1
|
Hinke DM, Anderson AM, Katta K, Laursen MF, Tesfaye DY, Werninghaus IC, Angeletti D, Grødeland G, Bogen B, Braathen R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat Commun 2024; 15:850. [PMID: 38346952 PMCID: PMC10861589 DOI: 10.1038/s41467-024-44889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirankumar Katta
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Demo Yemane Tesfaye
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Hewawaduge C, Kwon J, Sivasankar C, Park JY, Senevirathne A, Lee JH. Salmonella delivers H9N2 influenza virus antigens via a prokaryotic and eukaryotic dual-expression vector and elicits bivalent protection against avian influenza and fowl typhoid. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105058. [PMID: 37714394 DOI: 10.1016/j.dci.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The H9N2 avian influenza virus significantly affects the health of poultry and humans. We identified a prokaryotic and eukaryotic dual-expression vector system, pJHL270, that can provide simultaneous MHC class I and II stimulation of the host immune system, and we designed vaccine antigens by selecting the consensus HA1 sequence and M2e antigens from H9N2 virus circulating in South Korea from 2000 to 2021. The genes were cloned into the pJHL270 vector, and the cloned plasmid was delivered by a live-attenuated Salmonella Gallinarum (SG) strain. The immunity and protective efficacy of the SG-based H9N2 vaccine construct, JOL2922, against avian influenza and fowl typhoid (FT) were evaluated. The Ptrc and CMV promoters conferred antigen expression in prokaryotic and eukaryotic cells to induce balanced Th-1/Th-2 immunity. Chickens immunized with JOL2922 yielded high antigen-specific humoral and mucosal immune responses. qRT-PCR revealed that the strain generated polyfunctional IFN-γ and IL-4 secretion in immunized chickens. Furthermore, a FACS analysis showed increased CD3CD4+ and CD3CD8+ T-cell subpopulations following immunization. Peripheral Blood Mononuclear Cells (PBMCs) harvested from the immunized chickens significantly increased MHC class I and II expression, 3.5-fold and 2.5-fold increases, respectively. Serum collected from the immunized groups had an evident hemagglutinin inhibition titer of ≥6 log2. Immunization reduced the lung viral titer by 3.8-fold within 5 days post-infection. The strain also generated SG-specific humoral and cellular immune responses. The immunized birds all survived a virulent SG wild-type challenge. In addition, the bacterial burden was reduced by 2.7-fold and 2.1-fold in spleen and liver tissue, respectively, collected from immunized chickens. Our data indicate that an attenuated SG strain successfully delivered the dual-expression vector system and co-stimulated MHC class I and II antigen presentation pathways via exogenous and endogenous antigen presentation, thereby triggering a balanced Th-1/Th-2-based immune response and conferring effective protection against avian influenza and FT.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
3
|
Werninghaus IC, Hinke DM, Fossum E, Bogen B, Braathen R. Neuraminidase delivered as an APC-targeted DNA vaccine induces protective antibodies against influenza. Mol Ther 2023; 31:2188-2205. [PMID: 36926694 PMCID: PMC10362400 DOI: 10.1016/j.ymthe.2023.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Conventional influenza vaccines focus on hemagglutinin (HA). However, antibody responses to neuraminidase (NA) have been established as an independent correlate of protection. Here, we introduced the ectodomain of NA into DNA vaccines that, as translated dimeric vaccine proteins, target antigen-presenting cells (APCs). The targeting was mediated by an single-chain variable fragment specific for major histocompatibility complex (MHC) class II, which is genetically linked to NA via a dimerization motif. A single immunization of BALB/c mice elicited strong and long-lasting NA-specific antibodies that inhibited NA enzymatic activity and reduced viral replication. Vaccine-induced NA immunity completely protected against a homologous influenza virus and out-competed NA immunity induced by a conventional inactivated virus vaccine. The protection was mainly mediated by antibodies, although NA-specific T cells also contributed. APC-targeting and antigen bivalency were crucial for vaccine efficacy. The APC-targeted vaccine was potent at low doses of DNA, indicating a dose-sparing effect. Similar results were obtained with NA vaccines that targeted different surface molecules on dendritic cells. Interestingly, the protective efficacy of NA as antigen compared favorably with HA and therefore ought to receive more attention in influenza vaccine research.
Collapse
Affiliation(s)
- Ina Charlotta Werninghaus
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| | - Daniëla Maria Hinke
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Even Fossum
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Ranveig Braathen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| |
Collapse
|
4
|
Trimeric, APC-Targeted Subunit Vaccines Protect Mice against Seasonal and Pandemic Influenza. J Virol 2023; 97:e0169422. [PMID: 36719241 PMCID: PMC9972960 DOI: 10.1128/jvi.01694-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Viral subunit vaccines contain the specific antigen deemed most important for development of protective immune responses. Typically, the chosen antigen is a surface protein involved in cellular entry of the virus, and neutralizing antibodies may prevent this. For influenza, hemagglutinin (HA) is thus a preferred antigen. However, the natural trimeric form of HA is often not considered during subunit vaccine development. Here, we have designed a vaccine format that maintains the trimeric HA conformation while targeting antigen toward major histocompatibility complex class II (MHCII) molecules or chemokine receptors on antigen-presenting cells (APC) for enhanced immunogenicity. Results demonstrated that a single DNA vaccination induced strong antibody and T-cell responses in mice. Importantly, a single DNA vaccination also protected mice from lethal challenges with influenza viruses H1N1 and H5N1. To further evaluate the versatility of the format, we developed MHCII-targeted HA from influenza A/California/04/2009(H1N1) as a protein vaccine and benchmarked this against Pandemrix and Flublok. These vaccine formats are different, but similar immune responses obtained with lower vaccine doses indicated that the MHCII-targeted subunit vaccine has an immunogenicity and efficacy that warrants progression to larger animals and humans. IMPORTANCE Subunit vaccines present only selected viral proteins to the immune system and allow for safe and easy production. Here, we have developed a novel vaccine where influenza hemagglutinin is presented in the natural trimeric form and then steered toward antigen-presenting cells for increased immunogenicity. We demonstrate efficient induction of antibodies and T-cell responses, and demonstrate that the vaccine format can protect mice against influenza subtypes H1N1, H5N1, and H7N1.
Collapse
|
5
|
Hinke DM, Andersen TK, Gopalakrishnan RP, Skullerud LM, Werninghaus IC, Grødeland G, Fossum E, Braathen R, Bogen B. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep 2022; 39:110901. [PMID: 35649357 DOI: 10.1016/j.celrep.2022.110901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Lise Madelene Skullerud
- Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| |
Collapse
|
6
|
Yu Z, He K, Cao W, Aleem MT, Yan R, Xu L, Song X, Li X. Nano vaccines for T. gondii Ribosomal P2 Protein With Nanomaterials as a Promising DNA Vaccine Against Toxoplasmosis. Front Immunol 2022; 13:839489. [PMID: 35265084 PMCID: PMC8899214 DOI: 10.3389/fimmu.2022.839489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Caused by Toxoplasma gondii, toxoplasmosis has aroused great threats to public health around the world. So far, no effective vaccine or drug is commercially available, and the demands for a safe and effective therapeutic strategy have become more and more urgent. In the current study, we constructed a DNA vaccine encoding T. gondii ribosomal P2 protein (TgP2) and denoted as TgP2-pVAX1 plasmid. To improve the immunoprotection, nanomaterial poly-lactic-co-glycolic acid (PLGA) and chitosan were used as the delivery vehicle to construct TgP2-pVAX1/PLGA and TgP2-pVAX1/CS nanospheres. Before vaccinations in BALB/c mice, TgP2-pVAX1 plasmids were transiently transfected into Human Embryonic Kidney (HEK) 293-T cells, and the expression of the eukaryotic plasmids was detected by laser confocal microscopy and Western blotting. Then the immunoprotection of naked DNA plasmids and their two nano-encapsulations were evaluated in the laboratory animal model. According to the investigations of antibody, cytokine, dendritic cell (DC) maturation, molecule expression, splenocyte proliferation, and T lymphocyte proportion, TgP2-pVAX1 plasmid delivered by two types of nanospheres could elicit a mixed Th1/Th2 immune response and Th1 immunity as the dominant. In addition, TgP2-pVAX1/PLGA and TgP2-pVAX1/CS nanospheres have great advantages in enhancing immunity against a lethal dose of T. gondii RH strain challenge. All these results suggested that TgP2-pVAX1 plasmids delivered by PLGA or chitosan nanomaterial could be promising vaccines in resisting toxoplasmosis and deserve further investigations and applications.
Collapse
Affiliation(s)
- ZhengQing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WanDi Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Qi H, Sun Z, Yao Y, Chen L, Su X. Immunogenicity of the Xcl1-SARS-CoV-2 Spike Fusion DNA Vaccine for COVID-19. Vaccines (Basel) 2022; 10:407. [PMID: 35335039 PMCID: PMC8951015 DOI: 10.3390/vaccines10030407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 spike (S) variants that may evade antibody-mediated immunity are emerging. Evidence shows that vaccines with a stronger immune response are still effective against mutant strains. Here, we report a targeted type 1 conventional dendritic (cDC1) cell strategy for improved COVID-19 vaccine design. cDC1 cells specifically express X-C motif chemokine receptor 1 (Xcr1), the only receptor for chemokine Xcl1. We fused the S gene sequence with the Xcl1 gene to deliver the expressed S protein to cDC1 cells. Immunization with a plasmid encoding the S protein fused to Xcl1 showed stronger induction of antibody and antigen-specific T cell immune responses than immunization with the S plasmid alone in mice. The fusion gene-induced antibody also displayed more powerful SARS-CoV-2 wild-type virus and pseudovirus neutralizing activity. Xcl1 also increased long-lived antibody-secreting plasma cells in bone marrow. These preliminary results indicate that Xcl1 serves as a molecular adjuvant for the SARS-CoV-2 vaccine and that our Xcl1-S fusion DNA vaccine is a potential COVID-19 vaccine candidate for use in further translational studies.
Collapse
Affiliation(s)
- Hailong Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Yanling Yao
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
| |
Collapse
|
8
|
Lysén A, Gudjonsson A, Tesfaye DY, Bobic S, Bern M, Bogen B, Fossum E. Intranasal delivery of a cDC1 targeted influenza vaccine with poly(I:C) enhances T cell responses and protects against influenza infection. Scand J Immunol 2021; 95:e13128. [PMID: 34923667 DOI: 10.1111/sji.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Targeting antigens to dendritic cells represent a promising method for enhancing immune responses against specific antigens. However, many studies have focused on systemic delivery (intravenous or intraperitoneally) of targeted antigen, approaches that are not easily transferable to humans. Here we evaluate the efficacy of an influenza vaccine targeting Xcr1+ cDC1 administered by intranasal immunization. Intranasal delivery of antigen fused to the chemokine Xcl1, the ligand of Xcr1, resulted in specific uptake by lung CD103+ cDC1. Interestingly, intranasal immunization with influenza A/PR/8/34 haemagglutinin (HA) fused to Xcl1, formulated with poly(I:C), resulted in enhanced induction of antigen-specific IFNγ+ CD4+ and IFNγ+ CD8+ T cell responses in lung compared non-targeted anti-NIP-HA (αNIP-HA). Induction of antibody responses was, however, similar in Xcl1-HA and αNIP-HA immunized mice, but significantly higher than in mice immunized with monomeric HA. Both Xcl1-HA and αNIP-HA vaccines induced full protection when mice were challenged with a lethal dose of influenza PR8 virus, reflecting the strong induction of HA-specific antibodies. Our results demonstrate that i.n. delivery of Xcl1-HA is a promising vaccine strategy for enhancing T cell responses in addition to inducing strong antibody responses.
Collapse
Affiliation(s)
- Anna Lysén
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arnar Gudjonsson
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Demo Yemane Tesfaye
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sonja Bobic
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Malin Bern
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway.,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Even Fossum
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Bjerkan L, Visweswaran GRR, Gudjonsson A, Labbé GM, Quinkert D, Pattinson DJ, Spång HCL, Draper SJ, Bogen B, Braathen R. APC-Targeted DNA Vaccination Against Reticulocyte-Binding Protein Homolog 5 Induces Plasmodium falciparum-Specific Neutralizing Antibodies and T Cell Responses. Front Immunol 2021; 12:720550. [PMID: 34733274 PMCID: PMC8558525 DOI: 10.3389/fimmu.2021.720550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named “Vaccibody”, has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.
Collapse
Affiliation(s)
- Louise Bjerkan
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Arnar Gudjonsson
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Heidi C L Spång
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ranveig Braathen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Van der Weken H, Sanz Garcia R, Sanders NN, Cox E, Devriendt B. Antibody-Mediated Targeting of Antigens to Intestinal Aminopeptidase N Elicits Gut IgA Responses in Pigs. Front Immunol 2021; 12:753371. [PMID: 34721427 PMCID: PMC8551371 DOI: 10.3389/fimmu.2021.753371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022] Open
Abstract
Many pathogens enter the host via the gut, causing disease in animals and humans. A robust intestinal immune response is necessary to protect the host from these gut pathogens. Despite being best suited for eliciting intestinal immunity, oral vaccination remains a challenge due to the gastrointestinal environment, a poor uptake of vaccine antigens by the intestinal epithelium and the tolerogenic environment pervading the gut. To improve uptake, efforts have focused on targeting antigens towards the gut mucosa. An interesting target is aminopeptidase N (APN), a conserved membrane protein present on small intestinal epithelial cells shown to mediate epithelial transcytosis. Here, we aimed to further optimize this oral vaccination strategy in a large animal model. Porcine APN-specific monoclonal antibodies were generated and the most promising candidate in terms of epithelial transcytosis was selected to generate antibody fusion constructs, comprising a murine IgG1 or porcine IgA backbone and a low immunogenic antigen: the F18-fimbriated E. coli tip adhesin FedF. Upon oral delivery of these recombinant antibodies in piglets, both mucosal and systemic immune responses were elicited. The presence of the FedF antigen however appeared to reduce these immune responses. Further analysis showed that F18 fimbriae were able to disrupt the antigen presenting capacity of intestinal antigen presenting cells, implying potential tolerogenic effects of FedF. Altogether, these findings show that targeted delivery of molecules to epithelial aminopeptidase N results in their transcytosis and delivery to the gut immune systems. The results provide a solid foundation for the development of oral subunit vaccines to protect against gut pathogens.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Raquel Sanz Garcia
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene therapy, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Andersen TK, Bodin J, Oftung F, Bogen B, Mjaaland S, Grødeland G. Pandemic Preparedness Against Influenza: DNA Vaccine for Rapid Relief. Front Immunol 2021; 12:747032. [PMID: 34691056 PMCID: PMC8531196 DOI: 10.3389/fimmu.2021.747032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
The 2009 “swine flu” pandemic outbreak demonstrated the limiting capacity for egg-based vaccines with respect to global vaccine supply within a timely fashion. New vaccine platforms that efficiently can quench pandemic influenza emergences are urgently needed. Since 2009, there has been a profound development of new vaccine platform technologies with respect to prophylactic use in the population, including DNA vaccines. These vaccines are particularly well suited for global pandemic responses as the DNA format is temperature stable and the production process is cheap and rapid. Here, we show that by targeting influenza antigens directly to antigen presenting cells (APC), DNA vaccine efficacy equals that of conventional technologies. A single dose of naked DNA encoding hemagglutinin (HA) from influenza/A/California/2009 (H1N1), linked to a targeting moiety directing the vaccine to major histocompatibility complex class II (MHCII) molecules, raised similar humoral immune responses as the adjuvanted split virion vaccine Pandemrix, widely administered in the 2009 pandemic. Both vaccine formats rapidly induced serum antibodies that could protect mice already 8 days after a single immunization, in contrast to the slower kinetics of a seasonal trivalent inactivated influenza vaccine (TIV). Importantly, the DNA vaccine also elicited cytotoxic T-cell responses that reduced morbidity after vaccination, in contrast to very limited T-cell responses seen after immunization with Pandemrix and TIV. These data demonstrate that DNA vaccines has the potential as a single dose platform vaccine, with rapid protective effects without the need for adjuvant, and confirms the relevance of naked DNA vaccines as candidates for pandemic preparedness.
Collapse
Affiliation(s)
- Tor Kristian Andersen
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johanna Bodin
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Fredrik Oftung
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Siri Mjaaland
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunnveig Grødeland
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Nano DNA Vaccine Encoding Toxoplasma gondii Histone Deacetylase SIR2 Enhanced Protective Immunity in Mice. Pharmaceutics 2021; 13:pharmaceutics13101582. [PMID: 34683874 PMCID: PMC8538992 DOI: 10.3390/pharmaceutics13101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The pathogen of toxoplasmosis, Toxoplasma gondii (T. gondii), is a zoonotic protozoon that can affect the health of warm-blooded animals including humans. Up to now, an effective vaccine with completely protection is still inaccessible. In this study, the DNA vaccine encoding T. gondii histone deacetylase SIR2 (pVAX1-SIR2) was constructed. To enhance the efficacy, chitosan and poly (d, l-lactic-co-glycolic)-acid (PLGA) were employed to design nanospheres loaded with the DNA vaccine, denoted as pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres. The pVAX1-SIR2 plasmids were transfected into HEK 293-T cells, and the expression was evaluated by a laser scanning confocal microscopy. Then, the immune protections of pVAX1-SIR2 plasmid, pVAX1-SIR2/CS nanospheres, and pVAX1-SIR2/PLGA nanospheres were evaluated in a laboratory animal model. The in vivo findings indicated that pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres could generate a mixed Th1/Th2 immune response, as indicated by the regulated production of antibodies and cytokines, the enhanced maturation and major histocompatibility complex (MHC) expression of dendritic cells (DCs), the induced splenocyte proliferation, and the increased percentages of CD4+ and CD8+ T lymphocytes. Furthermore, this enhanced immunity could obviously reduce the parasite burden in immunized animals through a lethal dose of T. gondii RH strain challenge. All these results propose that pVAX1-SIR2 plasmids entrapped in chitosan or PLGA nanospheres could be the promising vaccines against acute T. gondii infections and deserve further investigations.
Collapse
|
13
|
Yu Z, Cao W, Gao X, Aleem MT, Liu J, Luo J, Yan R, Xu L, Song X, Li X. With Chitosan and PLGA as the Delivery Vehicle, Toxoplasma gondii Oxidoreductase-Based DNA Vaccines Decrease Parasite Burdens in Mice. Front Immunol 2021; 12:726615. [PMID: 34512659 PMCID: PMC8430031 DOI: 10.3389/fimmu.2021.726615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasitic protozoan that can cause serious public health problems. However, there is no effectively preventive or therapeutic strategy available for human and animals. In the present study, we developed a DNA vaccine encoding T. gondii oxidoreductase from short-chain dehydrogenase/reductase family (TgSDRO-pVAX1) and then entrapped in chitosan and poly lactic-co-glycolic acid (PLGA) to improve the efficacy. When encapsulated in chitosan (TgSDRO-pVAX1/CS nanospheres) and PLGA (TgSDRO-pVAX1/PLGA nanospheres), adequate plasmids were loaded and released stably. Before animal immunizations, the DNA vaccine was transfected into HEK 293-T cells and examined by western blotting and laser confocal microscopy. Th1/Th2 cellular and humoral immunity was induced in immunized mice, accompanied by modulated secretion of antibodies and cytokines, promoted the maturation and MHC expression of dendritic cells, and enhanced the percentages of CD4+ and CD8+ T lymphocytes. Immunization with TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres conferred significant immunity with lower parasite burden in the mice model of acute toxoplasmosis. Furthermore, our results also lent credit to the idea that TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres are substitutes for each other. In general, the current study proposed that TgSDRO-pVAX1 with chitosan or PLGA as the delivery vehicle is a promising vaccine candidate against acute toxoplasmosis.
Collapse
Affiliation(s)
- Zhengqing Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuchen Gao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Szodoray P, Andersen TK, Heinzelbecker J, Imbery JF, Huszthy PC, Stanford SM, Bogen B, Landsverk OB, Bottini N, Tveita A, Munthe LA, Nakken B. Integration of T helper and BCR signals governs enhanced plasma cell differentiation of memory B cells by regulation of CD45 phosphatase activity. Cell Rep 2021; 36:109525. [PMID: 34380042 PMCID: PMC8435664 DOI: 10.1016/j.celrep.2021.109525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Humoral immunity relies on the efficient differentiation of memory B cells (MBCs) into antibody-secreting cells (ASCs). T helper (Th) signals upregulate B cell receptor (BCR) signaling by potentiating Src family kinases through increasing CD45 phosphatase activity (CD45 PA). In this study, we show that high CD45 PA in MBCs enhances BCR signaling and is essential for their effective ASC differentiation. Mechanistically, Th signals upregulate CD45 PA through intensifying the surface binding of a CD45 ligand, Galectin-1. CD45 PA works as a sensor of T cell help and defines high-affinity germinal center (GC) plasma cell (PC) precursors characterized by IRF4 expression in vivo. Increasing T cell help in vitro results in an incremental CD45 PA increase and enhances ASC differentiation by facilitating effective induction of the transcription factors IRF4 and BLIMP1. This study connects Th signals with BCR signaling through Galectin-1-dependent regulation of CD45 PA and provides a mechanism for efficient ASC differentiation of MBCs.
Collapse
Affiliation(s)
- Peter Szodoray
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Tor Kristian Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia Heinzelbecker
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John F Imbery
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Peter C Huszthy
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Stephanie M Stanford
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA 92093, USA
| | - Bjarne Bogen
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ole B Landsverk
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA 92093, USA
| | - Anders Tveita
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A Munthe
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Britt Nakken
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Center for B Cell Malignancies, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Tatlow D, Tatlow C, Tatlow S, Tatlow S. A novel concept for treatment and vaccination against Covid-19 with an inhaled chitosan-coated DNA vaccine encoding a secreted spike protein portion. Clin Exp Pharmacol Physiol 2020; 47:1874-1878. [PMID: 32881059 PMCID: PMC7436441 DOI: 10.1111/1440-1681.13393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022]
Abstract
A novel concept in DNA vaccine design is the creation of an inhaled DNA plasmid construct containing a portion of the coronavirus spike protein for treatment and vaccination. The secretion of a spike protein portion will function as a competitive antagonist by interfering with the binding of coronavirus to the angiotensin‐converting enzyme 2 (ACE2) receptor. The secreted protein binding to the ACE2 receptor provides a unique mechanism of action for treatment to all strains of coronavirus in naïve patients, by blocking the ACE2 receptor site. An inhaled plasmid DNA vaccine replicates the route of lung infection taken by coronavirus with transfected cells secreting spike protein portions to induce immunity. Unlike most DNA vaccines with intracellular antigen presentation through MHC I, the current vaccine relies on the secreted proteins presentation through MHC II as well as MHC I to induce immunity. Lung specific production of vaccine particles by inhaled plasmid DNA is appealing since it may have limited systemic side effects, and may induce both humoral and cytotoxic immunity. Finally, the ease and ability to rapidly produce this plasmid construct makes this an ideal solution for managing the emerging threat of coronavirus.
Collapse
|
16
|
Fossum E, Tesfaye DY, Bobic S, Gudjonsson A, Braathen R, Lahoud MH, Caminschi I, Bogen B. Targeting Antigens to Different Receptors on Conventional Type 1 Dendritic Cells Impacts the Immune Response. THE JOURNAL OF IMMUNOLOGY 2020; 205:661-673. [PMID: 32591401 DOI: 10.4049/jimmunol.1901119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Targeting Ag to surface receptors on conventional type 1 dendritic cells can enhance induction of Ab and T cell responses. However, it is unclear to what extent the targeted receptor influences the resulting responses. In this study, we target Ag to Xcr1, Clec9A, or DEC-205, surface receptors that are expressed on conventional type 1 dendritic cells, and compare immune responses in BALB/c and C57BL/6 mice in vitro and in vivo after intradermal DNA vaccination. Targeting hemagglutinin from influenza A to Clec9A induced Ab responses with higher avidity that more efficiently neutralized influenza virus compared with Xcr1 and DEC-205 targeting. In contrast, targeting Xcr1 resulted in higher IFN-γ+CD8+ T cell responses in spleen and lung and stronger cytotoxicity. Both Clec9A and Xcr1 targeting induced Th1-polarized Ab responses, although the Th1 polarization of CD4+ T cells was more pronounced after Xcr1 targeting. Targeting DEC-205 resulted in poor Ab responses in BALB/c mice and a more mixed Th response. In an influenza challenge model, targeting either Xcr1 or Clec9A induced full and long-term protection against influenza infection, whereas only partial short-term protection was obtained when targeting DEC-205. In summary, the choice of targeting receptor, even on the same dendritic cell subpopulation, may strongly influence the resulting immune response, suggesting that different targeting strategies should be considered depending on the pathogen.
Collapse
Affiliation(s)
- Even Fossum
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway;
| | - Demo Yemane Tesfaye
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway
| | - Sonja Bobic
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway
| | - Arnar Gudjonsson
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway
| | - Ranveig Braathen
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and.,Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bjarne Bogen
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, 0027 Oslo, Norway;
| |
Collapse
|
17
|
Grødeland G, Baranowska-Hustad M, Abadejos J, Blane TR, Teijaro J, Nemazee D, Bogen B. Induction of Cross-Reactive and Protective Antibody Responses After DNA Vaccination With MHCII-Targeted Stem Domain From Influenza Hemagglutinin. Front Immunol 2020; 11:431. [PMID: 32269566 PMCID: PMC7112135 DOI: 10.3389/fimmu.2020.00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022] Open
Abstract
Novel and more broadly protective vaccines against influenza are needed to efficiently meet antigenic drift and shift. Relevant to this end, the stem domain of hemagglutinin (HA) is highly conserved, and antibodies specific for epitopes located to the stem have been demonstrated to be able to confer broad protection against various influenza subtypes. However, a remaining challenge is to induce antibodies against the poorly immunogenic stem by vaccination strategies that can be scaled up for prophylactic vaccination of the general population. Here, we have developed DNA vaccines where the conserved stem domain of HA from influenza A/PR/8/34 (H1N1) and A/Shanghai/2/2013 (H7N9) was targeted toward MHC class II molecules on antigen-presenting cells (APC) for increased immunogenicity. Each of these vaccines induced antibodies that cross-reacted with other subtypes in the corresponding phylogenetic influenza groups. Importantly, when mixing the MHCII-targeted stem domains from H1N1 and H7N9 influenza viruses into one vaccine bolus, we observed broad protection against candidate stains from both phylogenetic groups 1 and 2.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marta Baranowska-Hustad
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Justin Abadejos
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - John Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Hirsch J, Faber BW, Crowe JE, Verstrepen B, Cornelissen G. E. coli production process yields stable dengue 1 virus-sized particles (VSPs). Vaccine 2020; 38:3305-3312. [PMID: 32197924 DOI: 10.1016/j.vaccine.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed. In this work, recombinant dengue serotype 1 E protein was produced in E. coli, inclusion bodies were isolated and the E protein solubilized in urea and purified using an immobilized metal chelate affinity column. The protein was refolded by dialysis in order to obtain virus-like particles (VLPs). Particle assembly was confirmed using size-exclusion chromatography, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy and stimulated emission depletion fluorescence (STED) microscopy. Particle diameter was strongly dependent on temperature, pH, buffer salt composition, and addition of L-arginine. Particles were stable in carbonate buffer at pH 9.5 and higher at 4 °C and did not aggregate during short-term temperature increase up to 55 °C. However, on basis of the above analyses, especially the results of DLS, TEM and STED, it was concluded that the particles obtained did not have an optimal virus-like structure and were therefore designated "virus-sized particles" (VSPs) rather than VLPs. Immunization of rabbits with the particles did not induce neutralizing antibodies, despite the recognition of the native virus by rabbit antibodies. As the titers against the immunogen were much higher than against the (heat-inactivated) virus, it is assumed that the conformation of the particles at the time of immunization was not optimal. Studies are currently underway to improve the quality of the E protein virus-sized particles towards true virus-like particles in order to optimize its potential as a dengue vaccine candidate.
Collapse
Affiliation(s)
- Janet Hirsch
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - James E Crowe
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN 37232-0417, USA.
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - Gesine Cornelissen
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| |
Collapse
|
19
|
Braathen R, Spång HCL, Hinke DM, Blazevski J, Bobic S, Fossum E, Bogen B. A DNA Vaccine That Encodes an Antigen-Presenting Cell-Specific Heterodimeric Protein Protects against Cancer and Influenza. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:378-392. [PMID: 32128342 PMCID: PMC7044496 DOI: 10.1016/j.omtm.2020.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/03/2023]
Abstract
Immunogenicity of DNA vaccines can be increased by constructing the DNA in such a way that it encodes secreted homodimeric fusion proteins that target antigen-presenting cells (APCs). In this study, we have developed novel APC-targeting vaccine molecules with an increased flexibility due to introduction of a heterodimerization motif. The heterodimeric proteins permit four different fusions within a single molecule, thus allowing expression of two different APC-targeting moieties and two different antigens. Two types of heterodimeric fusion proteins were developed that employed either the ACID/BASE or the Barnase/Barstar motifs, respectively. The ACID/BASE heterodimeric vaccines conferred protection against challenges with either influenza virus or tumor cells in separate preclinical models. The ACID/BASE motif was flexible since a large number of different targeting moieties and antigens could be introduced with maintenance of specificity, antigenicity, and secretion. APC-targeting ACID/BASE vaccines expressing two different antigens induced antibody and T cell responses against either of the two antigens. Heterodimeric ACID/BASE DNA vaccines were of approximately the same potency as previously reported homodimeric DNA vaccines. The flexibility and potency of the ACID/BASE format suggest that it could be a useful platform for DNA vaccines that encode APC-targeting fusion proteins.
Collapse
Affiliation(s)
- Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Heidi Cecilie Larsen Spång
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Jana Blazevski
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Sonja Bobic
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccines Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| |
Collapse
|
20
|
Grodeland G, Fossum E, Bogen B. Targeting of HA to chemokine receptors induces strong and cross-reactive T cell responses after DNA vaccination in pigs. Vaccine 2019; 38:1280-1285. [PMID: 31836256 DOI: 10.1016/j.vaccine.2019.11.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Efficient influenza vaccination of pigs can reduce disease burdens for the swine industry, but also represents an important measure for reducing the risk from novel viral reassortments that pose pandemic threats to the human population. Here, we have vaccinated pigs with a DNA vaccine encoding influenza virus hemagglutinin (HA) linked to the chemokine MIP1α that bind chemokine receptors 1, 3, and 5 expressed on antigen presenting cells (APC). Such MIP1α targeting of HA to APC enhanced induction of HA reactive antibodies, particularly IgG2. In addition, the MIP1α- HA vaccine induced strong T cell responses that could cross-react with different influenza subtypes. Thus, the strategy of targeting HA to chemokine receptors could be important for inducing broad protection against antigenically diverse influenza strains in pigs.
Collapse
Affiliation(s)
- Gunnveig Grodeland
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway.
| | - Even Fossum
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| |
Collapse
|
21
|
Tesfaye DY, Gudjonsson A, Bogen B, Fossum E. Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses. Front Immunol 2019; 10:1529. [PMID: 31333661 PMCID: PMC6620736 DOI: 10.3389/fimmu.2019.01529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DCs) facilitate cross talk between the innate and adaptive immune system. They sense and phagocytose invading pathogens, and are not only capable of activating naïve T cells, but can also determine the polarization of T cell responses into different effector subtypes. Polarized T cells in turn have a crucial role in antibody class switching and affinity maturation, and consequently the quality of the resulting humoral immunity. Targeting vaccines to DCs thus provides a great deal of opportunities for influencing the humoral immune responses, by fine-tuning the T cell response as well as regulating antigen availability for B cells. In this review we aim to outline how different DC targeted vaccination strategies can be utilized to induce a desired humoral immune response. A range of factors, including route of vaccine administration, use of adjuvants, choice of DC subset and surface receptor to target have been reported to influence the resulting immune response and will be reviewed herein. Finally, we will discuss opportunities for designing improved vaccines and challenges with translating this knowledge into clinical or veterinary medicine.
Collapse
Affiliation(s)
- Demo Yemane Tesfaye
- K. G. Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Arnar Gudjonsson
- K. G. Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- K. G. Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Even Fossum
- K. G. Jebsen Center for Research on Influenza Vaccines, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Gudjonsson A, Andersen TK, Sundvold-Gjerstad V, Bogen B, Fossum E. Endocytosis Deficient Murine Xcl1-Fusion Vaccine Enhances Protective Antibody Responses in Mice. Front Immunol 2019; 10:1086. [PMID: 31156636 PMCID: PMC6533920 DOI: 10.3389/fimmu.2019.01086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Targeting antigen to surface receptors on dendritic cells (DCs) can improve antibody response against subunit vaccines. We have previously observed that human XCL1-fusion vaccines target murine Xcr1+ DCs without actively inducing endocytosis of the antigen, resulting in enhanced antibody responses in mice. However, the use of foreign chemokines for targeting is undesirable when translating this observation to human or veterinary medicine due to potential cross-reactive responses against the endogenous chemokine. Here we have identified a mutant version of murine Xcl1, labeled Xcl1(Δ1) owing to removal of a conserved valine in position 1 of the mature chemokine, that retains specific binding to Xcr1+ DCs without inducing endocytosis of the receptor. DNA immunization with Xcl1(Δ1) conjugated to influenza hemagglutinin (HA) induced improved antibody responses, with higher end point titers of IgG compared to WT Xcl1-HA. The Xcl1(Δ1) fusion vaccine also resulted in an increased number of HA reactive germinal center B cells with higher avidity toward the antigen, and serum transfer experiments show that Xcl1(Δ1)-HA induced antibody responses provided better protection against influenza infection as compared to WT Xcl1-HA. In summary, our observations indicate that targeting antigen to Xcr1+ DCs in an endocytosis deficient manner enhances antibody responses. This effect was obtained by introducing a single mutation to Xcl1, suggesting our strategy may easily be translated to human or veterinary vaccine settings.
Collapse
Affiliation(s)
- Arnar Gudjonsson
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold-Gjerstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Koopman G, Mortier D, Michels S, Hofman S, Fagrouch Z, Remarque EJ, Verschoor EJ, Mooij P, Bogers WM. Influenza virus infection as well as immunization with DNA encoding haemagglutinin protein induces potent antibody-dependent phagocytosis (ADP) and monocyte infection-enhancing responses in macaques. J Gen Virol 2019; 100:738-751. [DOI: 10.1099/jgv.0.001251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gerrit Koopman
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Daniella Mortier
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Samira Michels
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Sam Hofman
- 2Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Zahra Fagrouch
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Edmond J. Remarque
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ernst J. Verschoor
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Petra Mooij
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Willy M.J.M. Bogers
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
24
|
Dendritic cell targeted Ccl3- and Xcl1-fusion DNA vaccines differ in induced immune responses and optimal delivery site. Sci Rep 2019; 9:1820. [PMID: 30755656 PMCID: PMC6372594 DOI: 10.1038/s41598-018-38080-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2018] [Indexed: 11/08/2022] Open
Abstract
Fusing antigens to chemokines to target antigen presenting cells (APC) is a promising method for enhancing immunogenicity of DNA vaccines. However, it is unclear how different chemokines compare in terms of immune potentiating effects. Here we compare Ccl3- and Xcl1-fusion vaccines containing hemagglutinin (HA) from influenza A delivered by intramuscular (i.m.) or intradermal (i.d.) DNA vaccination. Xcl1 fusion vaccines target cDC1s, and enhance proliferation of CD4+ and CD8+ T cells in vitro. In contrast, Ccl3 target both cDC1 and cDC2, but only enhance CD4+ T cell proliferation in combination with cDC2. When Ccl3- or Xcl1-HA fusion vaccines were administered by i.m. DNA immunization, both vaccines induced Th1-polarized immune responses with antibodies of the IgG2a/IgG2b subclass and IFNγ-secreting T cells. After i.d. DNA vaccination, however, only Xcl1-HA maintained a Th1 polarized response and induced even higher numbers of IFNγ-secreting T cells. Consequently, Xcl1-HA induced superior protection against influenza infection compared to Ccl3-HA after i.d. immunization. Interestingly, i.m. immunization with Ccl3-HA induced the strongest overall in vivo cytotoxicity, despite not inducing OT-I proliferation in vitro. In summary, our results highlight important differences between Ccl3- and Xcl1- targeted DNA vaccines suggesting that chemokine fusion vaccines can be tailor-made for different diseases.
Collapse
|
25
|
Andersen TK, Huszthy PC, Gopalakrishnan RP, Jacobsen JT, Fauskanger M, Tveita AA, Grødeland G, Bogen B. Enhanced germinal center reaction by targeting vaccine antigen to major histocompatibility complex class II molecules. NPJ Vaccines 2019; 4:9. [PMID: 30775000 PMCID: PMC6370881 DOI: 10.1038/s41541-019-0101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Enhancing the germinal center (GC) reaction is a prime objective in vaccine development. Targeting of antigen to MHCII on APCs has previously been shown to increase antibody responses, but the underlying mechanism has been unclear. We have here investigated the GC reaction after targeting antigen to MHCII in (i) a defined model with T and B cells of known specificity using adjuvant-free vaccine proteins, and (ii) an infectious disease model using a DNA vaccine. MHCII-targeting enhanced presentation of peptide: MHCII on APCs, and increased the numbers of GC B cells, TFH, and plasma cells. Antibodies appeared earlier and levels were increased. BCR of GC B cells and serum antibodies had increased avidity for antigen. The improved responses required cross-linking of BCR and MHCII in either cis or trans. The enhanced GC reaction induced by MHCII-targeting of antigen has clear implications for design of more efficient subunit vaccines.
Collapse
Affiliation(s)
- Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Peter C. Huszthy
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | | | | | - Marte Fauskanger
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Anders A. Tveita
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
- Department of Immunology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
26
|
Mooij P, Grødeland G, Koopman G, Andersen TK, Mortier D, Nieuwenhuis IG, Verschoor EJ, Fagrouch Z, Bogers WM, Bogen B. Needle-free delivery of DNA: Targeting of hemagglutinin to MHC class II molecules protects rhesus macaques against H1N1 influenza. Vaccine 2019; 37:817-826. [PMID: 30638800 DOI: 10.1016/j.vaccine.2018.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 01/31/2023]
Abstract
Conventional influenza vaccines are hampered by slow and limited production capabilities, whereas DNA vaccines can be rapidly produced for global coverage in the event of an emerging pandemic. However, a drawback of DNA vaccines is their generally low immunogenicity in non-human primates and humans. We have previously demonstrated that targeting of influenza hemagglutinin to human HLA class II molecules can increase antibody responses in larger animals such as ferrets and pigs. Here, we extend these observations by immunizing non-human primates (rhesus macaques) with a DNA vaccine encoding a bivalent fusion protein that targets influenza virus hemagglutinin (HA) to Mamu class II molecules. Such immunization induced neutralizing antibodies and antigen-specific T cells. The DNA was delivered by pain- and needle-free jet injections intradermally. No adverse effects were observed. Most importantly, the immunized rhesus macaques were protected against a challenge with influenza virus.
Collapse
Affiliation(s)
- Petra Mooij
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway.
| | - Gerrit Koopman
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| | | | | | | | - Zahra Fagrouch
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Willy M Bogers
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| |
Collapse
|
27
|
Anderson AM, Baranowska-Hustad M, Braathen R, Grodeland G, Bogen B. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza. THE JOURNAL OF IMMUNOLOGY 2018; 200:2057-2066. [PMID: 29427414 DOI: 10.4049/jimmunol.1701088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
There is a need for vaccines that can confer broad immunity against highly diverse pathogens, such as influenza. The efficacy of conventional influenza vaccines is dependent on accurate matching of vaccines to circulating strains, but slow and limited production capacities increase the probability of vaccine mismatches. In contrast, DNA vaccination allows for rapid production of vaccines encoding novel influenza Ags. The efficacy of DNA vaccination is greatly improved if the DNA-encoded vaccine proteins target APCs. In this study, we have used hemagglutinin (HA) genes from each of six group 1 influenza viruses (H5, H6, H8, H9, H11, and H13), and inserted these into a DNA vaccine format that induces delivery of the HA protein Ags to MHC class II molecules on APCs. Each of the targeted DNA vaccines induced high titers of strain-specific anti-HA Abs. Importantly, when the six HA vaccines were mixed and injected simultaneously, the strain-specific Ab titers were maintained. In addition, the vaccine mixture induced Abs that cross-reacted with strains not included in the vaccine mixture (H1) and could protect mice against a heterosubtypic challenge with the H1 viruses A/Puerto Rico/8/1934 (H1N1) and A/California/07/2009 (H1N1). The data suggest that vaccination with a mixture of HAs could be useful for induction of strain-specific immunity against strains represented in the mixture and, in addition, confer some degree of cross-protection against unrelated influenza strains.
Collapse
Affiliation(s)
- Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Marta Baranowska-Hustad
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Gunnveig Grodeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway; .,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and.,Centre for Immune Regulation, University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
28
|
A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza. J Virol 2017; 91:JVI.01340-17. [PMID: 28931687 PMCID: PMC5686743 DOI: 10.1128/jvi.01340-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full protection against a lethal challenge with H7N1 influenza in mice. Vaccine efficacy was contingent on targeting of the secreted vaccine protein to antigen-presenting cells.
Collapse
|
29
|
Gudjonsson A, Lysén A, Balan S, Sundvold-Gjerstad V, Arnold-Schrauf C, Richter L, Bækkevold ES, Dalod M, Bogen B, Fossum E. Targeting Influenza Virus Hemagglutinin to Xcr1+Dendritic Cells in the Absence of Receptor-Mediated Endocytosis Enhances Protective Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2017; 198:2785-2795. [DOI: 10.4049/jimmunol.1601881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
|
30
|
Grodeland G, Fredriksen AB, Løset GÅ, Vikse E, Fugger L, Bogen B. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3575-3585. [PMID: 27671110 DOI: 10.4049/jimmunol.1600893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II-targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II-targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans.
Collapse
Affiliation(s)
- Gunnveig Grodeland
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway;
| | | | - Geir Åge Løset
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Elisabeth Vikse
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Lars Fugger
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; and.,Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Bjarne Bogen
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway; .,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| |
Collapse
|
31
|
Lambert L, Kinnear E, McDonald JU, Grodeland G, Bogen B, Stubsrud E, Lindeberg MM, Fredriksen AB, Tregoning JS. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease. Front Immunol 2016; 7:321. [PMID: 27602032 PMCID: PMC4993793 DOI: 10.3389/fimmu.2016.00321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 01/14/2023] Open
Abstract
Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.
Collapse
Affiliation(s)
- Laura Lambert
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Ekaterina Kinnear
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Jacqueline U McDonald
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Gunnveig Grodeland
- K. G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- K. G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway; Centre for Immune Regulation, Institute for Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | | | - John S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| |
Collapse
|
32
|
Abstract
DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.
Collapse
|
33
|
D’Amato F, Eldin C, Raoult D. The contribution of genomics to the study of Q fever. Future Microbiol 2016; 11:253-72. [DOI: 10.2217/fmb.15.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a worldwide zoonosis that can result in large outbreaks. The birth of genomics and sequencing of C. burnetii strains has revolutionized many fields of study of this infection. Accurate genotyping methods and comparative genomic analysis have enabled description of the diversity of strains around the world and their link with pathogenicity. Genomics has also permitted the development of qPCR tools and axenic culture medium, facilitating the diagnosis of Q fever. Moreover, several pathophysiological mechanisms can now be predicted and therapeutic strategies can be determined thanks to in silico genome analysis. An extensive pan-genomic analysis will allow for a comprehensive view of the clonal diversity of C. burnetii and its link with virulence.
Collapse
Affiliation(s)
- Felicetta D’Amato
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Carole Eldin
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| |
Collapse
|
34
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
35
|
Kuczkowska K, Mathiesen G, Eijsink VGH, Øynebråten I. Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Fact 2015; 14:169. [PMID: 26494531 PMCID: PMC4618854 DOI: 10.1186/s12934-015-0360-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 02/08/2023] Open
Abstract
Background Chemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines. Results We have constructed strains of Lactobacillusplantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro. Conclusions The results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Kuczkowska
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Inger Øynebråten
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet, and University of Oslo, Oslo, Norway.
| |
Collapse
|
36
|
Baranowska M, Hauge AG, Hoornaert C, Bogen B, Grødeland G. Targeting of nucleoprotein to chemokine receptors by DNA vaccination results in increased CD8(+)-mediated cross protection against influenza. Vaccine 2015; 33:6988-96. [PMID: 26387432 DOI: 10.1016/j.vaccine.2015.08.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 11/15/2022]
Abstract
Vaccination is at present the most efficient way of preventing influenza infections. Currently used inactivated influenza vaccines can induce virus-neutralizing antibodies that are protective against a particular influenza strain, but hamper the induction of cross-protective T-cell responses to later infections. Thus, influenza vaccines need to be updated annually in order to confer protection against circulating influenza strains. This study aims at developing an efficient vaccine that can induce broader protection against influenza. For this purpose, we have used the highly conserved nucleoprotein (NP) from an influenza A virus subtype H7N7 strain, and inserted it into a vaccine format that targets an antigen directly to relevant antigen presenting cells (APCs). The vaccine format consists of bivalent antigenic and targeting units, linked via an Ig-based dimerization unit. In this study, NP was linked to MIP-1α, a chemokine that targets the linked antigen to chemokine receptors 1, 3 and 5 expressed on various APCs. The vaccine protein was indirectly delivered by DNA. Mice were vaccinated intradermally with plasmids, in combination with electroporation to enhance cellular uptake of DNA. We found that a single DNA vaccination was sufficient for induction of both antibody and T cell responses in BALB/c mice. Targeting of nucleoprotein to chemokine receptors enhanced T cell responses but not antibody responses. Moreover, a single dose of MIP1α-NP conferred protection in BALB/c mice against a lethal challenge with an H1N1 influenza virus. The observed cross-protection was mediated by CD8(+) T cells.
Collapse
Affiliation(s)
- Marta Baranowska
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Anna G Hauge
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway; Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Chloé Hoornaert
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunnveig Grødeland
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
37
|
Grødeland G, Fossum E, Bogen B. Polarizing T and B Cell Responses by APC-Targeted Subunit Vaccines. Front Immunol 2015; 6:367. [PMID: 26257735 PMCID: PMC4507452 DOI: 10.3389/fimmu.2015.00367] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs). The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8(+) T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Even Fossum
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway ; Centre for Immune Regulation (CIR), Institute of Immunology, University of Oslo , Oslo , Norway
| |
Collapse
|
38
|
Grødeland G, Bogen B. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules. Expert Rev Vaccines 2015; 14:805-14. [PMID: 25818107 DOI: 10.1586/14760584.2015.1029919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- Institute of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0027 Oslo, Norway
| | | |
Collapse
|
39
|
Fossum E, Grødeland G, Terhorst D, Tveita AA, Vikse E, Mjaaland S, Henri S, Malissen B, Bogen B. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+T-cell responses against influenza virus. Eur J Immunol 2014; 45:624-35. [DOI: 10.1002/eji.201445080] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Even Fossum
- K.G. Jebsen Center for Influenza Vaccine Research; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
| | - Gunnveig Grødeland
- K.G. Jebsen Center for Influenza Vaccine Research; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
| | - Dorothea Terhorst
- Department of Dermatology; Charité University Medicine Berlin; Berlin Germany
- Centre d'Immunologie de Marseille-Luminy (CIML); Aix-Marseille Université; Marseille France
- INSERM U1104; Marseille France
- CNRS UMR7280; Marseille France
| | - Anders A. Tveita
- Center for Immune Regulation; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
| | - Elisabeth Vikse
- K.G. Jebsen Center for Influenza Vaccine Research; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
| | - Siri Mjaaland
- K.G. Jebsen Center for Influenza Vaccine Research; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
- Division for Infectious Disease Control; Department of Bacteriology and Infection Immunology; Norwegian Institute of Public Health; Oslo Norway
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML); Aix-Marseille Université; Marseille France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML); Aix-Marseille Université; Marseille France
| | - Bjarne Bogen
- K.G. Jebsen Center for Influenza Vaccine Research; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
- Center for Immune Regulation; Institute of Immunology; University of Oslo and Oslo University Hospital; Oslo Norway
| |
Collapse
|
40
|
DNA vaccines: MHC II-targeted vaccine protein produced by transfected muscle fibres induces a local inflammatory cell infiltrate in mice. PLoS One 2014; 9:e108069. [PMID: 25299691 PMCID: PMC4191975 DOI: 10.1371/journal.pone.0108069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/25/2014] [Indexed: 01/27/2023] Open
Abstract
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.
Collapse
|
41
|
D'Amato F, Rouli L, Edouard S, Tyczka J, Million M, Robert C, Nguyen TT, Raoult D. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. Comp Immunol Microbiol Infect Dis 2014; 37:281-8. [PMID: 25249233 DOI: 10.1016/j.cimid.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Coxiella burnetii is a pathogen causing Q fever. The aim of our work was to study Z3055, a strain that is genotypically related to the strain causing the Netherlands outbreak. We compared Z3055 to 5 other completed genomes available in GenBank. We calculated the blast score ratio (BSR) to analyze genetic differences among the strains. The ratio core genome/pangenome was 98% likely other bacteria with closed pangenomes. Differences between Z3055 and the reference NMI consisted only of point mutations and insertion/deletion (INDELs). Non-synonymous mutations significantly increased in genes coding for membrane proteins (16/156 vs 103/1757, bilateral Chi(2) test, p<0.05), ankyrin repeat domains containing proteins (2/9 vs 117/1904, bilateral Chi(2) test, p<0.05), transcription factors (7/53 vs 112/1860, bilateral Chi(2) test, p<0.05) and translation proteins (15/144 vs 109/1655, bilateral Chi(2) test, p<0.05). The evolution of this strain may have been driven by mutations in critical genes.
Collapse
Affiliation(s)
- Felicetta D'Amato
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Laetitia Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Sophie Edouard
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Judith Tyczka
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Straße 3, Abteilung 7, Karlsruhe 76187, Germany.
| | - Matthieu Million
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Catherine Robert
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Thi Tien Nguyen
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| |
Collapse
|
42
|
Øynebråten I, Hinkula J, Fredriksen AB, Bogen B. Increased generation of HIV-1 gp120-reactive CD8+ T cells by a DNA vaccine construct encoding the chemokine CCL3. PLoS One 2014; 9:e104814. [PMID: 25122197 PMCID: PMC4133255 DOI: 10.1371/journal.pone.0104814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV-1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.
Collapse
Affiliation(s)
- Inger Øynebråten
- Dept. of Immunology, University of Oslo and Oslo University Hospital – Rikshospitalet, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- * E-mail: (IØ); (BB)
| | - Jorma Hinkula
- Division of Molecular Virology, Dept. of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Agnete B. Fredriksen
- Dept. of Immunology, University of Oslo and Oslo University Hospital – Rikshospitalet, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- Dept. of Immunology, University of Oslo and Oslo University Hospital – Rikshospitalet, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- KG Jebsen Centre for research on Influenza Vaccines, University of Oslo, Oslo, Norway
- * E-mail: (IØ); (BB)
| |
Collapse
|
43
|
Zbinden D, Manuel O. Influenza vaccination in immunocompromised patients: efficacy and safety. Immunotherapy 2014; 6:131-9. [DOI: 10.2217/imt.13.171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yearly administration of the influenza vaccine is the main strategy to prevent influenza in immunocompromised patients. Here, we reviewed the recent literature regarding the clinical significance of the influenza virus infection, as well as the immunogenicity and safety of the influenza vaccine in HIV‑infected individuals, solid-organ and stem-cell transplant recipients and patients receiving biological agents. Epidemiological data produced during the 2009 influenza pandemic have confirmed that immunocompromised patients remain at high risk of influenza-associated complications, namely viral and bacterial pneumonia, hospitalization and even death. The immunogenicity of the influenza vaccine is overall reduced in immunocompromised patients, although a significant clinical protection from influenza is expected to be obtained with vaccination. Influenza vaccination is safe in immunocompromised patients. The efficacy of novel strategies to improve the immunogenicity to the vaccine, such as the use of adjuvanted vaccines, boosting doses and intradermal vaccination, needs to be validated in appropriately powered clinical trials.
Collapse
Affiliation(s)
- Delphine Zbinden
- Infectious Diseases Service, University Hospital, University of Lausanne, Lausanne, Switzerland
- Transplantation Center, University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service, University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Grødeland G, Mjaaland S, Tunheim G, Fredriksen AB, Bogen B. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype. PLoS One 2013; 8:e80008. [PMID: 24244595 PMCID: PMC3823800 DOI: 10.1371/journal.pone.0080008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/02/2013] [Indexed: 01/28/2023] Open
Abstract
Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA) to different surface molecules on antigen presenting cells (APC). We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m) delivery as compared to intradermal (i.d.) vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA) demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antibodies, Viral/biosynthesis
- Antigen Presentation
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Female
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Injections, Intradermal
- Injections, Intramuscular
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Ovalbumin/genetics
- Ovalbumin/immunology
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Th1 Cells/cytology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/cytology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Vaccination
- Vaccines, Synthetic
Collapse
Affiliation(s)
- Gunnveig Grødeland
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- * E-mail: (GG); (BB)
| | - Siri Mjaaland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Division for Infectious Disease Control, Department of Bacteriology and Infection Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro Tunheim
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Agnete B. Fredriksen
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Centre for Immune Regulation (CIR), University of Oslo and Oslo University Hospital, Oslo, Norway
- * E-mail: (GG); (BB)
| |
Collapse
|