1
|
Desalegn G, Tamilselvi CS, Lemme-Dumit JM, Heine SJ, Dunn D, Ndungo E, Kapoor N, Oaks EV, Fairman J, Pasetti MF. Shigella virulence protein VirG is a broadly protective antigen and vaccine candidate. NPJ Vaccines 2024; 9:2. [PMID: 38167387 PMCID: PMC10761965 DOI: 10.1038/s41541-023-00797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Diarrhea caused by Shigella has been associated with high morbidity and mortality in young children worldwide. There are no licensed vaccines, and those clinically advanced have restricted coverage as they elicit serotype-specific immunity while disease is caused by multiple circulating serotypes. Our group had previously reported a close association between serum antibodies to the Shigella virulence factor VirG (or IcsA) and clinical protection in infected individuals. VirG is highly conserved among Shigella strains and appealing as a broad-spectrum vaccine candidate. In this study, we investigated the immunogenicity and protective capacity of VirG as a subunit vaccine in mice. The surface-exposed alpha (α) domain of VirG (VirGα) was produced as a recombinant protein. This region has almost identical immune reactivity to full-length VirG. Administered intramuscularly with alum, VirGα elicited robust immune responses and high protective efficacy against S. flexneri 2a and S. sonnei. Almost complete protection was afforded by VirGα given intranasally with the E. coli double mutant heat-labile toxin (dmLT). VirGα-specific antibodies recognized VirG expressed on live Shigella, and blocked Shigella adhesion and invasion to human colonic cells. These results show for the first time that VirGα is a promising cross-protective vaccine candidate to prevent Shigella infection.
Collapse
Affiliation(s)
- Girmay Desalegn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Chitradevi S Tamilselvi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jose M Lemme-Dumit
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Shannon J Heine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Dylan Dunn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Neeraj Kapoor
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Edwin V Oaks
- Patuxent Research and Consulting Group, 3106 Arrowhead Farm Rd, Gambrills, MD, 21054, USA
| | - Jeff Fairman
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Pastor Y, Calvo A, Salvador-Erro J, Gamazo C. Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice. Int J Mol Sci 2023; 24:16910. [PMID: 38069232 PMCID: PMC10706920 DOI: 10.3390/ijms242316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge.
Collapse
Affiliation(s)
| | | | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (Y.P.); (A.C.); (J.S.-E.)
| |
Collapse
|
3
|
Li S, Anvari S, Ptacek G, Upadhyay I, Kaminski RW, Sack DA, Zhang W. A broadly immunogenic polyvalent Shigella multiepitope fusion antigen protein protects against Shigella sonnei and Shigella flexneri lethal pulmonary challenges in mice. Infect Immun 2023; 91:e0031623. [PMID: 37795982 PMCID: PMC10652900 DOI: 10.1128/iai.00316-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shaghayegh Anvari
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Galen Ptacek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert W. Kaminski
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Yang YS, Lin C, Ma H, Xie J, Kaplan FS, Gao G, Shim JH. AAV-Mediated Targeting of the Activin A-ACVR1 R206H Signaling in Fibrodysplasia Ossificans Progressiva. Biomolecules 2023; 13:1364. [PMID: 37759764 PMCID: PMC10526456 DOI: 10.3390/biom13091364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H (Acvr1R206H/+) while limiting the expression in non-skeletal organs such as the brain, heart, lung, liver, and kidney. AAV gene therapy carrying the combination of codon-optimized human ACVR1 (ACVR1opt) and artificial miRNAs targeting Activin A and its receptor ACVR1R206H ablated the aberrant activation of BMP-Smad1/5 signaling and the osteogenic differentiation of Acvr1R206H/+ skeletal progenitors. The local delivery of AAV gene therapy to HO-causing cells in the skeletal muscle resulted in a significant decrease in endochondral bone formation in Acvr1R206H/+ mice. These mice showed little to no expression in a major AAV-targeted organ, the liver, due to liver-abundant miR-122-mediated repression. Thus, AAV gene therapy is a promising therapeutic strategy to explore in suppressing HO in FOP.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
| | - Chujiao Lin
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
5
|
Lu T, Das S, Howlader DR, Jain A, Hu G, Dietz ZK, Zheng Q, Ratnakaram SSK, Whittier SK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Impact of the TLR4 agonist BECC438 on a novel vaccine formulation against Shigella spp. Front Immunol 2023; 14:1194912. [PMID: 37744341 PMCID: PMC10512073 DOI: 10.3389/fimmu.2023.1194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Shigellosis (bacillary dysentery) is a severe gastrointestinal infection with a global incidence of 90 million cases annually. Despite the severity of this disease, there is currently no licensed vaccine against shigellosis. Shigella's primary virulence factor is its type III secretion system (T3SS), which is a specialized nanomachine used to manipulate host cells. A fusion of T3SS injectisome needle tip protein IpaD and translocator protein IpaB, termed DBF, when admixed with the mucosal adjuvant double-mutant labile toxin (dmLT) from enterotoxigenic E. coli was protective using a murine pulmonary model. To facilitate the production of this platform, a recombinant protein that consisted of LTA-1, the active moiety of dmLT, and DBF were genetically fused, resulting in L-DBF, which showed improved protection against Shigella challenge. To extrapolate this protection from mice to humans, we modified the formulation to provide for a multivalent presentation with the addition of an adjuvant approved for use in human vaccines. Here, we show that L-DBF formulated (admix) with a newly developed TLR4 agonist called BECC438 (a detoxified lipid A analog identified as Bacterial Enzymatic Combinatorial Chemistry candidate #438), formulated as an oil-in-water emulsion, has a very high protective efficacy at low antigen doses against lethal Shigella challenge in our mouse model. Optimal protection was observed when this formulation was introduced at a mucosal site (intranasally). When the formulation was then evaluated for the immune response it elicits, protection appeared to correlate with high IFN-γ and IL-17 secretion from mucosal site lymphocytes.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Kelly M, Mandlik A, Charles RC, Verma S, Calderwood SB, Leung DT, Biswas R, Islam K, Kamruzzaman M, Chowdhury F, Khanam F, Vann WF, Khan AI, Bhuiyan TR, Qadri F, Vortherms AR, Kaminski R, Kováč P, Xu P, Ryan ET. Development of Shigella conjugate vaccines targeting Shigella flexneri 2a and S. flexneri 3a using a simple platform-approach conjugation by squaric acid chemistry. Vaccine 2023; 41:4967-4977. [PMID: 37400283 PMCID: PMC10529421 DOI: 10.1016/j.vaccine.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
| | - Rajib Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kamrul Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anthony R Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Robert Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
7
|
Morici LA, McLachlan JB. Non-mucosal vaccination strategies to enhance mucosal immunity. VACCINE INSIGHTS 2023; 2:229-236. [PMID: 37881504 PMCID: PMC10599649 DOI: 10.18609/vac.2023.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for improved vaccines that can elicit long-lasting mucosal immunity. Although mucosal delivery of vaccines represents a plausible method to enhance mucosal immunity, recent studies utilizing intradermal vaccine delivery or incorporation of unique adjuvants suggest that mucosal immunity may be achieved by vaccination via non-mucosal routes. In this expert insight, we highlight emerging evidence from pre-clinical studies that warrant further mechanistic investigation to improve next-generation vaccines against mucosal pathogens, especially those with pandemic potential.
Collapse
Affiliation(s)
- Lisa A Morici
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| | - James B McLachlan
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| |
Collapse
|
8
|
Prior JT, Limbert VM, Horowitz RM, D'Souza SJ, Bachnak L, Godwin MS, Bauer DL, Harrell JE, Morici LA, Taylor JJ, McLachlan JB. Establishment of isotype-switched, antigen-specific B cells in multiple mucosal tissues using non-mucosal immunization. NPJ Vaccines 2023; 8:80. [PMID: 37258506 PMCID: PMC10231862 DOI: 10.1038/s41541-023-00677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer's patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer's patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.
Collapse
Affiliation(s)
- John T Prior
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew S Godwin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
9
|
Stone AE, Rambaran S, Trinh IV, Estrada M, Jarand CW, Williams BS, Murrell AE, Huerter CM, Bai W, Palani S, Nakanishi Y, Laird RM, Poly FM, Reed WF, White JA, Norton EB. Route and antigen shape immunity to dmLT-adjuvanted vaccines to a greater extent than biochemical stress or formulation excipients. Vaccine 2023; 41:1589-1601. [PMID: 36732163 PMCID: PMC10308557 DOI: 10.1016/j.vaccine.2023.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
A key aspect to vaccine efficacy is formulation stability. Biochemical evaluations provide information on optimal compositions or thermal stability but are routinely validated by ex vivo analysis and not efficacy in animal models. Here we assessed formulations identified to improve or reduce stability of the mucosal adjuvant dmLT being investigated in polio and enterotoxigenic E. coli (ETEC) clinical vaccines. We observed biochemical changes to dmLT protein with formulation or thermal stress, including aggregation or subunit dissociation or alternatively resistance against these changes with specific buffer compositions. However, upon injection or mucosal vaccination with ETEC fimbriae adhesin proteins or inactivated polio virus, experimental findings indicated immunization route and co-administered antigen impacted vaccine immunogenicity more so than dmLT formulation stability (or instability). These results indicate the importance of both biochemical and vaccine-derived immunity assessment in formulation optimization. In addition, these studies have implications for use of dmLT in clinical settings and for delivery in resource poor settings.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Saraswatie Rambaran
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ivy V Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Curtis W Jarand
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Blake S Williams
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amelie E Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chelsea M Huerter
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Bai
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Surya Palani
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA; Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frederic M Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
10
|
Yang YS, Kim JM, Xie J, Chaugule S, Lin C, Ma H, Hsiao E, Hong J, Chun H, Shore EM, Kaplan FS, Gao G, Shim JH. Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery. Nat Commun 2022; 13:6175. [PMID: 36258013 PMCID: PMC9579182 DOI: 10.1038/s41467-022-33956-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jung-Min Kim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Hong Ma
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Edward Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine; the Institute for Human Genetics; the Program in Craniofacial Biology; and the Eli and Edyth Broad Institute of Regeneration Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Li S, Han X, Upadhyay I, Zhang W. Characterization of Functional B-Cell Epitopes at the Amino Terminus of Shigella Invasion Plasmid Antigen B (IpaB). Appl Environ Microbiol 2022; 88:e0038422. [PMID: 35856689 PMCID: PMC9361828 DOI: 10.1128/aem.00384-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023] Open
Abstract
Shigella invasion plasmid antigen B (IpaB) plays an important role in causing shigellosis. While IpaB's protein structure, contribution to disease mechanism, and protective immunity against Shigella infection have been well studied, the significance of individual antigenic domains, especially at the N terminus, has not been systematically characterized. In an attempt to identify IpaB protein functional epitopes and to construct an optimized polyvalent multiepitope fusion antigen (MEFA) immunogen for development of a protein-based cross protective Shigella vaccine, in this study, we in silico identified immunodominant B-cell epitopes from the IpaB N terminus, fused each epitope to carrier protein CsaB (the major subunit of enterotoxigenic Escherichia coli CS4 adhesin) for epitope fusion proteins, immunized mice with each epitope fusion protein, examined IpaB-specific antibody responses, and assessed antibody functional activity against Shigella bacterial invasion. A total of 10 B-cell continuous epitopes were identified from IpaB N terminus, and after being fused to carrier protein CsaB, each epitope induced anti-IpaB IgG responses in the intramuscularly immunized mice. While in vitro antibody invasion inhibition assays demonstrated that antibodies derived from each identified epitope were functional, epitopes 1 (LAKILASTELGDNTIQAA), 2 (HSTSNILIPELKAPKSL), and 4 (QARQQKNLEFSDKI) induced antibodies to inhibit Shigella sonnei and Shigella flexneri invasion at levels similar to those of recombinant IpaB protein, suggesting that these three IpaB epitopes can be used potentially as IpaB-representing antigens to induce protective anti-IpaB antibodies and for construction of an epitope-based polyvalent MEFA protein immunogen for Shigella vaccine development. IMPORTANCE Currently, there are no effective measures for control or prevention of Shigella infection, the most common cause of diarrhea in children 3 to 5 years of age in developing countries. Challenges in developing Shigella vaccines include virulence heterogeneity among species and serotypes. To overcome virulence heterogeneity challenge and to develop a protein-based multivalent Shigella vaccine, we targeted a panel of virulence factors, including invasion plasmid antigens, identified functional antigenic domains or epitopes as representative antigens, and applied the novel epitope- and structure-based vaccinology platform multiepitope fusion antigen (MEFA) to integrate functional antigenic domains or epitopes into a backbone immunogen to produce a polyvalent immunogen for cross protective antibodies. Identification of functional IpaB epitopes from this study enhances our understanding of IpaB immunogenicity and allows us to directly utilize IpaB epitopes for construction of a cross protective polyvalent Shigella immunogen and to accelerate development of a protein-based Shigella vaccine.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Xinfeng Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Sichuan Agricultural University College of Veterinary Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Efficient production of immunologically active Shigella invasion plasmid antigens IpaB and IpaH using a cell-free expression system. Appl Microbiol Biotechnol 2021; 106:401-414. [PMID: 34932164 PMCID: PMC8688910 DOI: 10.1007/s00253-021-11701-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Abstract Shigella spp. invade the colonic epithelium and cause bacillary dysentery in humans. Individuals living in areas that lack access to clean water and sanitation are the most affected. Even though infection can be treated with antibiotics, Shigella antimicrobial drug resistance complicates clinical management. Despite decades of effort, there are no licensed vaccines to prevent shigellosis. The highly conserved invasion plasmid antigens (Ipa), which are components of the Shigella type III secretion system, participate in bacterial epithelial cell invasion and have been pursued as vaccine targets. However, expression and purification of these proteins in conventional cell-based systems have been challenging due to solubility issues and extremely low recovery yields. These difficulties have impeded manufacturing and clinical advancement. In this study, we describe a new method to express Ipa proteins using the Xpress+TM cell-free protein synthesis (CFPS) platform. Both IpaB and the C-terminal domain of IpaH1.4 (IpaH-CTD) were efficiently produced with this technology at yields > 200 mg/L. Furthermore, the expression was linearly scaled in a bioreactor under controlled conditions, and proteins were successfully purified using multimode column chromatography to > 95% purity as determined by SDS-PAGE. Biophysical characterization of the cell-free synthetized IpaB and IpaH-CTD using SEC-MALS analysis showed well-defined oligomeric states of the proteins in solution. Functional analysis revealed similar immunoreactivity as compared to antigens purified from E. coli. These results demonstrate the efficiency of CFPS for Shigella protein production; the practicality and scalability of this method will facilitate production of antigens for Shigella vaccine development and immunological analysis. Key points • First report of Shigella IpaB and IpaH produced at high purity and yield using CFPS • CFPS-IpaB and IpaH perform similarly to E. coli–produced proteins in immunoassays • CFPS-IpaB and IpaH react with Shigella-specific human antibodies and are immunogenic in mice. Graphical abstract ![]()
Collapse
|
13
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
14
|
Ndungo E, Andronescu LR, Buchwald AG, Lemme-Dumit JM, Mawindo P, Kapoor N, Fairman J, Laufer MK, Pasetti MF. Repertoire of Naturally Acquired Maternal Antibodies Transferred to Infants for Protection Against Shigellosis. Front Immunol 2021; 12:725129. [PMID: 34721387 PMCID: PMC8554191 DOI: 10.3389/fimmu.2021.725129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Shigella is the second leading cause of diarrheal diseases, accounting for >200,000 infections and >50,000 deaths in children under 5 years of age annually worldwide. The incidence of Shigella-induced diarrhea is relatively low during the first year of life and increases substantially, reaching its peak between 11 to 24 months of age. This epidemiological trend hints at an early protective immunity of maternal origin and an increase in disease incidence when maternally acquired immunity wanes. The magnitude, type, antigenic diversity, and antimicrobial activity of maternal antibodies transferred via placenta that can prevent shigellosis during early infancy are not known. To address this knowledge gap, Shigella-specific antibodies directed against the lipopolysaccharide (LPS) and virulence factors (IpaB, IpaC, IpaD, IpaH, and VirG), and antibody-mediated serum bactericidal (SBA) and opsonophagocytic killing antibody (OPKA) activity were measured in maternal and cord blood sera from a longitudinal cohort of mother-infant pairs living in rural Malawi. Protein-specific (very high levels) and Shigella LPS IgG were detected in maternal and cord blood sera; efficiency of placental transfer was 100% and 60%, respectively, and had preferential IgG subclass distribution (protein-specific IgG1 > LPS-specific IgG2). In contrast, SBA and OPKA activity in cord blood was substantially lower as compared to maternal serum and varied among Shigella serotypes. LPS was identified as the primary target of SBA and OPKA activity. Maternal sera had remarkably elevated Shigella flexneri 2a LPS IgM, indicative of recent exposure. Our study revealed a broad repertoire of maternally acquired antibodies in infants living in a Shigella-endemic region and highlights the abundance of protein-specific antibodies and their likely contribution to disease prevention during the first months of life. These results contribute new knowledge on maternal infant immunity and target antigens that can inform the development of vaccines or therapeutics that can extend protection after maternally transferred immunity wanes.
Collapse
Affiliation(s)
- Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Liana R. Andronescu
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea G. Buchwald
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Patricia Mawindo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | | - Miriam K. Laufer
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Felegary A, Nazarian S, Kordbacheh E, Fathi J, Minae ME. An approach to chimeric subunit immunogen provides efficient protection against toxicity, type III and type v secretion systems of Shigella. Int Immunopharmacol 2021; 100:108132. [PMID: 34508943 DOI: 10.1016/j.intimp.2021.108132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Shigellosis is one of the infectious diseases causing severe intestinal illness in human beings. Development of an effective vaccine against Shigella is a key to deal with this bacterium. The present study aimed at evaluation of the antibody response as well as the protection of the recombinant chimeric protein containing IpaD, IpaB, StxB, and VirG against Shigella dysentery and flexneri. METHODS Chimeric protein was expressed and purified by Ni-NTA resin. The identity of the protein was determined by Western blot analysis. Mouse groups were immunized with the recombinant protein and the humoral immune response was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, neutralization of the bacterial toxin by antibody was assessed by MTT assay. Animal challenge against S.dysentery and S. flexneri was evaluated, as well. RESULTS Protein expression and purification were confirmed by SDS-PAGE and western blotting. Analysis of the immune responses demonstrated that the antibody responses were higher in the sera of the subcutaneously immunized mice compared to those immunized intraperitoneally. In vitro neutralization analysis indicated that the 1:10000 dilution of the sera had a high ability to neutralize 0.25 ng/µl (CD50) of the toxin on the Vero cell line. Furthermore, the results of the animal challenge showed that the immunized mice were completely protected against 50 LD50 of the bacterial toxin. Immunization also protected 80% of the mice from 10 LD50 by S. flexneri and S.dysentery. In addition, passive immunization conferred 60% protection in the mice against S. flexneri and S.dysentery. Organ burden studies also revealed a significant reduction in infection among the immunized mice. CONCLUSION This study revealed that the chimeric protein produced inE. colicould be a promising chimeric immunogen candidate against Shigella.
Collapse
Affiliation(s)
- Alireza Felegary
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Emad Kordbacheh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ebrahim Minae
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
16
|
Scheiblhofer S, Drothler S, Braun W, Braun R, Boesch M, Weiss R. Laser-facilitated epicutaneous immunization of mice with SARS-CoV-2 spike protein induces antibodies inhibiting spike/ACE2 binding. Vaccine 2021; 39:4399-4403. [PMID: 34226102 PMCID: PMC8233963 DOI: 10.1016/j.vaccine.2021.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 11/06/2022]
Abstract
The skin represents an attractive target tissue for vaccination against respiratory viruses such as SARS-CoV-2. Laser-facilitated epicutaneous immunization (EPI) has been established as a novel technology to overcome the skin barrier, which combines efficient delivery via micropores with an inherent adjuvant effect due to the release of danger-associated molecular patterns. Here we delivered the S1 subunit of the Spike protein of SARS-CoV-2 to the skin of BALB/c mice via laser-generated micropores with or without CpG-ODN1826 or the B subunit of heat-labile enterotoxin of E.coli (LT-B). EPI induced serum IgG titers of 1:3200 that could be boosted 5 to 10-fold by co-administration of LT-B and CpG, respectively. Sera were able to inhibit binding of the spike protein to its receptor ACE2. Our data indicate that delivery of recombinant spike protein via the skin may represent an alternative route for vaccines against Covid-19.
Collapse
Affiliation(s)
| | - Stephan Drothler
- University of Salzburg, Department of Biosciences, Salzburg, Austria
| | | | | | | | - Richard Weiss
- University of Salzburg, Department of Biosciences, Salzburg, Austria.
| |
Collapse
|
17
|
Stone AE, Scheuermann SE, Haile CN, Cuny GD, Velasquez ML, Linhuber JP, Duddupudi AL, Vigliaturo JR, Pravetoni M, Kosten TA, Kosten TR, Norton EB. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines 2021; 6:69. [PMID: 33986280 PMCID: PMC8119695 DOI: 10.1038/s41541-021-00329-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fentanyl is a major contributor to the devastating increase in overdose deaths from substance use disorders (SUD). A vaccine targeting fentanyl could be a powerful immunotherapeutic. Here, we evaluated adjuvant and delivery strategies for conjugate antigen vaccination with fentanyl-based haptens. We tested adjuvants derived from the heat-labile toxin of E. coli including dmLT and LTA1 by intramuscular, sublingual or intranasal delivery. Our results show anti-fentanyl serum antibodies and antibody secreting cells in the bone-marrow after vaccination with highest levels observed with an adjuvant (alum, dmLT, or LTA1). Vaccine adjuvanted with LTA1 or dmLT elicited the highest levels of anti-fentanyl antibodies, whereas alum achieved highest levels against the carrier protein. Vaccination with sublingual dmLT or intranasal LTA1 provided the most robust blockade of fentanyl-induced analgesia and CNS penetration correlating strongly to anti-FEN IgA. In conclusion, this study demonstrates dmLT or LTA1 adjuvant as well as mucosal delivery may be attractive strategies for improving the efficacy of vaccines against SUD.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah E Scheuermann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin N Haile
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Marcela Lopez Velasquez
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joshua P Linhuber
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anantha L Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
18
|
Shad AA, Shad WA. Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol 2021; 203:45-58. [PMID: 32929595 PMCID: PMC7489455 DOI: 10.1007/s00203-020-02034-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Shigella sonnei is the emerging pathogen globally, as it is the second common infectious species of shigellosis (bloody diarrhoea) in low- and middle-income countries (LMICs) and the leading one in developed world. The multifactorial processes and novel mechanisms have been identified in S. sonnei, that are collectively playing apart a substantial role in increasing its prevalence, while replacing the S. flexneri and other Gram-negative gut pathogens niche occupancy. Recently, studies suggest that due to improvement in sanitation S. sonnei has reduced cross-immunization from Plesiomonas shigelliodes (having same O-antigen as S. sonnei) and also found to outcompete the two major species of Enterobacteriaceae family (Shigella flexneri and Escherichia coli), due to encoding of type VI secretion system (T6SS). This review aimed to highlight S. sonnei as an emerging pathogen in the light of recent research with pondering aspects on its epidemiology, transmission, and pathogenic mechanisms. Additionally, this paper aimed to review S. sonnei disease pattern and related complications, symptoms, and laboratory diagnostic techniques. Furthermore, the available treatment reigns and antibiotic-resistance patterns of S. sonnei are also discussed, as the ciprofloxacin and fluoroquinolone-resistant S. sonnei has already intensified the global spread and burden of antimicrobial resistance. In last, prevention and controlling strategies are briefed to limit and tackle S. sonnei and possible future areas are also explored that needed more research to unravel the hidden mysteries surrounding S. sonnei.
Collapse
Affiliation(s)
- Ahtesham Ahmad Shad
- Institute of Microbiology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Wajahat Ahmed Shad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Lu T, Keith JD, Picking WD, Birket SE, Picking WL. Development of a Broadly Protective, Self-Adjuvanting Subunit Vaccine to Prevent Infections by Pseudomonas aeruginosa. Front Immunol 2020; 11:583008. [PMID: 33281815 PMCID: PMC7705240 DOI: 10.3389/fimmu.2020.583008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by the opportunistic pathogen Pseudomonas aeruginosa can be difficult to treat due to innate and acquired antibiotic resistance and this is exacerbated by the emergence of multi-drug resistant strains. Unfortunately, no licensed vaccine yet exists to prevent Pseudomonas infections. Here we describe a novel subunit vaccine that targets the P. aeruginosa type III secretion system (T3SS). This vaccine is based on the novel antigen PaF (Pa Fusion), a fusion of the T3SS needle tip protein, PcrV, and the first of two translocator proteins, PopB. Additionally, PaF is made self-adjuvanting by the N-terminal fusion of the A1 subunit of the mucosal adjuvant double-mutant heat-labile enterotoxin (dmLT). Here we show that this triple fusion, designated L-PaF, can activate dendritic cells in vitro and elicits strong IgG and IgA titers in mice when administered intranasally. This self-adjuvanting vaccine expedites the clearance of P. aeruginosa from the lungs of challenged mice while stimulating host expression of IL-17A, which may be important for generating a protective immune response in humans. L-PaF's protective capacity was recapitulated in a rat pneumonia model, further supporting the efficacy of this novel fusion vaccine.
Collapse
Affiliation(s)
- Sayan Das
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Debaki R Howlader
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Siva Sai Kumar Ratnakaram
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Sean K Whittier
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States.,Hafion LLC, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Johnathan D Keith
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Susan E Birket
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States.,Hafion LLC, Lawrence, KS, United States
| |
Collapse
|
20
|
Jain A, Hu G, Kumar Ratnakaram SS, Johnson DK, Picking WD, Picking WL, Middaugh CR. Preformulation Characterization and the Effect of Ionic Excipients on the Stability of a Novel DB Fusion Protein. J Pharm Sci 2020; 110:108-123. [PMID: 32916136 PMCID: PMC7750262 DOI: 10.1016/j.xphs.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Shigella ssp cause bacillary dysentery (shigellosis) which has high global morbidity in young children and the elderly. The virulence of Shigella relies upon a type III secretion system (T3SS) which injects host altering effector proteins into targeted intestinal cells. The Shigella T3SS contains two components, invasion plasmid antigen D (IpaD) and invasion plasmid antigen B (IpaB), that were previously identified as broadly protective antigens. When IpaD and IpaB were co-expressed to give the DB fusion (DBF) protein, vaccine efficacy was further improved. Biophysical characterization under various pH conditions showed that DBF is most stable at pH 7 and 8 and loses its conformational integrity at 48 and 50 °C respectively. Forced degradation studies revealed significant effects on the secondary structure, tertiary structure and conformational stability of DBF. In the presence of phosphate buffers as well as other anionic excipients, DBF demonstrated a concentration dependent conformational stabilization. Molecular docking revealed potential polyanion binding sites in DBF that may interact with phytic acid. These sites can be exploited to stabilize the DBF protein. This work highlights potential destabilizing and stabilizing factors, which not only improves our understanding of the DBF protein but helps in future development of a stable Shigella vaccine.
Collapse
Affiliation(s)
- Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | | | - David K Johnson
- Computational Chemical Biology Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA.
| | - Charles Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
21
|
Hsueh FC, Chang YC, Kao CF, Hsu CW, Chang HW. Intramuscular Immunization with Chemokine-Adjuvanted Inactive Porcine Epidemic Diarrhea Virus Induces Substantial Protection in Pigs. Vaccines (Basel) 2020; 8:vaccines8010102. [PMID: 32102459 PMCID: PMC7157555 DOI: 10.3390/vaccines8010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Intramuscular (IM) immunization is generally considered incapable of generating a protective mucosal immune response. In the swine industry, attempts to develop a safe and protective vaccine for controlling porcine epidemic diarrhea (PED) via an IM route of administration have been unsuccessful. In the present study, porcine chemokine ligand proteins CCL25, 27, and 28 were constructed and stably expressed in the mammalian expression system. IM co-administration of inactivated PEDV (iPEDV) particles with different CC chemokines and Freund’s adjuvants resulted in recruiting CCR9+ and/or CCR10+ inflammatory cells to the injection site, thereby inducing superior systemic PEDV specific IgG, fecal IgA, and viral neutralizing antibodies in pigs. Moreover, pigs immunized with iPEDV in combination with CCL25 and CCL28 elicited substantial protection against a virulent PEDV challenge. We show that the porcine CC chemokines could be novel adjuvants for developing IM vaccines for modulating mucosal immune responses against mucosal transmissible pathogens in pigs.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chi-Fei Kao
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chin-Wei Hsu
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-2-3366-3867
| |
Collapse
|
22
|
LTA1 and dmLT enterotoxin-based proteins activate antigen-presenting cells independent of PKA and despite distinct cell entry mechanisms. PLoS One 2020; 15:e0227047. [PMID: 31929548 PMCID: PMC6957164 DOI: 10.1371/journal.pone.0227047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
Enterotoxin-based proteins are powerful manipulators of mucosal immunity. The A1 domain of heat-labile enterotoxin from E. coli, or LTA1, is a newer adjuvant from this family under investigation for intranasal vaccines. Although LTA1 has been examined in mouse vaccination studies, its ability to directly stimulate immune cells compared to related adjuvant proteins has not been well explored. Here, we perform the first rigorous examination of LTA1’s effect on antigen presenting cells (APC) using a human monocyte cell line THP-1. To better understand LTA1’s stimulatory effects, we compared it to dmLT, or LT-R192G/L211A, a related AB5 adjuvant in clinical trials for oral or parenteral vaccines. LTA1 and dmLT both activated APCs to upregulate MHC-II (HLA-DR), CD86, cytokine secretion (e.g., IL-1β) and inflammasome activation. The effect of LTA1 on surface marker changes (e.g., MHC-II) was highly dose-dependent whereas dmLT exhibited high MHC-II expression regardless of dose. In contrast, cytokine secretion profiles were similar and dose-dependent after both LTA1 and dmLT treatment. Cellular activation by LTA1 was independent of ganglioside binding, as pre-treatment with purified GM1 blocked the effect of dmLT but not LTA1. Unexpectedly, while activation of the inflammasome and cytokine secretion by LTA1 or dmLT was blocked by the protein kinase A inhibitor H89 (similar to previous reports), these responses were not inhibited by a more specific PKA peptide inhibitor or antagonist; thus Indicating that a novel and unknown mechanism is responsible for inflammasome activation and cytokine secretion by LT proteins. Lastly, LTA1 stimulated a similar cytokine profile in primary human monocytes as it did in THP1 cells, including IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, and TNFα. Thus, we report that LTA1 protein programs a dendritic cell-like phenotype in APCs similar to dmLT in a mechanism that is independent of PKA activation and GM1 binding and entry.
Collapse
|
23
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
24
|
Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist 2019; 12:3137-3167. [PMID: 31632102 PMCID: PMC6789722 DOI: 10.2147/idr.s219755] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are a common cause of diarrheal disease and have remained an important pathogen responsible for increased rates of morbidity and mortality caused by dysentery each year around the globe. Antibiotic treatment of Shigella infections plays an essential role in reducing prevalence and death rates of the disease. However, treatment of these infections remains a challenge, due to the global rise in broad-spectrum resistance to many antibiotics. Drug resistance in Shigella spp. can result from many mechanisms, such as decrease in cellular permeability, extrusion of drugs by active efflux pumps, and overexpression of drug-modifying and -inactivating enzymes or target modification by mutation. Therefore, there is an increasing need for identification and evolution of alternative therapeutic strategies presenting innovative avenues against Shigella infections, as well as paying further attention to this infection. The current review focuses on various antibiotic-resistance mechanisms of Shigella spp. with a particular emphasis on epidemiology and new mechanisms of resistance and their acquisition, and also discusses the status of novel strategies for treatment of Shigella infection and vaccine candidates currently under evaluation in preclinical or clinical phases.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Heine SJ, Franco-Mahecha OL, Sears KT, Drachenberg CB, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF. A Combined YopB and LcrV Subunit Vaccine Elicits Protective Immunity against Yersinia Infection in Adult and Infant Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2005-2016. [PMID: 30787109 PMCID: PMC6424635 DOI: 10.4049/jimmunol.1800985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Yersinia enterocolitica causes a severe enteric infection in infants and young children. There is no vaccine approved for use in humans. We investigated the immunogenicity and protective capacity of Yersinia YopB, a conserved type III secretion system protein, alone or combined with LcrV in adult mice immunized intranasally. YopB or LcrV (5 μg) administered with the Escherichia coli double mutant heat-labile toxin (dmLT) adjuvant afforded modest (10-30%) protection against lethal Y. enterocolitica oral infection. The combination of YopB and LcrV (5 μg each) dramatically improved vaccine efficacy (70-80%). Additionally, it afforded complete protection against Y. pestis pulmonary infection. Immunization with YopB/LcrV+dmLT resulted in Ag-specific serum IgG, systemic and mucosal Ab-secreting cells, as well as IFN-γ, TNF-α, IL-2, IL-6, IL-17A, and KC production by spleen cells. Serum Abs elicited by YopB/LcrV+dmLT had enhanced bactericidal and opsonophagocytic killing activity. After Y. enterocolitica challenge, YopB/LcrV+dmLT-vaccinated mice exhibited intact intestinal tissue, active germinal centers in mesenteric lymph nodes, IgG+ and IgA+ plasmablasts in the lamina propria, and Abs in intestinal fluid. On the contrary, complete tissue destruction and abscesses were seen in placebo recipients that succumbed to infection. Mice immunized as infants with YopB+dmLT or LcrV+dmLT achieved 60% protection against lethal Y. enterocolitica infection, and vaccine efficacy increased to 90-100% when they received YopB/LcrV+dmLT. YopB+dmLT also afforded substantial (60%) protection when administered intradermally to infant mice. YopB/LcrV+dmLT is a promising subunit vaccine candidate with the potential to elicit broad protection against Yersinia spp.
Collapse
Affiliation(s)
- Shannon J Heine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Olga L Franco-Mahecha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
26
|
Baker SM, Pociask D, Clements JD, McLachlan JB, Morici LA. Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia. Vaccine 2019; 37:808-816. [PMID: 30638799 DOI: 10.1016/j.vaccine.2018.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.
Collapse
Affiliation(s)
- Sarah M Baker
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - Derek Pociask
- Department of Medicine, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - John D Clements
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA.
| |
Collapse
|
27
|
Kim MJ, Moon YH, Kim H, Rho S, Shin YK, Song M, Walker R, Czerkinsky C, Kim DW, Kim JO. Cross-Protective Shigella Whole-Cell Vaccine With a Truncated O-Polysaccharide Chain. Front Microbiol 2018; 9:2609. [PMID: 30429838 PMCID: PMC6220597 DOI: 10.3389/fmicb.2018.02609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Shigella is a highly prevalent bacterium causing acute diarrhea and dysentery in developing countries. Shigella infections are treated with antibiotics but Shigellae are increasingly resistant to these drugs. Vaccination can be a countermeasure against emerging antibiotic-resistant shigellosis. Because of the structural variability in Shigellae O-antigen polysaccharides (Oag), cross-protective Shigella vaccines cannot be derived from single serotype-specific Oag. We created an attenuated Shigella flexneri 2a strain with one rather than multiple Oag units by disrupting the Oag polymerase gene (Δwzy), which broadened protective immunogenicity by exposing conserved surface proteins. Inactivated Δwzy mutant cells combined with Escherichia coli double mutant LT(R192G/L211A) as adjuvant, induced potent antibody responses to outer membrane protein PSSP-1, and type III secretion system proteins IpaB and IpaC. Intranasal immunization with the vaccine preparation elicited cross-protective immunity against S. flexneri 2a, S. flexneri 3a, S. flexneri 6, and Shigella sonnei in a mouse pneumonia model. Thus, S. flexneri 2a Δwzy represents a promising candidate strain for a universal Shigella vaccine.
Collapse
Affiliation(s)
- Min Jung Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Hye Moon
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Heejoo Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Semi Rho
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Manki Song
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | | | - Cecil Czerkinsky
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea.,Institut de Pharmacologie Moléculaire & Cellulaire CNRS-INSERM-University of Nice Sophia Antipolis, Valbonne, France
| | - Dong Wook Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Jae-Ouk Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| |
Collapse
|
28
|
Carvalho MF, Gill D. Rotavirus vaccine efficacy: current status and areas for improvement. Hum Vaccin Immunother 2018; 15:1237-1250. [PMID: 30215578 PMCID: PMC6663136 DOI: 10.1080/21645515.2018.1520583] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
The difference noted in Rotavirus vaccine efficiency between high and low income countries correlates with the lack of universal access to clean water and higher standards of hygiene. Overcoming these obstacles will require great investment and also time, therefore more effective vaccines should be developed to meet the needs of those who would benefit the most from them. Increasing our current knowledge of mucosal immunity, response to Rotavirus infection and its modulation by circadian rhythms could point at actionable pathways to improve vaccination efficacy, especially in the case of individuals affected by environmental enteropathy. Also, a better understanding and validation of Rotavirus entry factors as well as the systematic monitoring of dominant strains could assist in tailoring vaccines to individual's needs. Another aspect that could improve vaccine efficiency is targeting to M cells, for which new ligands could potentially be sought. Finally, alternative mucosal adjuvants and vaccine expression, storage and delivery systems could have a positive impact in the outcome of Rotavirus vaccination.
Collapse
Affiliation(s)
| | - Davinder Gill
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., New Delhi, India
| |
Collapse
|
29
|
Ndungo E, Randall A, Hazen TH, Kania DA, Trappl-Kimmons K, Liang X, Barry EM, Kotloff KL, Chakraborty S, Mani S, Rasko DA, Pasetti MF. A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 2018; 3:e00260-18. [PMID: 30068560 PMCID: PMC6070737 DOI: 10.1128/msphere.00260-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shigella spp. are a major cause of diarrhea and dysentery in children under 5 years old in the developing world. The development of an effective vaccine remains a public health priority, necessitating improved understanding of immune responses to Shigella and identification of protective antigens. We report the development of a core Shigella proteome microarray consisting of 2,133 antigen targets common to all Shigella species. We evaluated the microarray with serum samples from volunteers immunized with either an inactivated whole-cell S. flexneri serotype 2a (Sf2aWC) vaccine or a live attenuated S. flexneri 2a vaccine strain (CVD 1204) or challenged with wild-type S. flexneri 2a (Sf2a challenge). Baseline reactivities to most antigens were detected postintervention in all three groups. Similar immune profiles were observed after CVD 1204 vaccination and Sf2a challenge. Antigens with the largest increases in mean reactivity postintervention were members of the type three secretion system (T3SS), some of which are regarded as promising vaccine targets: these are the invasion plasmid antigens (Ipas) IpaB, IpaC, and IpaD. In addition, new immunogenic targets (IpaA, IpaH, and SepA) were identified. Importantly, immunoreactivities to antigens in the microarray correlated well with antibody titers determined by enzyme-linked immunosorbent assay (ELISA), validating the use of the microarray platform. Finally, our analysis uncovered an immune signature consisting of three conserved proteins (IpaA, IpaB, and IpaC) that was predictive of protection against shigellosis. In conclusion, the Shigella proteome microarray is a robust platform for interrogating serological reactivity to multiple antigens at once and identifying novel targets for the development of broadly protective vaccines.IMPORTANCE Each year, more than 180 million cases of severe diarrhea caused by Shigella occur globally. Those affected (mostly children in poor regions) experience long-term sequelae that severely impair quality of life. Without a licensed vaccine, the burden of disease represents a daunting challenge. An improved understanding of immune responses to Shigella is necessary to support ongoing efforts to identify a safe and effective vaccine. We developed a microarray containing >2,000 proteins common to all Shigella species. Using sera from human adults who received a killed whole-cell or live attenuated vaccine or were experimentally challenged with virulent organisms, we identified new immune-reactive antigens and defined a T3SS protein signature associated with clinical protection.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, California, USA
| | - Tracy H Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dane A Kania
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Xiaowu Liang
- Antigen Discovery, Inc., Irvine, California, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - David A Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Abstract
Perhaps the best-studied mucosal adjuvants are the bacterially derived ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT. These proteins promote a multifaceted antigen-specific response, including inflammatory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However, more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies and long-lasting memory to coadministered antigens when delivered mucosally or even parenterally. The purpose of this minireview is to describe the general properties, history and creation, preclinical studies, clinical studies, mechanisms of action, and considerations for use of the most promising enterotoxin-based adjuvant to date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing, and planned clinical investigations of dmLT in multiple vaccine formulations by government, nonprofit, and industry groups in the United States and abroad.
Collapse
Affiliation(s)
- John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
31
|
Frederick DR, Goggins JA, Sabbagh LM, Freytag LC, Clements JD, McLachlan JB. Adjuvant selection regulates gut migration and phenotypic diversity of antigen-specific CD4 + T cells following parenteral immunization. Mucosal Immunol 2018; 11:549-561. [PMID: 28792004 PMCID: PMC6252260 DOI: 10.1038/mi.2017.70] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Abstract
Infectious diarrheal diseases are the second leading cause of death in children under 5 years, making vaccines against these diseases a high priority. It is known that certain vaccine adjuvants, chiefly bacterial ADP-ribosylating enterotoxins, can induce mucosal antibodies when delivered parenterally. Based on this, we reasoned vaccine-specific mucosal cellular immunity could be induced via parenteral immunization with these adjuvants. Here, we show that, in contrast to the Toll-like receptor-9 agonist CpG, intradermal immunization with non-toxic double-mutant heat-labile toxin (dmLT) from enterotoxigenic Escherichia coli drove endogenous, antigen-specific CD4+ T cells to expand and upregulate the gut-homing integrin α4β7. This was followed by T-cell migration into gut-draining lymph nodes and both small and large intestines. We also found that dmLT produces a balanced T-helper 1 and 17 (Th1 and Th17) response, whereas T cells from CpG immunized mice were predominantly Th1. Immunization with dmLT preferentially engaged CD103+ dendritic cells (DCs) compared with CpG, and mice deficient in CD103+ DCs were unable to fully license antigen-specific T-cell migration to the intestinal mucosae following parenteral immunization. This work has the potential to redirect the design of existing and next generation vaccines to elicit pathogen-specific immunity in the intestinal tract with non-mucosal immunization.
Collapse
Affiliation(s)
- Daniel R. Frederick
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - J. Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Leila M. Sabbagh
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Lucy C. Freytag
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - John D. Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| |
Collapse
|
32
|
Functional and Antigen-Specific Serum Antibody Levels as Correlates of Protection against Shigellosis in a Controlled Human Challenge Study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00412-16. [PMID: 27927680 PMCID: PMC5299116 DOI: 10.1128/cvi.00412-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
Shigella is an important cause of diarrheal disease in young children living in developing countries. No approved vaccines are available, and the development of vaccine candidates has been hindered by the lack of firm immunological correlates of protection, among other reasons. To address this gap in knowledge, we established quantitative assays to measure Shigella-specific serum bactericidal antibody (SBA) and opsonophagocytic killing antibody (OPKA) activities and investigated their potential association with protection against disease in humans. SBA, OPKA, and Ipa-, VirG (IscA)-, and Shigella flexneri 2a lipopolysaccharide-specific serum IgG titers were determined in adult volunteers who received Shigella vaccine candidate EcSf2a-2 and in unvaccinated controls, all of whom were challenged with virulent Shigella flexneri 2a. Prechallenge antibody titers were compared with disease severity after challenge. SBA and OPKA, as well as IpaB- and VirG-specific IgG, significantly correlated with reduced illness. SBA and OPKA assays were also used to evaluate the immunogenicity of leading live attenuated vaccine candidates Shigella CVD 1204 and CVD 1208S in humans. A single oral immunization with CVD 1204 or CVD 1208S resulted in SBA seroconversion rates of 71% and 47% and OPKA seroconversion rates of 57% and 35%, respectively. Higher functional antibody responses were induced by CVD 1204, which is consistent with its lower attenuation. This is the first demonstration of SBA, OPKA, and IpaB- and VirG-specific IgG levels as potential serological correlates of protection against shigellosis in humans. These results warrant further studies to establish their capacity to predict protective immunity and vaccine efficacy.
Collapse
|
33
|
Andar AU, Karan R, Pecher WT, DasSarma P, Hedrich WD, Stinchcomb AL, DasSarma S. Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm 2017; 14:953-958. [PMID: 28068767 DOI: 10.1021/acs.molpharmaceut.6b00859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas vesicle nanoparticles (GVNPs) are hollow, buoyant protein organelles produced by the extremophilic microbe Halobacterium sp. NRC-1 and are being developed as bioengineerable and biocompatible antigen and drug-delivery systems (DDS). Dynamic light scattering measurements of purified GVNP suspensions showed a mean diameter of 245 nm. In vitro diffusion studies using Yucatan miniature pig skin showed GVNP permeation to be enhanced after MN-treatment compared to untreated skin. GVNPs were found to be nontoxic to mammalian cells (human kidney and rat mycocardial myoblasts). These findings support the use of GVNPs as DDS for intradermal/transdermal permeation of protein- and peptide-based drugs.
Collapse
Affiliation(s)
- Abhay U Andar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Ram Karan
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - Wolf T Pecher
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States.,Yale Gordon College of Arts and Sciences, University of Baltimore , Baltimore, Maryland 21201, United States
| | - Priya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| |
Collapse
|
34
|
Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine 2016; 34:5376-5383. [DOI: 10.1016/j.vaccine.2016.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022]
|
35
|
Bardel E, Doucet-Ladeveze R, Mathieu C, Harandi AM, Dubois B, Kaiserlian D. Intradermal immunisation using the TLR3-ligand Poly (I:C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection. NPJ Vaccines 2016; 1:16010. [PMID: 29263853 PMCID: PMC5707913 DOI: 10.1038/npjvaccines.2016.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/13/2023] Open
Abstract
Development of vaccines able to induce mucosal immunity in the genital and gastrointestinal tracts is a major challenge to counter sexually transmitted pathogens such as HIV-1 and HSV-2. Herein, we showed that intradermal (ID) immunisation with sub-unit vaccine antigens (i.e., HIV-1 gp140 and HSV-2 gD) delivered with Poly(I:C) or CpG1668 as adjuvant induces long-lasting virus-specific immunoglobulin (Ig)-G and IgA antibodies in the vagina and feces. Poly(I:C)-supplemented sub-unit viral vaccines caused minimal skin reactogenicity at variance to those containing CpG1668, promoted a delayed-type hypersensitivity (DTH) to the vaccine and protected mice from genital and neurological symptoms after a lethal vaginal HSV-2 challenge. Interestingly, Poly(I:C12U) (Ampligen), a Poly(I:C) structural analogue that binds to TLR3 but not MDA-5, promoted robust mucosal and systemic IgG antibodies, a weak skin DTH to the vaccine but not IgA responses and failed to confer protection against HSV-2 infection. Moreover, Poly(I:C) was far superior to Poly(I:C12U) at inducing prompt and robust upregulation of IFNß transcripts in lymph nodes draining the injection site. These data illustrate that ID vaccination with glycoproteins and Poly(I:C) as adjuvant promotes long-lasting mucosal immunity and protection from genital HSV-2 infection, with an acceptable skin reactogenicity profile. The ID route thus appears to be an unexpected inductive site for mucosal immunity and anti-viral protection suitable for sub-unit vaccines. This works further highlights that TLR3/MDA5 agonists such as Poly(I:C) may be valuable adjuvants for ID vaccination against sexually transmitted diseases.
Collapse
Affiliation(s)
- Emilie Bardel
- CIRI, International Center for Infectiology Research, Mucosal Immunity, Vaccination & Biotherapy Laboratory, Inserm U-1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| | - Remi Doucet-Ladeveze
- CIRI, International Center for Infectiology Research, Mucosal Immunity, Vaccination & Biotherapy Laboratory, Inserm U-1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, Immunobiology of Viral Infections Laboratory, Inserm U-1111, CNRS UMR5308, Universite Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bertrand Dubois
- CIRI, International Center for Infectiology Research, Mucosal Immunity, Vaccination & Biotherapy Laboratory, Inserm U-1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| | - Dominique Kaiserlian
- CIRI, International Center for Infectiology Research, Mucosal Immunity, Vaccination & Biotherapy Laboratory, Inserm U-1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Lyon, France
| |
Collapse
|
36
|
Immunogenicity and Protective Efficacy against Enterotoxigenic Escherichia coli Colonization following Intradermal, Sublingual, or Oral Vaccination with EtpA Adhesin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:628-37. [PMID: 27226279 DOI: 10.1128/cvi.00248-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETEC in vitro Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen.
Collapse
|
37
|
Bulir DC, Liang S, Lee A, Chong S, Simms E, Stone C, Kaushic C, Ashkar A, Mahony JB. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge. Vaccine 2016; 34:3979-85. [PMID: 27325352 DOI: 10.1016/j.vaccine.2016.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/25/2016] [Accepted: 06/14/2016] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis infections in women are often asymptomatic and if left untreated can lead to significant late sequelae including pelvic inflammatory disease and tubal factor infertility. Vaccine development efforts over the past three decades have been unproductive and there is no vaccine approved for use in humans. The existence of serologically distinct strains or serovars of C. trachomatis mandates a vaccine that will provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of both structural and effector proteins which is an essential virulence factor for infection and intracellular replication. In this study we evaluated a novel fusion protein antigen (BD584) which consists of three T3SS proteins from C. trachomatis (CopB, CopD, and CT584) as a potential chlamydial vaccine candidate. Intranasal immunization with BD584 elicited serum neutralizing antibodies that inhibited C. trachomatis infection in vitro. Following intravaginal challenge with C. muridarum, immunized mice had a 95% reduction in chlamydial shedding from the vagina at the peak of infection and cleared the infection sooner than control mice. Immunization with BD584 also reduced the rate of hydrosalpinx by 87.5% compared to control mice. Together, these results suggest that highly conserved proteins of the chlamydial T3SS may represent good candidates for a Chlamydia vaccine.
Collapse
Affiliation(s)
- David C Bulir
- M. G. DeGroote Institute for Infectious Disease Research, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Steven Liang
- M. G. DeGroote Institute for Infectious Disease Research, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Amanda Lee
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Sylvia Chong
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Elizabeth Simms
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Christopher Stone
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Charu Kaushic
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada
| | - Ali Ashkar
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada
| | - James B Mahony
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
38
|
Ma Y. Recent advances in nontoxicEscherichia coliheat-labile toxin and its derivative adjuvants. Expert Rev Vaccines 2016; 15:1361-1371. [DOI: 10.1080/14760584.2016.1182868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
DeLaine BC, Wu T, Grassel CL, Shimanovich A, Pasetti MF, Levine MM, Barry EM. Characterization of a multicomponent live, attenuated Shigella flexneri vaccine. Pathog Dis 2016; 74:ftw034. [PMID: 27106253 DOI: 10.1093/femspd/ftw034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 11/12/2022] Open
Abstract
Shigella flexneri is a leading cause of diarrheal disease in children under five in developing countries. There is currently no licensed vaccine and broad spectrum protection requires coverage of multiple serotypes. The live attenuated vaccines CVD 1213 and CVD 1215 were derived from two prominent S. flexneri serotypes: S. flexneri 3a and S. flexneri 6. To provide broad-spectrum immunity, they could be combined with CVD 1208S, a S. flexneri 2a strain that demonstrated promising results in phase I and II clinical trials. Each strain contains a mutation in the guaBA operon. These vaccine candidates were tested in vitro and in vivo and were found to be auxotrophic for guanine and defective in intracellular replication, but capable of inducing cytokine production from both epithelial cells and macrophages. Both strains were attenuated for virulence in the guinea pig Serény test and induced robust serotype-specific antibody responses following immunization. Each strain induced homologous serotype protection against challenge and a mixed inoculum of the three S. flexneri vaccines conferred protection against all three virulent wild-type strains. These data support the use of CVD 1213, CVD 1215 and CVD 1208S in a multivalent vaccine to confer broad protection against disease caused by Shigella flexneri.
Collapse
Affiliation(s)
- BreOnna C DeLaine
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tao Wu
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christen L Grassel
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Avital Shimanovich
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marcela F Pasetti
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eileen M Barry
- Institute for Global Health, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
40
|
|
41
|
The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016; 14:235-50. [PMID: 26923111 DOI: 10.1038/nrmicro.2016.10] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Kathryn E Holt
- Centre for Systems Genomics, University of Melbourne.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Nicholas R Thomson
- Bacterial Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK.,Department of Pathogen and Molecular Biology, The London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| |
Collapse
|
42
|
TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes. PLoS One 2016; 11:e0148984. [PMID: 26862758 PMCID: PMC4749393 DOI: 10.1371/journal.pone.0148984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.
Collapse
|
43
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
44
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
45
|
Bulir DC, Waltho DA, Stone CB, Liang S, Chiang CKW, Mwawasi KA, Nelson JC, Zhang SW, Mihalco SP, Scinocca ZC, Mahony JB. Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein. BMC Microbiol 2015; 15:163. [PMID: 26272448 PMCID: PMC4536800 DOI: 10.1186/s12866-015-0498-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/03/2015] [Indexed: 01/26/2023] Open
Abstract
Background Chlamydia spp. are believed to use a conserved virulence factor called type III secretion (T3S) to facilitate the delivery of effector proteins from the bacterial pathogen to the host cell. Important early effector proteins of the type III secretion system (T3SS) are a class of proteins called the translocators. The translocator proteins insert into the host cell membrane to form a pore, allowing the injectisome to dock onto the host cell to facilitate translocation of effectors. CopB is a predicted hydrophobic translocator protein within the chlamydial T3SS. Results In this study, we identified a novel interaction between the hydrophobic translocator, CopB, and the putative filament protein, CdsF. Furthermore, we identified a conserved PxLxxP motif in CopB (amino acid residues 166–171), which is required for interaction with its cognate chaperone, LcrH_1. Using a synthetic peptide derived from the chaperone binding motif of CopB, we were able to block the LcrH_1 interaction with either CopB or CopD; this CopB peptide was capable of inhibiting C. pneumoniae infection of HeLa cells at micromolar concentrations. An antibody raised against the N-terminus of CopB was able to inhibit C. pneumoniae infection of HeLa cells. Conclusion The inhibition of the LcrH_1:CopB interaction with a cognate peptide and subsequent inhibition of host cell infection provides strong evidence that T3S is an essential virulence factor for chlamydial infection and pathogenesis. Together, these results support that CopB plays the role of a hydrophobic translocator.
Collapse
Affiliation(s)
- David C Bulir
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Daniel A Waltho
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Christopher B Stone
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Steven Liang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Christopher K W Chiang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Kenneth A Mwawasi
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Jordan C Nelson
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Steven W Zhang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Samantha P Mihalco
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Zachariah C Scinocca
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - James B Mahony
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada. .,Regional Virology Laboratory, St. Joseph's Healthcare, 50 Charlton Ave. E, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
46
|
|
47
|
Norton EB, Bauer DL, Weldon WC, Oberste MS, Lawson LB, Clements JD. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine 2015; 33:1909-15. [DOI: 10.1016/j.vaccine.2015.02.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
48
|
Heine SJ, Franco-Mahecha OL, Chen X, Choudhari S, Blackwelder WC, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice. Immunol Cell Biol 2015; 93:641-52. [PMID: 25776843 PMCID: PMC4534326 DOI: 10.1038/icb.2015.24] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/01/2023]
Abstract
Shigella spp. are among the enteric pathogens with the
highest attributable incidence of moderate-to-severe diarrhea in children under
5 years of age living in endemic areas. There are no vaccines available to
prevent this disease. In this work, we investigated a new
Shigella vaccine concept consisting of non-living,
self-adjuvanted, Lactococcus lactis bacterium-like particles
(BLP) displaying Shigella invasion plasmid antigen (Ipa) B and
IpaD and examined its immunogenicity and protective efficacy in adult and
newborn/infant mice immunized via the nasal route. Unique advantages of this
approach include the potential for broad protection due to the highly conserved
structure of the Ipas and the safety and practicality of a probiotic-based
mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and
BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool
IgA in a dose-dependent manner. Immune responses and protection were enhanced by
BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and
cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased
survival post-challenge. Ipa-specific antibody secreting cells were detected in
nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow
cells produced IpaB/D-specific antibodies and contributed to protection after
adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80%
protection against S. flexneri and S. sonnei,
respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and
IpaD serum antibodies; 90% were protected against S.
flexneri and 44% against S. sonnei. The
BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially
effective immunization of children against shigellosis.
Collapse
Affiliation(s)
- Shannon J Heine
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga L Franco-Mahecha
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaotong Chen
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - William C Blackwelder
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Marcela F Pasetti
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Chitradevi STS, Kaur G, Uppalapati S, Yadav A, Singh D, Bansal A. Co-administration of rIpaB domain of Shigella with rGroEL of S. Typhi enhances the immune responses and protective efficacy against Shigella infection. Cell Mol Immunol 2015; 12:757-67. [PMID: 25640657 DOI: 10.1038/cmi.2014.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 02/07/2023] Open
Abstract
Shigella species cause severe bacillary dysentery in humans and are associated with high morbidity and mortality. The Invasion plasmid antigen (IpaB) protein, which is conserved across all Shigella spp., induces macrophage cell death and is required to invade host cells. The present study evaluates the immunogenicity and protective efficacy of the recombinant (r) domain region of IpaB (rIpaB) of S. flexneri. rIpaB was administered either alone or was co-administered with the rGroEL (heat shock protein 60) protein from S. Typhi as an adjuvant in a mouse model of intranasal immunization. The IpaB domain region (37 kDa) of S. flexneri was amplified from an invasion plasmid, cloned, expressed in BL21 Escherichia coli cells and purified. Immunization with the rIpaB domain alone stimulated both humoral and cell-mediated immune responses. Furthermore, robust antibody (IgG, IgA) and T-cell responses were induced when the rIpaB domain was co-administered with rGroEL. Antibody isotyping revealed higher IgG1 and IgG2a antibody titers and increased interferon-gamma (IFN-γ) secretion in the co-administered group. Immunization of mice with the rIpaB domain alone protected 60%-70% of the mice from lethal infection by S. flexneri, S. boydii and S. sonnei, whereas co-administration with rGroEL increased the protective efficacy to 80%-85%. Organ burden and histopathological studies also revealed a significant reduction in lung infection in the co-immunized mice compared with mice immunized with the rIpaB domain alone. This study emphasizes that the co-administration of the rIpaB domain and rGroEL protein improves immune responses in mice and increases protective efficacy against Shigella infection. This is also the first report to evaluate the potential of the GroEL (Hsp 60) protein of S. Typhi as an adjuvant molecule, thereby overcoming the need for commercial adjuvants.
Collapse
Affiliation(s)
| | - Gurpreet Kaur
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | - Anandprakash Yadav
- Division of Immunomodulation, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Dependrapratap Singh
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Anju Bansal
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
50
|
Impact of detergent on biophysical properties and immune response of the IpaDB fusion protein, a candidate subunit vaccine against Shigella species. Infect Immun 2014; 83:292-9. [PMID: 25368115 DOI: 10.1128/iai.02457-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55 °C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90 °C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine.
Collapse
|