and (3) lipid disorders in CF macrophage affect its function. These alterations of macrophage weaken innate defense of CF patients and may be involved in CF disease progression and lung damage.
Collapse
|
23
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
24
|
Lubamba BA, Jones LC, O'Neal WK, Boucher RC, Ribeiro CMP. X-Box-Binding Protein 1 and Innate Immune Responses of Human Cystic Fibrosis Alveolar Macrophages. Am J Respir Crit Care Med 2016; 192:1449-61. [PMID: 26331676 DOI: 10.1164/rccm.201504-0657oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Alveolar macrophages (AMs) play a key role in host defense to inhaled bacterial pathogens, in part by secreting inflammatory mediators. Cystic fibrosis (CF) airways exhibit a persistent, robust inflammatory response that may contribute to the pathophysiology of CF. Recent findings have linked endoplasmic reticulum stress responses mediated by inositol-requiring enzyme 1α-dependent messenger RNA splicing (activation) of X-box-binding protein-1 (XBP-1s) to inflammation in peripheral macrophages. However, the role of XBP-1s in CF AM function is not known. OBJECTIVES To evaluate inflammatory responses of AMs from chronically infected/inflamed human CF lungs and test whether XBP-1s is required for AM-mediated inflammation. METHODS Basal and LPS-induced inflammatory responses were evaluated in primary cultures of non-CF versus CF AMs. XBP-1s was measured and its function was evaluated in AMs using 8-formyl-7-hydroxy-4-methylcoumarin (4μ8C), an inhibitor of inositol-requiring enzyme 1α-dependent XBP-1s, and in THP-1 cells stably expressing XBP-1 shRNA, XBP-1s, or a dominant-negative XBP-1. MEASUREMENTS AND MAIN RESULTS CF AMs exhibited exaggerated basal and LPS-induced production of tumor necrosis factor-α and IL-6, and these responses were coupled to increased levels of XBP-1s. In non-CF and CF AMs, LPS-induced cytokine production was blunted by 4µ8C. A role for XBP-1s in AM inflammatory responses was further established by data from dTHP-1 cells indicating that expression of XBP-1 shRNA reduced XBP-1s levels and LPS-induced inflammatory responses; and LPS-induced inflammation was up-regulated by expression of XBP-1s and inhibited by dominant-negative XBP-1. CONCLUSIONS These findings suggest that AMs contribute to the robust inflammation of CF airways via an up-regulation of XBP-1s-mediated cytokine production.
Collapse
Affiliation(s)
- Bob A Lubamba
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Lisa C Jones
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Wanda K O'Neal
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Richard C Boucher
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Carla M P Ribeiro
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and.,3 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr Rev 2016; 37:62-110. [PMID: 26720129 DOI: 10.1210/er.2015-1026] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt are often seen during adolescence. The underlying inflammatory state mediated by proinflammatory cytokines, prolonged use of glucocorticoid, and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the GH-IGF axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biological therapy may lead to improvement of growth in some of these children, but approximately one-third continue to grow slowly. There is increasing evidence that the use of relatively high-dose recombinant human GH may lead to partial catch-up growth in chronic inflammatory conditions, although long-term follow-up data are currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis, systemic abnormalities of the GH-IGF axis, and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human GH in these conditions and discussed the role of recombinant human IGF-1.
Collapse
Affiliation(s)
- S C Wong
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - R Dobie
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - M A Altowati
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - G A Werther
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - C Farquharson
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - S F Ahmed
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
26
|
Keiser NW, Birket SE, Evans IA, Tyler SR, Crooke AK, Sun X, Zhou W, Nellis JR, Stroebele EK, Chu KK, Tearney GJ, Stevens MJ, Harris JK, Rowe SM, Engelhardt JF. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol 2015; 52:683-94. [PMID: 25317669 DOI: 10.1165/rcmb.2014-0250oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography-tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals.
Collapse
Affiliation(s)
- Nicholas W Keiser
- 1 Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator osmoregulatory function. mBio 2015; 6:e02533. [PMID: 25714715 PMCID: PMC4358002 DOI: 10.1128/mbio.02533-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can infect almost any site in the body but most often targets epithelial cell-lined tissues such as the airways, skin, and the cornea of the eye. A common predisposing factor is cystic fibrosis (CF), caused by defects in the cystic fibrosis transmembrane-conductance regulator (CFTR). Previously, we showed that when P. aeruginosa enters epithelial cells it replicates intracellularly and occupies plasma membrane blebs. This phenotype is dependent on the type 3 secretion system (T3SS) effector ExoS, shown by others to induce host cell apoptosis. Here, we examined mechanisms for P. aeruginosa-induced bleb formation, focusing on its relationship to apoptosis and the CFTR. The data showed that P. aeruginosa-induced blebbing in epithelial cells is independent of actin contraction and is inhibited by hyperosmotic media (400 to 600 mOsM), distinguishing bacterially induced blebs from apoptotic blebs. Cells with defective CFTR displayed enhanced bleb formation upon infection, as demonstrated using bronchial epithelial cells from a patient with cystic fibrosis and a CFTR inhibitor, CFTR(Inh)-172. The defect was found to be correctable either by incubation in hyperosmotic media or by complementation with CFTR (pGFP-CFTR), suggesting that the osmoregulatory function of CFTR counters P. aeruginosa-induced bleb-niche formation. Accordingly, and despite their reduced capacity for bacterial internalization, CFTR-deficient cells showed greater bacterial occupation of blebs and enhanced intracellular replication. Together, these data suggest that P. aeruginosa bleb niches are distinct from apoptotic blebs, are driven by osmotic forces countered by CFTR, and could provide a novel mechanism for bacterial persistence in the host. Pseudomonas aeruginosa is an opportunistic pathogen problematic in hospitalized patients and those with cystic fibrosis (CF). Previously, we showed that P. aeruginosa can enter epithelial cells and replicate within them and traffics to the membrane blebs that it induces. This “bleb-niche” formation requires ExoS, previously shown to cause apoptosis. Here, we show that the driving force for bleb-niche formation is osmotic pressure, differentiating P. aeruginosa-induced blebs from apoptotic blebs. Either CFTR inhibition or CFTR mutation (as seen in people with CF) causes P. aeruginosa to make more bleb niches and provides an osmotic driving force for blebbing. CFTR inhibition also enhances bacterial occupation of blebs and intracellular replication. Since CFTR is targeted for removal from the plasma membrane when P. aeruginosa invades a healthy cell, these findings could relate to pathogenesis in both CF and healthy patient populations.
Collapse
|
28
|
Zhang PX, Cheng J, Zou S, D’Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015; 6:6221. [PMID: 25665524 PMCID: PMC4324503 DOI: 10.1038/ncomms7221] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In cystic fibrosis (CF) patients, hyper-inflammation is a key factor in lung destruction and disease morbidity. We have previously demonstrated that macrophages drive the lung hyper-inflammatory response to LPS in CF mice, because of reduced levels of the scaffold protein CAV1 with subsequent uncontrolled TLR4 signalling. Here we show that reduced CAV1 and, consequently, increased TLR4 signalling, in human and murine CF macrophages and murine CF lungs, is caused by high microRNA-199a-5p levels, which are PI3K/AKT-dependent. Downregulation of microRNA-199a-5p or increased AKT signalling restores CAV1 expression and reduces hyper-inflammation in CF macrophages. Importantly, the FDA-approved drug celecoxib re-establishes the AKT/miR-199a-5p/CAV1 axis in CF macrophages, and ameliorates lung hyper-inflammation in Cftr-deficient mice. Thus, we identify the AKT/miR-199a-5p/CAV1 pathway as a regulator of innate immunity, which is dysfunctional in CF macrophages contributing to lung hyper-inflammation. In addition, we found that this pathway can be targeted by celecoxib.
Collapse
Affiliation(s)
- Ping-xia Zhang
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jijun Cheng
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Siying Zou
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Anthony D. D’Souza
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jonathan L. Koff
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jun Lu
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Patty J. Lee
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Diane S. Krause
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Marie E. Egan
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cellular and Molecular Physiology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Emanuela M. Bruscia
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| |
Collapse
|
29
|
Wu L, Ong S, Talor MV, Barin JG, Baldeviano GC, Kass DA, Bedja D, Zhang H, Sheikh A, Margolick JB, Iwakura Y, Rose NR, Ciháková D. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. ACTA ACUST UNITED AC 2014; 211:1449-64. [PMID: 24935258 PMCID: PMC4076595 DOI: 10.1084/jem.20132126] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IL-17A stimulates cardiac fibroblasts to produce inflammatory mediators critical for the recruitment and differentiation of myeloid cells during inflammatory dilated cardiomyopathy. Inflammatory dilated cardiomyopathy (DCMi) is a major cause of heart failure in individuals below the age of 40. We recently reported that IL-17A is required for the development of DCMi. We show a novel pathway connecting IL-17A, cardiac fibroblasts (CFs), GM-CSF, and heart-infiltrating myeloid cells with the pathogenesis of DCMi. Il17ra−/− mice were protected from DCMi, and this was associated with significantly diminished neutrophil and Ly6Chi monocyte/macrophage (MO/MΦ) cardiac infiltrates. Depletion of Ly6Chi MO/MΦ also protected mice from DCMi. Mechanistically, IL-17A stimulated CFs to produce key chemokines and cytokines that are critical downstream effectors in the recruitment and differentiation of myeloid cells. Moreover, IL-17A directs Ly6Chi MO/MΦ in trans toward a more proinflammatory phenotype via CF-derived GM-CSF. Collectively, this IL-17A–fibroblast–GM-CSF–MO/MΦ axis could provide a novel target for the treatment of DCMi and related inflammatory cardiac diseases.
Collapse
Affiliation(s)
- Lei Wu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - SuFey Ong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Monica V Talor
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jobert G Barin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - G Christian Baldeviano
- Department of Parasitology, US Naval Medical Research Unit Six (NAMRU-6), Lima 34031, Peru
| | - David A Kass
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Djahida Bedja
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Asfandyar Sheikh
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joseph B Margolick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Noel R Rose
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Daniela Ciháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Department of Pathology, and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Sun HY, Guo ZZ, Zhang Z, Li YM, Wei LQ. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J Immunol Methods 2013; 403:7-16. [PMID: 24280595 DOI: 10.1016/j.jim.2013.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/11/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The mononuclear phagocyte system, including circulating monocytes and tissue resident macrophages, plays an important role in acute lung injury and fibrosis. The detailed dynamic changes of mononuclear phagocytes in the circulating, lung alveolar and interstitial compartments in bleomycin-induced pulmonary injury model have not been fully characterized. The present study was designed to address this issue and analyzed their relationships with pulmonary pathological evolution after bleomycin challenge. A total of 100 male C57BL/6 mice were randomly divided to receive bleomycin (2.5mg/kg, n=50) or normal saline (n=50) via oropharyngeal approach, and were sacrificed on days 1, 3, 7, 14 and 21. Circulating monocyte subsets, polarization state of bronchoalveolar lavage fluid (BALF)-derived alveolar macrophages (AMφ) and lung interstitial macrophages (IMφ, derived from enzymatically digested lung tissue) were analyzed by flow cytometry. There was a rapid expansion of circulating Ly6C(hi) monocytes which peaked on day 3, and its magnitude was positively associated with pulmonary inflammatory response. Moreover, an expansion of M2-like AMφ (F4/80+CD11c+CD206+) peaked on day 14, and was positively correlated with the magnitude of lung fibrosis. The polarization state of IMφ remained relatively stable in the early- and mid-stage after bleomycin challenge, expect for an increase of M2-like (F4/80+CD11c-CD206+) IMφ on day 21. These results support the notion that there is a Ly6C(hi)-monocyte-directed pulmonary AMφ alternative activation. Our result provides a dynamic view of mononuclear phagocyte change in three compartments after bleomycin challenge, which is relevant for designing new treatment strategies targeting mononuclear phagocytes in this model.
Collapse
Affiliation(s)
- Wen-Jie Ji
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China.
| | - Yong-Qiang Ma
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China; Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Yi-Dan Zhang
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Rui-Yi Lu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China; Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Hai-Ying Sun
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China; Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Zhao-Zeng Guo
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China; Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL 60611, USA
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, 220, Cheng-Lin Road, Tianjin 300162, China; Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China
| | - Lu-Qing Wei
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin 300162, China.
| |
Collapse
|
31
|
Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Guo ZZ, Sun HY, Hu DC, Yang GH, Li YM, Wei LQ. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. PLoS One 2013; 8:e81090. [PMID: 24260540 PMCID: PMC3834272 DOI: 10.1371/journal.pone.0081090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023] Open
Abstract
Background Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. Methodology/Principal Findings We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation. Conclusions/Significance The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.
Collapse
MESH Headings
- Acute Lung Injury/chemically induced
- Acute Lung Injury/drug therapy
- Acute Lung Injury/metabolism
- Acute Lung Injury/pathology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Bleomycin
- Bronchoalveolar Lavage Fluid/cytology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Gene Expression
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mineralocorticoid Receptor Antagonists/pharmacology
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Phenotype
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Fibrosis/chemically induced
- Pulmonary Fibrosis/drug therapy
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Spironolactone/pharmacology
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Wen-Jie Ji
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- * E-mail: (WJJ) ; (LQW)
| | - Yong-Qiang Ma
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Yi-Dan Zhang
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Rui-Yi Lu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Zhao-Zeng Guo
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Hai-Ying Sun
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Dao-Chuan Hu
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Guo-Hong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Lu-Qing Wei
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- * E-mail: (WJJ) ; (LQW)
| |
Collapse
|
32
|
Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages. PLoS One 2013; 8:e71717. [PMID: 23977124 PMCID: PMC3747231 DOI: 10.1371/journal.pone.0071717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.
Collapse
|