1
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
3
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
4
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Nango H, Ohtani M. S-1-propenyl-L-cysteine suppresses lipopolysaccharide-induced expression of matrix metalloproteinase-1 through inhibition of tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in human gingival fibroblasts. PLoS One 2023; 18:e0284713. [PMID: 37083725 PMCID: PMC10121056 DOI: 10.1371/journal.pone.0284713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Periodontal disease is the most common dental health problem characterized by the destruction of connective tissue and the resorption of alveolar bone resulting from a chronic infection associated with pathogenic bacteria in the gingiva. Aged garlic extract has been reported to improve gingival bleeding index and probing pocket depth score in patients with mild to moderate periodontitis. Although our previous study found that aged garlic extract and its constituents suppressed the tumor necrosis factor-α-induced inflammatory responses in a human gingival epithelial cell line, the mechanism underlying the effect of aged garlic extract on the destruction of the gingiva remains unclear. The present study investigated the effect of S-1-propenyl-L-cysteine, one of the major sulfur bioactive compounds in aged garlic extract, on the lipopolysaccharide-induced expression of matrix metalloproteinases in human gingival fibroblasts HGF-1 cells. Matrix metalloproteinases are well known to be closely related to the destruction of the gingiva. We found that S-1-propenyl-L-cysteine suppressed the lipopolysaccharide-induced expression and secretion of matrix metalloproteinase-1 in HGF-1 cells. In addition, S-1-propenyl-L-cysteine inhibited the lipopolysaccharide-induced phosphorylation of epidermal growth factor receptor and expression of the active form of tumor necrosis factor-α converting enzyme. Furthermore, the inhibitors of epidermal growth factor receptor tyrosine kinase and tumor necrosis factor-α converting enzyme, AG-1478 and TAPI-1, respectively, reduced the lipopolysaccharide-induced protein level of matrix metalloproteinase-1, as did S-1-propenyl-L-cysteine. Taken together, these results suggested that S-1-propenyl-L-cysteine suppresses the lipopolysaccharide-induced expression of matrix metalloproteinase-1 through the blockade of the tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in gingival fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| |
Collapse
|
6
|
Pseudomonas aeruginosa Alters Critical Lung Epithelial Cell Functions through Activation of ADAM17. Cells 2022; 11:cells11152303. [PMID: 35892600 PMCID: PMC9331763 DOI: 10.3390/cells11152303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Severe epithelial dysfunction is one major hallmark throughout the pathophysiological progress of bacterial pneumonia. Junctional and cellular adhesion molecules (e.g., JAMA-A, ICAM-1), cytokines (e.g., TNFα), and growth factors (e.g., TGFα), controlling proper lung barrier function and leukocyte recruitment, are proteolytically cleaved and released into the extracellular space through a disintegrin and metalloproteinase (ADAM) 17. In cell-based assays, we could show that the protein expression, maturation, and activation of ADAM17 is upregulated upon infection of lung epithelial cells with Pseudomonas aeruginosa and Exotoxin A (ExoA), without any impact of infection by Streptococcus pneumoniae. The characterization of released extracellular vesicles/exosomes and the comparison to heat-inactivated bacteria revealed that this increase occurred in a cell-associated and toxin-dependent manner. Pharmacological targeting and gene silencing of ADAM17 showed that its activation during infection with Pseudomonas aeruginosa was critical for the cleavage of junctional adhesion molecule A (JAM-A) and epithelial cell survival, both modulating barrier integrity, epithelial regeneration, leukocyte adhesion and transepithelial migration. Thus, site-specific targeting of ADAM17 or blockage of the activating toxins may constitute a novel anti-infective therapeutic option in Pseudomonas aeruginosa lung infection preventing severe epithelial and organ dysfunctions and stimulating future translational studies.
Collapse
|
7
|
Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A, Düsterhöft S. The collectrin-like part of the SARS-CoV-1 and -2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 2022; 36:e22234. [PMID: 35199397 PMCID: PMC9111296 DOI: 10.1096/fj.202101521r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS‐CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS‐CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9‐derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10‐ or ADAM17‐mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro‐inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10‐ and ADAM17‐mediated shedding is mediated by the collectrin‐like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.
Collapse
Affiliation(s)
- Rabea Victoria Niehues
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Wiersch
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lilienthal
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Higo H, Ohashi K, Tomida S, Okawa S, Yamamoto H, Sugimoto S, Senoo S, Makimoto G, Ninomiya K, Nakasuka T, Nishii K, Taniguchi A, Kubo T, Ichihara E, Hotta K, Miyahara N, Maeda Y, Toyooka S, Kiura K. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res 2022; 23:20. [PMID: 35130915 PMCID: PMC8822646 DOI: 10.1186/s12931-022-01940-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1–5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01940-y.
Collapse
Affiliation(s)
- Hisao Higo
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | | | - Satoru Senoo
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Go Makimoto
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
9
|
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Rev Physiol Biochem Pharmacol 2022; 184:159-179. [PMID: 35380274 DOI: 10.1007/112_2022_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary hypertension (PH) is a disease with high pulmonary arterial pressure, pulmonary vasoconstriction, pulmonary vascular remodeling, and microthrombosis in complex plexiform lesions, but it has been unclear of the exact mechanism of PH. A new understanding of the pathogenesis of PH is occurred and focused on the role of crosstalk between the cells on pulmonary vessels and pulmonary alveoli. It was found that the crosstalks among the endothelial cells, smooth muscle cells, fibroblasts, pericytes, alveolar epithelial cells, and macrophages play important roles in cell proliferation, migration, inflammation, and so on. Therefore, the heterogeneity of multiple pulmonary blood vessels and alveolar cells and tracking the transmitters of cell communication could be conducive to the further insights into the pathogenesis of PH to discover the potential therapeutic targets for PH.
Collapse
|
10
|
Kubo S, Fritz JM, Raquer-McKay HM, Kataria R, Vujkovic-Cvijin I, Al-Shaibi A, Yao Y, Zheng L, Zou J, Waldman AD, Jing X, Farley TK, Park AY, Oler AJ, Charles AK, Makhlouf M, AbouMoussa EH, Hasnah R, Saraiva LR, Ganesan S, Al-Subaiey AA, Matthews H, Flano E, Lee HH, Freeman AF, Sefer AP, Sayar E, Çakır E, Karakoc-Aydiner E, Baris S, Belkaid Y, Ozen A, Lo B, Lenardo MJ. Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nat Immunol 2022; 23:75-85. [PMID: 34937930 PMCID: PMC11060421 DOI: 10.1038/s41590-021-01093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.
Collapse
Affiliation(s)
- Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Cooley, LLP in Washington, Washington, DC, USA
| | - Hayley M Raquer-McKay
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rhea Kataria
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xinyi Jing
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Reem Hasnah
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- Monell Chemical Senses Center, Philadelphia, PA, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emilio Flano
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Hyun Hee Lee
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Asena Pınar Sefer
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ersin Sayar
- Department of Pediatric Gastroenterology, Altinbas University Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Erkan Çakır
- Division of Pediatric Pulmonology, Department of Pediatrics, Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Mansueto G, Di Napoli M, Campobasso CP, Slevin M. Pulmonary arterial hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis. Pathol Res Pract 2021; 225:153552. [PMID: 34352438 DOI: 10.1016/j.prp.2021.153552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by severe vascular remodelling, resulting in increased pulmonary vascular resistance with cardiac hypertrophy and heart failure. However, the diagnosis of PAH is often inaccurate. Many cases of PAH are incorrectly diagnosed or missed, and they are often associated with death. The aim of this study was to verify the morphological and histological criteria of fatal cases of PAH and evaluate the lymphocytic populations associated to lesions with reactive neo-angiogenesis. METHODS Pulmonary lung sections from 10 cases of sudden unexpected death (SUD) in the absence of previously diagnosed diseases and in an apparent state of well-being, with final histological post autopsy diagnosis of PAH were collected. The pathological findings were compared using ten controls from non-pathological lung from deaths from other causes. The autopsies included 4 males (40%) and 6 females (60%) with an average age of 52.1 ± 10.1 years. Sections stained with hematoxylin and eosin (H&E) were revised for a morphological diagnosis. Subsequently, serial sections were performed and stained with immunohistochemistry for anti-CD20 (B-lymphocytes), anti-CD3 (T-lymphocytes), anti-CD4 (T-helper lumphocytes), anti-CD8 (T-cytotoxic lymphocytes) and anti-CD117/C-Kit (mast cells/MCs) to detect inflammatory infiltrate and different ratios of cell-type. Statistical analysis was conducted using a paired t-test looking at 100 cells in 3 different tissue samples representative of vascular lesion and 3 different random normal lung parenchyma fields without lesion (from 10 normal control lungs), to identify specific lymphocyte subpopulations in inflammatory infiltrates. RESULTS There was a significant percentage increase of CD20 (p < 0.001), CD8 (p = 0.002), CD4 (p < 0.001), and CD117/C-Kit positive (C-Kit+; p < 0.001) cells mainly detected around wall vessels; while increased MCs positivity and C-Kit+ were observed especially in alveolar septa. In addition, reactive angiomatosis was observed. CONCLUSIONS The inflammatory infiltrate should be included for a correct diagnosis of PAH besides the vascular remodelling. The inflammatory infiltrate seems to be implicated as a main factor in the pathogenesis. This finding is important to rule out secondary pulmonary hypertension, to identify SUDs of unknown causes and to add new elements to the literature that can explain the immunologically related pathogenesis of PAH.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Department of Advanced Medical and SurgicalSciences, University of Campania "Luigi Vanvitelli"; Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100 Sulmona, 67039 L'Aquila, Italy.
| | - Carlo Pietro Campobasso
- Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Mark Slevin
- Departmentof Life Sciences Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; University of Medicine and Pharmacy, Scienceand Technology, W1G 7ET Târgu Mures, Romania.
| |
Collapse
|
12
|
Hu Y, Chi L, Kuebler WM, Goldenberg NM. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020; 9:cells9112338. [PMID: 33105588 PMCID: PMC7690279 DOI: 10.3390/cells9112338] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular inflammation is a prominent pathologic feature in most animal models of pulmonary hypertension (PH) as well as in pulmonary arterial hypertension (PAH) patients. Accumulating evidence suggests a functional role of perivascular inflammation in the initiation and/or progression of PAH and pulmonary vascular remodeling. High levels of cytokines, chemokines, and inflammatory mediators can be detected in PAH patients and correlate with clinical outcome. Similarly, multiple immune cells, including neutrophils, macrophages, dendritic cells, mast cells, T lymphocytes, and B lymphocytes characteristically accumulate around pulmonary vessels in PAH. Concomitantly, vascular and parenchymal cells including endothelial cells, smooth muscle cells, and fibroblasts change their phenotype, resulting in altered sensitivity to inflammatory triggers and their enhanced capacity to stage inflammatory responses themselves, as well as the active secretion of cytokines and chemokines. The growing recognition of the interaction between inflammatory cells, vascular cells, and inflammatory mediators may provide important clues for the development of novel, safe, and effective immunotargeted therapies in PAH.
Collapse
Affiliation(s)
- Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Leon Chi
- Department of Physiology, University of Toronto, Toronto, ON M5B1W8, Canada;
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON M5B1W8, Canada
- Institute of Physiology, Charité Universitäts Medizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-501
| | - Neil M. Goldenberg
- Departments of Physiology and Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1W8, Canada;
- Department of Anesthesia and Pain Medicine, Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5B1W8, Canada
| |
Collapse
|
13
|
Seifert A, Wozniak J, Düsterhöft S, Kasparek P, Sedlacek R, Dreschers S, Orlikowsky TW, Yildiz D, Ludwig A. The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner. Int J Mol Sci 2020; 21:ijms21175978. [PMID: 32825187 PMCID: PMC7503280 DOI: 10.3390/ijms21175978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Uptake of bacteria by phagocytes is a crucial step in innate immune defence. Members of the disintegrin and metalloproteinase (ADAM) family critically control the immune response by limited proteolysis of surface expressed mediator molecules. Here, we investigated the significance of ADAM17 and its regulatory adapter molecule iRhom2 for bacterial uptake by phagocytes. Inhibition of metalloproteinase activity led to increased phagocytosis of pHrodo labelled Gram-negative and -positive bacteria (E. coli and S. aureus, respectively) by human and murine monocytic cell lines or primary phagocytes. Bone marrow-derived macrophages showed enhanced uptake of heat-inactivated and living E. coli when they lacked either ADAM17 or iRhom2 but not upon ADAM10-deficiency. In monocytic THP-1 cells, corresponding short hairpin RNA (shRNA)-mediated knockdown confirmed that ADAM17, but not ADAM10, promoted phagocytosis of E. coli. The augmented bacterial uptake occurred in a cell autonomous manner and was accompanied by increased release of the chemokine CXCL8, less TNFα release and only minimal changes in the surface expression of the receptors TNFR1, TLR6 and CD36. Inhibition experiments indicated that the enhanced bacterial phagocytosis after ADAM17 knockdown was partially dependent on TNFα-activity but not on CXCL8. This novel role of ADAM17 in bacterial uptake needs to be considered in the development of ADAM17 inhibitors as therapeutics.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Stephan Dreschers
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Thorsten W. Orlikowsky
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, 66424 Homburg, Germany
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| |
Collapse
|
14
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
15
|
Dreymueller D, Pruessmeyer J, Schumacher J, Fellendorf S, Hess FM, Seifert A, Babendreyer A, Bartsch JW, Ludwig A. The metalloproteinase ADAM8 promotes leukocyte recruitment in vitro and in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L602-L614. [PMID: 28596294 DOI: 10.1152/ajplung.00444.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Alveolar leukocyte recruitment is a hallmark of acute lung inflammation and involves transmigration of leukocytes through endothelial and epithelial layers. The disintegrin and metalloproteinase (ADAM) 8 is expressed on human isolated leukocytic cells and can be further upregulated on cultured endothelial and epithelial cells by proinflammatory cytokines. By shRNA-mediated knockdown we show that leukocytic ADAM8 is required on monocytic THP-1 cells for chemokine-induced chemotaxis as well as transendothelial and transepithelial migration. Furthermore, ADAM8 promotes αL-integrin upregulation and THP-1 cell adhesion to endothelial cells. On endothelial cells ADAM8 enhances transendothelial migration and increases cytokine-induced permeability. On epithelial cells the protease facilitates migration in a wound closure assay but does not affect transepithelial leukocyte migration. Blood leukocytes and bone marrow-derived macrophages (BMDM) from ADAM8-deficient mice show suppressed chemotactic response. Intranasal application of LPS to mice is accompanied with ADAM8 upregulation in the lung. In this model of acute lung inflammation ADAM8-deficient mice are protected against leukocyte infiltration. Finally, transfer experiments of BMDM in mice indicate that ADAM8 exerts a promigratory function predominantly on leukocytes. Our study provides in vitro and in vivo evidence that ADAM8 on leukocytes holds a proinflammatory function in acute lung inflammation by promoting alveolar leukocyte recruitment.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Sandra Fellendorf
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Franz Martin Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, University Hospital Marburg, Marburg, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| |
Collapse
|
16
|
YANG ZHAI, JIANG QIONG, CHEN SHUANGXI, HU CHENGLIANG, SHEN HUIFAN, HUANG PEIZHI, XU JUNPING, MEI JINPING, ZHANG BENPING, ZHAO WEIJIANG. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep 2016; 14:790-6. [PMID: 27220549 PMCID: PMC4918623 DOI: 10.3892/mmr.2016.5325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Neuregulin 1 (Nrg1) is involved in multiple biological processes in the nervous system. The present study investigated changes in Nrg1 signaling in the major brain regions of mice subjected to lipopolysaccharide (LPS)-induced neuroinflammation. At 24 h post‑intraperitoneal injection of LPS, mouse brain tissues, including tissues from the cortex, striatum, hippocampus and hypothalamus, were collected. Reverse transcription‑polymerase chain reaction was used to determine the expression of Nrg1 and its receptors, Neu and ErbB4, at the mRNA level. Western blotting was performed to determine the levels of these proteins and the protein levels of phosphorylated extracellular signal-regulated kinases (Erk)1/2 and Akt1. Immunohistochemical staining was utilized to detect the levels of pNeu and pErbB4 in these regions. LPS successfully induced sites of neuroinflammation in these regions, in which changes in Nrg1, Neu and ErbB4 at the mRNA and protein levels were identified compared with controls. LPS induced a reduction in pNeu and pErbB4 in the striatum and hypothalamus, although marginally increased pErbB4 levels were found in the hippocampus. LPS increased the overall phosphorylation of Src but this effect was reduced in the hypothalamus. Moreover, increased phosphorylation of Akt1 was found in the striatum and hippocampus. These data suggest diverse roles for Nrg1 signaling in these regions during the process of neuroinflammation.
Collapse
Affiliation(s)
- ZHAI YANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - QIONG JIANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - SHUANG-XI CHEN
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - CHENG-LIANG HU
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - HUI-FAN SHEN
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - PEI-ZHI HUANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JUN-PING XU
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JIN-PING MEI
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - BEN-PING ZHANG
- Department of Neurology, The 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - WEI-JIANG ZHAO
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Wei-Jiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
17
|
Dreymueller D, Goetzenich A, Emontzpohl C, Soppert J, Ludwig A, Stoppe C. The perioperative time course and clinical significance of the chemokine CXCL16 in patients undergoing cardiac surgery. J Cell Mol Med 2015; 20:104-15. [PMID: 26499307 PMCID: PMC4717864 DOI: 10.1111/jcmm.12708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/01/2015] [Indexed: 02/03/2023] Open
Abstract
The chemokine CXCL16 and its receptor CXCR6 have been linked to the pathogenesis of acute and chronic cardiovascular disease. However, data on the clinical significance of CXCL16 in patients undergoing cardiac surgery with acute myocardial ischemia/reperfusion (I/R) are still lacking. Therefore, we determined CXCL16 in the serum of cardiac surgery patients and investigated its kinetics and association with the extent of organ dysfunction. 48 patients underwent conventional cardiac surgery with myocardial I/R and the use of cardiopulmonary bypass (CPB) were consecutively enrolled in the present study. We investigated the peri‐ and post‐operative profile of CXCL16. Clinical relevant data were assessed and documented throughout the entire observation period. To identify the influence of myocardial I/R and CPB on CXCL16 release data were compared to those received from patients that underwent off‐pump procedure. Pre‐operative serum CXCL16 levels were comparable to those obtained from healthy volunteers (1174 ± 55.64 pg/ml versus 1225 ± 70.94). However, CXCL16 levels significantly increased during surgery (1174 ± 55.64 versus 1442 ± 75.42 pg/ml; P = 0.0057) and reached maximum levels 6 hrs after termination of surgery (1174 ± 55.64 versus 1648 ± 74.71 pg/ml; P < 0.001). We revealed a positive correlation between the intraoperative serum levels of CXCL16 and the extent of organ dysfunction (r2 = 0.356; P = 0.031). Patients with high CXCL16 release showed an increased extent of organ dysfunction compared to patients with low CXCL16 release. Our study shows that CXCL16 is released into the circulation as a result of cardiac surgery and that high post‐operative CXCL16 levels are associated with an increased severity of post‐operative organ dysfunctions.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Goetzenich
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christoph Emontzpohl
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Josefin Soppert
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany.,Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany.,Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Knapinska AM, Dreymuller D, Ludwig A, Smith L, Golubkov V, Sohail A, Fridman R, Giulianotti M, LaVoi TM, Houghten RA, Fields GB, Minond D. SAR Studies of Exosite-Binding Substrate-Selective Inhibitors of A Disintegrin And Metalloprotease 17 (ADAM17) and Application as Selective in Vitro Probes. J Med Chem 2015; 58:5808-24. [PMID: 26192023 DOI: 10.1021/acs.jmedchem.5b00354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J. Biol. Chem. 2013, 288, 22871). As a result of SAR studies presented herein, we obtained several highly selective ADAM17 inhibitors, six of which were further characterized in biochemical and cell-based assays. Lead compounds exhibited low cellular toxicity and high potency and selectivity for ADAM17. In addition, several of the leads inhibited ADAM17 in a substrate-selective manner, which has not been previously documented for inhibitors of the ADAM family. These findings suggest that targeting exosites of ADAM17 can be used to obtain highly desirable substrate-selective inhibitors. Additionally, current inhibitors can be used as probes of biological activity of ADAM17 in various in vitro and, potentially, in vivo systems.
Collapse
Affiliation(s)
- Anna M Knapinska
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Daniela Dreymuller
- ⊥Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Andreas Ludwig
- ⊥Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Lyndsay Smith
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Vladislav Golubkov
- ‡Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anjum Sohail
- §Wayne State University, 8200 Scott Hall, 540 East Canfield Avenue, Detroit, Michigan 48201, United States
| | - Rafael Fridman
- §Wayne State University, 8200 Scott Hall, 540 East Canfield Avenue, Detroit, Michigan 48201, United States
| | - Marc Giulianotti
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,∇Department of Chemistry, Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33612, United States
| | - Travis M LaVoi
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregg B Fields
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,#The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Dmitriy Minond
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
19
|
Paricalcitol Inhibits Aldosterone-Induced Proinflammatory Factors by Modulating Epidermal Growth Factor Receptor Pathway in Cultured Tubular Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:783538. [PMID: 26064952 PMCID: PMC4438184 DOI: 10.1155/2015/783538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/11/2015] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease is characterized by Vitamin D deficiency and activation of the renin-angiotensin-aldosterone system. Increasing data show that vitamin D receptor agonists (VDRAs) exert beneficial effects in renal disease and possess anti-inflammatory properties, but the underlying mechanism remains unknown. Emerging evidence suggests that "a disintegrin and metalloproteinase" (ADAM)/epidermal growth factor receptor (EGFR) signalling axis contributes to renal damage. Aldosterone induces EGFR transactivation regulating several processes including cell proliferation and fibrosis. However, data on tubular epithelial cells is scarce. We have found that, in cultured tubular epithelial cells, aldosterone induced EGFR transactivation via TGF-α/ADAM17. Blockade of the TGF-α/ADAM17/EGFR pathway inhibited aldosterone-induced proinflammatory gene upregulation. Moreover, among the potential downstream mechanisms, we found that TGF-α/ADAM17/EGFR inhibition blocked ERK and STAT-1 activation in response to aldosterone. Next, we investigated the involvement of TGF-α/ADAM17/EGFR axis in VDRA anti-inflammatory effects. Preincubation with the VDRA paricalcitol inhibited aldosterone-induced EGFR transactivation, TGF-α/ADAM-17 gene upregulation, and downstream mechanisms, including proinflammatory factors overexpression. In conclusion, our data suggest that the anti-inflammatory actions of paricalcitol in tubular cells could depend on the inhibition of TGF-α/ADAM17/EGFR pathway in response to aldosterone, showing an important mechanism of VDRAs action.
Collapse
|
20
|
Huertas A, Tu L, Thuillet R, Le Hiress M, Phan C, Ricard N, Nadaud S, Fadel E, Humbert M, Guignabert C. Leptin signalling system as a target for pulmonary arterial hypertension therapy. Eur Respir J 2015; 45:1066-80. [DOI: 10.1183/09031936.00193014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Excessive proliferation of pulmonary arterial smooth muscle cells (PA-SMCs) and perivascular inflammation lead to pulmonary arterial hypertension (PAH) progression, but they are not specifically targeted by the current therapies. Since leptin (Ob) and its main receptor ObR-b contribute to systemic vascular cell proliferation and inflammation, we questioned whether targeting Ob/ObR-b axis would be an effective antiproliferative and anti-inflammatory strategy against PAH.In idiopathic PAH (iPAH), using human lung tissues and primary cell cultures (early passages ≤5), we demonstrate that pulmonary endothelial cells (P-ECs) over produce Ob and that PA-SMCs overexpress ObR-b. Furthermore, we obtain evidence that Ob enhances proliferation of human PA-SMCs in vitro and increases right ventricular systolic pressure in Ob-treated mice in the chronic hypoxia-induced pulmonary hypertension (PH) model. Using human cells, we also show that Ob leads to monocyte activation and increases cell adhesion molecule expression levels in P-ECs. We also find that Ob/ObR-b axis contributes to PH susceptibility by using ObR-deficient rats, which display less severe hypoxia-induced PH (pulmonary haemodynamics, arterial muscularisation, PA-SMC proliferation and perivascular inflammation). Importantly, we demonstrate the efficacy of two curative strategies using a soluble Ob neutraliser and dichloroacetate in hypoxia-induced PH.We demonstrate here that Ob/ObR-b axis may represent anti-proliferative and anti-inflammatory targets in PAH.
Collapse
|
21
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014; 146:1081-1091. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Cory M Yamashita
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO; Immunology, University of Colorado Denver, Aurora, CO.
| |
Collapse
|