1
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
2
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
3
|
Teng X, Mou DC, Li HF, Jiao L, Wu SS, Pi JK, Wang Y, Zhu ML, Tang M, Liu Y. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. Mol Med 2022; 28:135. [DOI: 10.1186/s10020-022-00563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms.
Methods
Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells.
Results
SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPβ/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis.
Conclusion
Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.
Collapse
|
4
|
The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)—which are important members of cytokines—consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
|
5
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
6
|
Giannoudaki E, Stefanska AM, Lawler H, Leon G, Hernandez Santana YE, Hassan N, Russell SE, Horan R, Sweeney C, Preston RS, Mantovani A, Garlanda C, Fallon PG, Walsh PT. SIGIRR Negatively Regulates IL-36-Driven Psoriasiform Inflammation and Neutrophil Infiltration in the Skin. THE JOURNAL OF IMMUNOLOGY 2021; 207:651-660. [PMID: 34253575 DOI: 10.4049/jimmunol.2100237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
SIGIRR has been described as a negative regulator of several IL-1R/TLR family members and has been implicated in several inflammatory disease conditions. However, it is unknown whether it can suppress IL-36 family cytokines, which are members of the broader IL-1 superfamily that have emerged as critical orchestrators of psoriatic inflammation in both humans and mice. In this study, we demonstrate that SIGIRR is downregulated in psoriatic lesions in humans and mice, and this correlates with increased expression of IL-36 family cytokines. Using Sigirr -/- mice, we identify, for the first time (to our knowledge), SIGIRR as a negative regulator of IL-36 responses in the skin. Mechanistically, we identify dendritic cells and keratinocytes as the primary cell subsets in which IL-36 proinflammatory responses are regulated by SIGIRR. Both cell types displayed elevated IL-36 responsiveness in absence of SIGIRR activity, characterized by enhanced expression of neutrophil chemoattractants, leading to increased neutrophil infiltration to the inflamed skin. Blockade of IL-36R signaling ameliorated exacerbated psoriasiform inflammation in Sigirr-/- mice and inhibited neutrophil infiltration. These data identify SIGIRR activity as an important regulatory node in suppressing IL-36-dependent psoriatic inflammation in humans and mice.
Collapse
Affiliation(s)
- Eirini Giannoudaki
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Anna M Stefanska
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Hazel Lawler
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Gemma Leon
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Yasmina E Hernandez Santana
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Najma Hassan
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shane E Russell
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Rachel Horan
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Cheryl Sweeney
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Roger S Preston
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alberto Mantovani
- Scientific Institute for Research, Hospitalization and Healthcare, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; and.,The William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Cecilia Garlanda
- Scientific Institute for Research, Hospitalization and Healthcare, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; and
| | - Padraic G Fallon
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland; .,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
7
|
Iznardo H, Puig L. The interleukin-1 family cytokines in psoriasis: pathogenetic role and therapeutic perspectives. Expert Rev Clin Immunol 2021; 17:187-199. [PMID: 33538202 DOI: 10.1080/1744666x.2021.1886081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: IL-1 family cytokines play an important role in the innate immune system and their uncontrolled activation and expression can initiate a pathologic inflammatory response. Their role in psoriasis, pustular psoriasis, and psoriatic arthritis has been studied, and they offer potential interest as therapeutic targets.Areas covered: This review focuses on the role that interleukin (IL)-1 family cytokines play in psoriasis pathogenesis, with a special focus on pustular psoriasis, and how these cytokines can be used as therapeutic targets. Using PubMed, we review the literature for articles related to IL-1 family cytokines and psoriasis, focusing on pustular psoriasis, and including pathogenesis, genetics and therapeutic targets.Expert opinion: IL-1 and IL-36 cytokines act as critical drivers of the autoinflammatory responses involved in pustular psoriasis. Studies on the specific role of each IL-1 cytokine are needed, as well as of their regulatory pathways. Targeting of IL-1 family cytokines has been used in pustular psoriasis, with IL-1 and IL-36 R blockade showing promising results.
Collapse
Affiliation(s)
- Helena Iznardo
- Department of Dermatology, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,Department of Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,Department of Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Hernandez-Santana YE, Giannoudaki E, Leon G, Lucitt MB, Walsh PT. Current perspectives on the interleukin-1 family as targets for inflammatory disease. Eur J Immunol 2019; 49:1306-1320. [PMID: 31250428 DOI: 10.1002/eji.201848056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Since the first description of interleukin-1 (IL-1) and the genesis of the field of cytokine biology, the understanding of how IL-1 and related cytokines play central orchestrating roles in the inflammatory response has been an area of intense investigation. As a consequence of these endeavours, specific strategies have been developed to target the function of the IL-1 family in human disease realizing significant impacts for patients. While the most significant advances to date have been associated with inhibition of the prototypical family members IL-1α/β, approaches to target more recently identified family members such as IL-18, IL-33 and the IL-36 subfamily are now beginning to come to fruition. This review summarizes current knowledge surrounding the roles of the IL-1 family in human disease and describes the rationale and strategies which have been developed to target these cytokines to inhibit the pathogenesis of a wide range of diseases in which inflammation plays a centrally important role.
Collapse
Affiliation(s)
- Yasmina E Hernandez-Santana
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Eirini Giannoudaki
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Gemma Leon
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Margaret B Lucitt
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College, Dublin
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| |
Collapse
|
9
|
Riva F, Ponzoni M, Supino D, Bertilaccio MTS, Polentarutti N, Massara M, Pasqualini F, Carriero R, Innocenzi A, Anselmo A, Veliz-Rodriguez T, Simonetti G, Anders HJ, Caligaris-Cappio F, Mantovani A, Muzio M, Garlanda C. IL1R8 Deficiency Drives Autoimmunity-Associated Lymphoma Development. Cancer Immunol Res 2019; 7:874-885. [PMID: 31018956 DOI: 10.1158/2326-6066.cir-18-0698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/28/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Chronic inflammation, including that driven by autoimmunity, is associated with the development of B-cell lymphomas. IL1R8 is a regulatory receptor belonging to the IL1R family, which negatively regulates NF-κB activation following stimulation of IL1R or Toll-like receptor family members. IL1R8 deficiency is associated with the development of severe autoimmune lupus-like disease in lpr mice. We herein investigated whether concomitant exacerbated inflammation and autoimmunity caused by the deficiency of IL1R8 could recapitulate autoimmunity-associated lymphomagenesis. We thus monitored B-cell lymphoma development during the aging of IL1R8-deficient lpr mice, observing an increased lymphoid cell expansion that evolved to diffuse large B-cell lymphoma (DLBCL). Molecular and gene-expression analyses showed that the NF-κB pathway was constitutively activated in Il1r8 -/-/lpr B splenocytes. In human DLBCL, IL1R8 had reduced expression compared with normal B cells, and higher IL1R8 expression was associated with a better outcome. Thus, IL1R8 silencing is associated with increased lymphoproliferation and transformation in the pathogenesis of B-cell lymphomas associated with autoimmunity.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Italy
| | - Maurilio Ponzoni
- Ateneo Vita-Salute and Unit of Lymphoid Malignancies, IRCCS San Raffaele Scientific Institute; Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | - Anna Innocenzi
- Ateneo Vita-Salute and Unit of Lymphoid Malignancies, IRCCS San Raffaele Scientific Institute; Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | - Tania Veliz-Rodriguez
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giorgia Simonetti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | | | - Alberto Mantovani
- Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Pieve Emanuele, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marta Muzio
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Cecilia Garlanda
- Humanitas Research Hospital, Rozzano, Italy. .,Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
10
|
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019; 50:778-795. [PMID: 30995499 PMCID: PMC7174020 DOI: 10.1016/j.immuni.2019.03.012] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy; William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martina Molgora
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy.
| |
Collapse
|
11
|
Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev 2018; 281:233-247. [PMID: 29247989 DOI: 10.1111/imr.12609] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) are key players in immunity and inflammation and are tightly regulated at different levels. Most cell types, including cells of the innate and adaptive immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R2 and IL-1R8 (also known as TIR8 or SIGIRR) are members of the ILR family acting as negative regulators of the IL-1 system. IL-1R2 binds IL-1 and the accessory protein IL-1RAcP without activating signaling and can be released as a soluble form (sIL-1R2), thus modulating IL-1 availability for the signaling receptor. IL-1R8 dampens ILR- and TLR-mediated cell activation and it is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R2 and IL-1R8, focusing on their role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation. We also address the emerging evidence regarding the role of IL-1R8 as a crucial checkpoint molecule in NK cells in anti-cancer and antiviral activity and the potential therapeutic implications of IL-1R8 blockade in specific pathological contexts.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Domenico Supino
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy
| |
Collapse
|
12
|
Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases. J Autoimmun 2018; 87:26-37. [DOI: 10.1016/j.jaut.2017.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
13
|
Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann N Y Acad Sci 2016; 1417:23-34. [PMID: 27783881 DOI: 10.1111/nyas.13280] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
The recently discovered interleukin (IL)-36 family of cytokines form part of the broader IL-1 family and are emerging as important mediators of inflammatory disease. The IL-36 subfamily consists of three ligands-IL-36α, IL-36β, and IL-36γ-and the natural antagonist IL-36Ra. The cytokines exert their effects through a specific IL-36 receptor consisting of IL-36R and IL-1RAcP chains. IL-36 cytokines can direct both innate and adaptive immune responses by acting on parenchymal, stromal, and specific immune cell subsets. In humans, inactivating mutations in the gene encoding the IL-36R antagonist, which lead to unregulated IL-36R signaling, lead to an autoinflammatory condition termed deficiency of the IL-36R antagonist, which primarily manifests as a severe form of pustular psoriasis. While such discoveries have prompted deeper mechanistic studies highlighting the important role of IL-36 cytokines in psoriatic skin inflammation, it is now evident that IL-36 cytokines can also play important roles in inflammatory disorders in other organs, such as the gastrointestinal tract and the lungs. Given these emerging roles, strategies to specifically target the expression and activity of the IL-36 family have the potential to uncover novel therapeutic approaches aimed at treating inflammatory diseases in humans.
Collapse
Affiliation(s)
- Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87:37-45. [PMID: 27498604 DOI: 10.1016/j.cyto.2016.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy.
| | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| |
Collapse
|
15
|
Harakal J, Rival C, Qiao H, Tung KS. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis. THE JOURNAL OF IMMUNOLOGY 2016; 197:27-41. [PMID: 27259856 DOI: 10.4049/jimmunol.1502344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6-DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient regulatory T cell (Treg) depletion results in long-lasting AIG associated with both H(+)K(+)ATPase and intrinsic factor autoantibody responses. Although functional Tregs emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg-mediated suppression. Whereas previous studies have implicated dysregulated Th1 cell responses in AIG pathogenesis, eosinophils have been detected in gastric biopsy specimens from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 cell responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach-draining lymph nodes. In addition, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IFN regulatory factor 4(+) programmed death ligand 2(+) dendritic cells and ILT3(+) rebounded Tregs was detected after transient Treg depletion. Collectively, these data suggest that Tregs maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in AIG.
Collapse
Affiliation(s)
- Jessica Harakal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and
| | - Claudia Rival
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Hui Qiao
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Kenneth S Tung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
16
|
Feng W, Gu YF, Nie L, Guo DY, Xiang LX, Shao JZ. Characterization of SIGIRR/IL-1R8 Homolog from Zebrafish Provides New Insights into Its Inhibitory Role in Hepatic Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:151-67. [PMID: 27206770 DOI: 10.4049/jimmunol.1502334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
Single Ig IL-1R-related molecule (SIGIRR, also called IL-1R8 or Toll/IL-1R [TIR]8), a negative regulator for Toll/IL-1R signaling, plays critical roles in innate immunity and various diseases in mammals. However, the occurrence of this molecule in ancient vertebrates and its function in liver homeostasis and disorders remain poorly understood. In this study, we identified a SIGIRR homology from zebrafish (Danio rerio [DrSIGIRR]) by using a number of conserved structural and functional hallmarks to its mammalian counterparts. DrSIGIRR was highly expressed in the liver. Ablation of DrSIGIRR by lentivirus-delivered small interfering RNA in the liver significantly enhanced hepatic inflammation in response to polyinosinic-polycytidylic acid [poly(I:C)] stimulation, as shown by the upregulation of inflammatory cytokines and increased histological disorders. In contrast, depletion of TIR domain-containing adaptor inducing IFN-β (TRIF) or administration of TRIF signaling inhibitor extremely abrogated the poly(I:C)-induced hepatic inflammation. Aided by the zebrafish embryo model, overexpression of DrSIGIRR in vivo significantly inhibited the poly(I:C)- and TRIF-induced NF-κB activations; however, knockdown of DrSIGIRR promoted such activations. Furthermore, pull-down and Duolink in situ proximity ligation assay assays showed that DrSIGIRR can interact with the TRIF protein. Results suggest that DrSIGIRR plays an inhibitory role in TRIF-mediated inflammatory reactions by competitive recruitment of the TRIF adaptor protein from its TLR3/TLR22 receptor. To our knowledge, this study is the first to report a functional SIGIRR homolog that existed in a lower vertebrate. This molecule is essential to establish liver homeostasis under inflammatory stimuli. Overall, the results will enrich the current knowledge about SIGIRR-mediated immunity and disorders in the liver.
Collapse
Affiliation(s)
- Wei Feng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Yi-Feng Gu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Dong-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| |
Collapse
|
17
|
Molgora M, Barajon I, Mantovani A, Garlanda C. Regulatory Role of IL-1R8 in Immunity and Disease. Front Immunol 2016; 7:149. [PMID: 27148268 PMCID: PMC4837151 DOI: 10.3389/fimmu.2016.00149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1 receptor family members (ILRs) and toll-like receptors (TLRs) are characterized by the presence of a conserved intracellular domain and the toll-IL-1resistance (TIR) domain and are key players in immunity and inflammation. ILR and TLR signaling is tightly regulated at different levels. All cell types of the innate immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R8, also known as TIR8 or SIGIRR, is a fringe member of the ILR family and acts as a negative regulator of ILR and TLR signaling, which dampens ILR- and TLR-mediated cell activation. IL-1R8 is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R8, focusing on its role in different pathological conditions, ranging from infectious and sterile inflammation to autoimmunity and cancer-related inflammation.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| |
Collapse
|
18
|
Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 2015; 60:1-11. [DOI: 10.1016/j.jaut.2015.04.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/01/2023]
|
19
|
Diani M, Altomare G, Reali E. T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev 2014; 14:286-92. [PMID: 25445403 DOI: 10.1016/j.autrev.2014.11.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
According to the current view the histological features of psoriasis arise as a consequence of the interplay between T cells, dendritic cells and keratinocytes giving rise to a self-perpetuating loop that amplifies and sustains inflammation in lesional skin. In particular, myeloid dendritic cell secretion of IL-23 and IL-12 activates IL-17-producing T cells, Th22 and Th1 cells, leading to the production of inflammatory cytokines such as IL-17, IFN-γ, TNF and IL-22. These cytokines mediate effects on keratinocytes thus establishing the inflammatory loop. Unlike psoriasis the immunopathogenic features of psoriatic arthritis are poorly characterized and there is a gap in the knowledge of the pathogenic link between inflammatory T cell responses arising in the skin and the development of joint inflammation. Here we review the knowledge accumulated over the years from the early evidence of autoreactive CD8 T cells that was studied mainly in the years 1990s and 2000s to the recent findings of the role of Th17, Tc17 cells and γδ T cells in psoriatic disease pathogenesis. The review will also focus on common and distinguishing features of T cell responses in psoriatic plaques and in synovial fluid of patients with psoriatic arthritis. The integration of this information could help to distinguish the role played by T cells in the initiation phase of the disease from the role of T cells as downstream effectors sustaining inflammation in psoriatic plaques and potentially leading to disease manifestation in distant joints.
Collapse
Affiliation(s)
- Marco Diani
- I.R.C.C.S Istituto Ortopedico Galeazzi, Department of Dermatology and Venereology, Milan, Italy; University of Milan, Milan, Italy
| | - Gianfranco Altomare
- I.R.C.C.S Istituto Ortopedico Galeazzi, Department of Dermatology and Venereology, Milan, Italy; University of Milan, Milan, Italy
| | - Eva Reali
- I.R.C.C.S Istituto Ortopedico Galeazzi, Laboratory of Translational Immunology, Milan, Italy.
| |
Collapse
|
20
|
Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity 2014; 39:1003-18. [PMID: 24332029 DOI: 10.1016/j.immuni.2013.11.010] [Citation(s) in RCA: 1372] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
Interleukin-1 (IL-1) is a central mediator of innate immunity and inflammation. The IL-1 family includes seven ligands with agonist activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ), three receptor antagonists (IL-1Ra, IL-36Ra, IL-38), and an anti-inflammatory cytokine (IL-37). Members of the IL-1 Receptor (IL-1R) family include six receptor chains forming four signaling receptor complexes, two decoy receptors (IL-1R2, IL-18BP), and two negative regulators (TIR8 or SIGIRR, IL-1RAcPb). A tight regulation via receptor antagonists, decoy receptors, and signaling inhibitors ensures a balance between amplification of innate immunity and uncontrolled inflammation. All cells of the innate immune system express and/or are affected by IL-1 family members. Moreover, IL-1 family members play a key role in the differentiation and function of polarized innate and adaptive lymphoid cells. Here we will review the key properties of IL-1 family members, with emphasis on pathways of negative regulation and orchestration of innate and adaptive immunity.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Italy
| | - Charles A Dinarello
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen 6500 HC, The Netherlands
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Italy; BIOMETRA Department, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
21
|
Abstract
The IL-1 family of ligands and receptors has a central role in both innate and adaptive immune responses and is tightly controlled by antagonists, decoy receptors, scavengers, dominant negative molecules, miRNAs and other mechanisms, acting extracellularly or intracellularly. During evolution, the development of multiple mechanisms of negative regulation reveals the need for tight control of the biological consequences of IL-1 family ligands in order to balance local and systemic inflammation and limit immunopathology. Indeed, studies with gene targeted mice for negative regulators and genetic studies in humans provide evidence for their non-redundant role in controlling inflammation, tissue damage and adaptive responses. In addition, studies have revealed the need of negative regulation of the IL-1 family not only in disease, but also in homeostatic conditions. In this review, the negative regulation mediated by decoy receptors are presented and include IL-1R2 and IL-IL-18BP as well as atypical receptors, which include TIR8/SIGIRR, IL-1RAcPb, TIGIRR-1 and IL-1RAPL. Particular emphasis is given to IL-1R2, since its discovery is the basis for the formulation of the decoy paradigm, now considered a general strategy to counter the primary inflammatory activities of cytokines and chemokines. Emphasis is also given to TIR8, a prototypical negative regulatory receptor having non-redundant roles in limiting inflammation and adaptive responses.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy.
| | - Federica Riva
- Department of Veterinary Science and Public Health, University of Milan, Italy
| | - Eduardo Bonavita
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Rozzano (Milano), Italy
| |
Collapse
|