1
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
4
|
Wu B, Nakamura A. Deep Insight into the Role of MIF in Spondyloarthritis. Curr Rheumatol Rep 2022; 24:269-278. [PMID: 35809213 DOI: 10.1007/s11926-022-01081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Pathological roles of macrophage migration inhibitory factor (MIF) have recently been demonstrated in spondyloarthritis (SpA) preclinical models, identifying MIF as a new treatment target for SpA. However, the specific contribution of MIF and therapeutic potential of MIF-targeted therapies to various tissue types affected by SpA are not well delineated. RECENT FINDINGS MIF and its cognate receptor CD74 are extensively involved in the pathogenesis of SpA including inflammation in the spine, joint, eyes, skin, and gut. The majority of the current evidence has consistently shown that MIF drives the inflammation in these distinct anatomical sites. In preclinical models, genetic deletion or blockade of MIF reduces the severity of inflammation. Although MIF is generally an upstream cytokine which regulates downstream effector cytokines, MIF also intensifies type 3 immunity by promoting helper T 17 (Th17) plasticity. MIF- or CD74-targeted therapies have also reported to be well tolerated in clinical trials for other diseases. Recent findings suggest that MIF-CD74 axis is a new therapeutic target for SpA to improve various clinical features. Clinical trials for MIF- or CD74-targeted therapies for SpA patients are warranted.
Collapse
Affiliation(s)
- Brian Wu
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada. .,Krembil Research Institute, University Health Network, Toronto, ON, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Hiraganahalli Bhaskarmurthy D, Evan Prince S. Effect of Baricitinib on TPA-induced psoriasis like skin inflammation. Life Sci 2021; 279:119655. [PMID: 34043988 DOI: 10.1016/j.lfs.2021.119655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Psoriasis is a chronic inflammatory disorder of the skin and is characterized by hyper-dividing keratinocytes. This hyper-proliferation of keratinocytes is due to the high level of inflammatory cytokines. In this study, we evaluated the effect of topically applied Baricitinib, JAK1/2 inhibitor on chronic 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced psoriasis model in mice. To our knowledge, this is the first report evaluating the topical route of administration of Baricitinib in the context of psoriasis in vivo. TPA-induced inflammation was induced by the topical application of TPA in both ears. Thirty minutes before the application of TPA, the inner and outer surface of each ear was treated with Baricitinib for 6 days. Topical application of Baricitinib inhibited the expression of inflammation markers up-regulated by TPA. Besides, Baricitinib substantially reduced ear swelling, infiltration of leukocytes, the proliferation of epidermal cells, and angiogenesis of the dermal layer. The results suggest that Baricitinib significantly reduced phosphorylation of STAT3 and STAT1 levels in turn attenuating the downstream expression of inflammatory cytokines. Collectively, these results suggest that Baricitinib can be a potential therapeutic through topical route for psoriasis progresses.
Collapse
Affiliation(s)
- Deepak Hiraganahalli Bhaskarmurthy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632014 India; Jubilant Biosys Ltd, Bangalore, Karnataka-560022 India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632014 India.
| |
Collapse
|
7
|
Iweala OI, Choudhary SK, Addison CT, Commins SP. T and B Lymphocyte Transcriptional States Differentiate between Sensitized and Unsensitized Individuals in Alpha-Gal Syndrome. Int J Mol Sci 2021; 22:ijms22063185. [PMID: 33804792 PMCID: PMC8003943 DOI: 10.3390/ijms22063185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of pathogenesis driving alpha-gal syndrome (AGS) are not fully understood. Differences in immune gene expression between AGS individuals and non-allergic controls may illuminate molecular pathways and targets critical for AGS development. We performed immune expression profiling with RNA from the peripheral blood mononuclear cells (PBMCs) of seven controls, 15 AGS participants, and two participants sensitized but not allergic to alpha-gal using the NanoString nCounter PanCancer immune profiling panel, which includes 770 genes from 14 different cell types. The top differentially expressed genes (DEG) between AGS subjects and controls included transcription factors regulating immune gene expression, such as the NFκB pathway (NFKBIA, NFKB2, REL), antigen presentation molecules, type 2/allergic immune responses, itch, and allergic dermatitis. The differential expression of genes linked to T and B cell function was also identified, including transcription factor BCL-6, markers of antigen experience (CD44) and memory (CD27), chemokine receptors (CXCR3, CXCR6), and regulators of B-cell proliferation, cell cycle entry and immunoglobulin production (CD70). The PBMCs from AGS subjects also had increased TNF and IFN-gamma mRNA expression compared to controls. AGS is associated with a distinct gene expression profile in circulating PBMCs. DEGs related to antigen presentation, antigen-experienced T-cells, and type 2 immune responses may promote the development of alpha-gal specific IgE and the maintenance of AGS.
Collapse
Affiliation(s)
- Onyinye I. Iweala
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| | - Shailesh K. Choudhary
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire T. Addison
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Commins
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Szczęśniak P, Henke T, Fröhlich S, Plessmann U, Urlaub H, Leng L, Bucala R, Grosse R, Meinhardt A, Klug J. Extracellular MIF, but not its homologue D-DT, promotes fibroblast motility independently of its receptor complex CD74/CD44. J Cell Sci 2021; 134:jcs.217356. [PMID: 33328325 DOI: 10.1242/jcs.217356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT) are widely expressed pro-inflammatory cytokines with chemokine-like functions that coordinate a wide spectrum of biological activities, such as migration. Here, we biotin-tagged intracellular MIF/D-DT in vivo to identify important cytosolic interactors and found a plethora of actin cytoskeleton-associated proteins. Although the receptor complex between CD74 and CD44 (CD74/CD44) is essential for signalling transduction in fibroblasts via extracellular MIF/D-DT, our interactome data suggested direct effects. We, thus, investigated whether MIF/D-DT can modulate cell migration independently of CD74/CD44. To distinguish between receptor- and non-receptor-mediated motility, we used fibroblasts that are either deficient or that express CD74/CD44 proteins, and treated them with recombinant MIF/D-DT. Interestingly, only MIF could stimulate chemokinesis in the presence or absence of CD74/CD44. The pro-migratory effects of MIF depended on lipid raft/caveolae-mediated but not clathrin-mediated endocytosis, on its tautomerase activity and, probably, on its thiol protein oxidoreductase activity. As MIF treatment restrained actin polymerisation in vitro, our findings establish a new intracellular role for MIF/D-DT in driving cell motility through modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Paweł Szczęśniak
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Tamara Henke
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Uwe Plessmann
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany.,Institute for Clinical Chemistry, Research Group 'Bioanalytics', University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Medical Faculty, Albertstraße 25, 79104 Freiburg, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| |
Collapse
|
9
|
Heinrichs D, Brandt EF, Fischer P, Köhncke J, Wirtz TH, Guldiken N, Djudjaj S, Boor P, Kroy D, Weiskirchen R, Bucala R, Wasmuth HE, Strnad P, Trautwein C, Bernhagen J, Berres ML. Unexpected Pro-Fibrotic Effect of MIF in Non-Alcoholic Steatohepatitis Is Linked to a Shift in NKT Cell Populations. Cells 2021; 10:252. [PMID: 33525493 PMCID: PMC7918903 DOI: 10.3390/cells10020252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with anti-fibrotic properties in toxic liver injury models and anti-steatotic functions in non-alcoholic fatty liver disease (NAFLD) attributed to the CD74/AMPK signaling pathway. As NAFLD progression is associated with fibrosis, we studied MIF function during NAFLD-associated liver fibrogenesis in mice and men by molecular, histological and immunological methods in vitro and in vivo. After NASH diet feeding, hepatic Mif expression was strongly induced, an effect which was absent in Mif∆hep mice. In contrast to hepatotoxic fibrosis models, NASH diet-induced fibrogenesis was significantly abrogated in Mif-/- and Mif∆hep mice associated with a reduced accumulation of the pro-fibrotic type-I NKT cell subpopulation. In vitro, MIF skewed the differentiation of NKT cells towards the type-I subtype. In line with the murine results, expression of fibrosis markers strongly correlated with MIF, its receptors, and markers of NKT type-I cells in NASH patients. We conclude that MIF expression is induced during chronic metabolic injury in mice and men with hepatocytes representing the major source. In NAFLD progression, MIF contributes to liver fibrogenesis skewing NKT cell polarization toward a pro-fibrotic phenotype highlighting the complex, context-dependent role of MIF during chronic liver injury.
Collapse
Affiliation(s)
- Daniel Heinrichs
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Elisa F. Brandt
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Petra Fischer
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Janine Köhncke
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Theresa H. Wirtz
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.D.); (P.B.)
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.D.); (P.B.)
| | - Daniela Kroy
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, 52074 Aachen, Germany;
| | - Richard Bucala
- Rheumatology Section of the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA;
| | - Hermann E. Wasmuth
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute of Stroke and Dementia Research, LMU Klinikum, Lud-wig-Maximilian-University (LMU), 81377 Munich, Germany;
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| |
Collapse
|
10
|
Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury. Exp Neurol 2018; 313:37-48. [PMID: 30529438 DOI: 10.1016/j.expneurol.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Circular RNA (circRNA) is an important type of non-coding RNA that has not been widely researched in traumatic brain injury (TBI). The present study aimd to detect the altered circRNA expression around an injury site in the mouse cerebral cortex after TBI and explore its potential functions. METHOD C57BL/6 mice were used to construct a controlled cortical impact (CCI) model to simulate TBI. At 24 h post-TBI, the cortex around the injury site was collected, and the total RNA was extracted to perform RNA sequencing (RNA-seq). The differentially expressed circRNAs were determined according to the following criteria: |log2(fold change)| > 1, P < .05 and FDR < 0.05. Among them, circRNA chr8_87,859,283-87,904,548 was preliminarily explored to determine its function. RESULTS A total of 8036 altered circRNAs were discovered, and among them, 16 were significantly changed (5 up-regulated and 11 down-regulated). The circRNA chr8_87,859,283-87,904,548 significantly increased by approximately 4 times in the cerebral cortex around the injury site after TBI and promoted neuro-inflammation through increasing the CXCR2 protein by sponging mmu-let-7a-5p. As a result, the increased circRNA chr8_87,859,283-87,904,548 blocked the restoration of neurological function after TBI. CONCLUSION Many circRNAs are significantly up-regulated or down-regulated in the traumatic cerebral penumbra cortex after TBI. Among them, the circRNA chr8_87,859,283-87,904,548 potentially plays a pro-inflammatory role, which may have a deleterious effect on neurological restoration after TBI. .
Collapse
|
11
|
Adzavon YM, Zhao P, Ma J, Zhang X, Zhang X, Zhang M, Liu M, Wang L, Chen D, Abisso TG, Lv B, Wang L, Xie F, Ma X. Macrophage migration inhibitory factor contributes to the pathogenesis of benign lymphoepithelial lesion of the lacrimal gland. Cell Commun Signal 2018; 16:70. [PMID: 30348174 PMCID: PMC6196440 DOI: 10.1186/s12964-018-0284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background Benign Lymphoepithelial Lesion (BLEL) is a rare disease observed in the adult population. Despite the growing numbers of people suffering from BLEL, the etiology and mechanisms underlying its pathogenesis remain unknown. Methods In the present study, we used gene and cytokines expression profiling, western blot and immunohistochemistry to get further insight into the cellular and molecular mechanisms involved in the pathogenesis of BLEL of the lacrimal gland. Results The results showed that Macrophage Migration Inhibitory Factor (MIF) was the most highly expressed cytokine in BLEL, and its expression positively correlated with the expression of Th2 and Th17 cells cytokines. MIF was found to regulate biological functions and pathways involved in BLEL pathogenesis, such as proliferation, resistance to apoptosis, MAPK and PI3K/Akt pathways. We also found that MIF promotes fibrosis in BLEL by inducing BLEL fibroblast differentiation into myofibroblasts as well as the synthesis and the deposit of extracellular matrix in BLEL tissues. Conclusions Our findings demonstrate the contribution of MIF to the pathogenesis of BLEL of the lacrimal gland and suggested MIF as a promising therapeutic target for its treatment. Electronic supplementary material The online version of this article (10.1186/s12964-018-0284-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Pengxiang Zhao
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Jianmin Ma
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Beijing Ophthalmology & Vision Science Key Lab, Beijing Tongren Eye Center, Beijing, 100730, People's Republic of China
| | - Xujuan Zhang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xin Zhang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Mengyu Liu
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Limin Wang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Danying Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Tarekegn Gebreyesus Abisso
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Baobei Lv
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Lei Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Beijing Ophthalmology & Vision Science Key Lab, Beijing Tongren Eye Center, Beijing, 100730, People's Republic of China
| | - Fei Xie
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xuemei Ma
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
12
|
Chan PC, Wu TN, Chen YC, Lu CH, Wabitsch M, Tian YF, Hsieh PS. Targeted inhibition of CD74 attenuates adipose COX-2-MIF-mediated M1 macrophage polarization and retards obesity-related adipose tissue inflammation and insulin resistance. Clin Sci (Lond) 2018; 132:1581-1596. [DOI: 10.1042/cs20180041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Adipose tissue (AT) inflammation is crucial to the development of obesity-associated insulin resistance. Our aim was to investigate the contribution of cyclooxygenase-2 (COX-2)/macrophage migration inhibitory factor (MIF)-mediated cross-talk between hypertrophic adipocytes and macrophages to the etiology of AT inflammation and the involvement of CD74 using human SGBS adipocytes, THP-1 macrophages and mice fed a high-fat (HF) diet. The MIF and CD74 mRNA levels in the adipocytes and stromal vascular cells (SVCs) of white fat were highly correlated with body weight (BW), homeostatic model assessment for insulin resistance (HOMA-IR), and adipose macrophage marker expression levels, especially those in SVCs. COX-2 inhibition suppressed the elevation of MIF production in HF white adipocytes as well as palmitate and hypoxic-treated SGBS adipocytes. Treatment of adipocytes transfected with shCOX-2 and siMIF or subjected to MIF depletion in the medium reversed the pro-inflammatory responses in co-incubated THP-1 cells. Inhibition of NF-κB activation reversed the COX2-dependent MIF secretion from treated adipocytes. The targeted inhibition of macrophage CD74 prevented M1 macrophage polarization in the above co-culture model. The COX-2-dependent increases in CD74 gene expression and MIF release in M1-polarized macrophages facilitated the expression of COX-2 and MIF in co-cultured SGBS adipocytes. CD74 shRNA intravenous injection suppressed HF-induced AT M1 macrophage polarization and inflammation as well as insulin resistance in mice. The present study suggested that COX-2-mediated MIF secretion through NF-κB activation from hypertrophic and hypoxic adipocytes as well as M1 macrophages might substantially contribute to the phenotypic switch of AT macrophages through CD74 in obesity. Inhibition of CD74 could attenuate AT inflammation and insulin resistance in the development of HF diet-induced obesity.
Collapse
Affiliation(s)
- Pei-Chi Chan
- Department of Physiology and Biophysics, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Ting-Ni Wu
- Department of Physiology and Biophysics, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center (NDMC), Taipei, Taiwan
- Headquater, Institute of Preventive Medicine, NDMC, Taipei, Taiwan
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, NDMC, Taipei, Taiwan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Yung Kung Campus, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center (NDMC), Taipei, Taiwan
- Headquater, Institute of Preventive Medicine, NDMC, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, NDMC, Taipei, Taiwan
| |
Collapse
|
13
|
Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018; 8:5171. [PMID: 29581527 PMCID: PMC5979958 DOI: 10.1038/s41598-018-23554-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
MIF is a chemokine-like cytokine that plays a role in the pathogenesis of inflammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like-loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identified allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure-activity-relationships, and molecular docking, we identified the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4-specific signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR-mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface. Identification of the RLR region adds important structural information to the MIF/CXCR4 binding-site that distinguishes this interface from CXCR4/CXCL12 and will help to design MIF-specific drug-targeting approaches.
Collapse
|
14
|
Wu BC, Lee AHY, Hancock REW. Mechanisms of the Innate Defense Regulator Peptide-1002 Anti-Inflammatory Activity in a Sterile Inflammation Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3592-3603. [DOI: 10.4049/jimmunol.1700985] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
|
15
|
The biological function and significance of CD74 in immune diseases. Inflamm Res 2016; 66:209-216. [DOI: 10.1007/s00011-016-0995-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
|
16
|
Singh AK, Pantouris G, Borosch S, Rojanasthien S, Cho TY. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors. J Cell Mol Med 2016; 21:142-153. [PMID: 27619729 PMCID: PMC5192866 DOI: 10.1111/jcmm.12949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Sebastian Borosch
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Siripong Rojanasthien
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Spinal Cord T-Cell Infiltration in the Rat Spared Nerve Injury Model: A Time Course Study. Int J Mol Sci 2016; 17:352. [PMID: 27005622 PMCID: PMC4813213 DOI: 10.3390/ijms17030352] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022] Open
Abstract
The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.
Collapse
|
19
|
MIF Promotes Classical Activation and Conversion of Inflammatory Ly6C(high) Monocytes into TipDCs during Murine Toxoplasmosis. Mediators Inflamm 2016; 2016:9101762. [PMID: 27057101 PMCID: PMC4789477 DOI: 10.1155/2016/9101762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif−/− mice to analyze the role of MIF in the maturation of CD11b+ and CD8α+ dendritic cells (DCs). We found that MIF promotes maturation of CD11b+ but not CD8α+ DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif−/− mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS-) producing DCs (TipDCs) compared to infected WT mice. The adoptive transfer of Ly6Chigh monocytes into infected WT or Mif−/− mice demonstrated that MIF participates in the differentiation of Ly6Chigh monocytes into TipDCs. In addition, infected Mif−/− mice display a lower percentage of IFN-γ-producing natural killer (NK) cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif−/− mice. Furthermore, administration of recombinant MIF (rMIF) into T. gondii-infected Mif−/− mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif−/− mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection.
Collapse
|
20
|
Majdoubi A, Kishta OA, Thibodeau J. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue. Cytokine 2016; 82:112-21. [PMID: 26854212 DOI: 10.1016/j.cyto.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.
Collapse
Affiliation(s)
- Abdelilah Majdoubi
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Osama A Kishta
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada.
| |
Collapse
|
21
|
Kim BS, Pallua N, Bernhagen J, Bucala R. The macrophage migration inhibitory factor protein superfamily in obesity and wound repair. Exp Mol Med 2015; 47:e161. [PMID: 25930990 PMCID: PMC4454997 DOI: 10.1038/emm.2015.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
The rising number of obese individuals has become a major burden to the healthcare systems worldwide. Obesity includes not only the increase of adipose tissue mass but importantly also the altered cellular functions that collectively lead to a chronic state of adipose tissue inflammation, insulin resistance and impaired wound healing. Adipose tissue undergoing chronic inflammation shows altered cytokine expression and an accumulation of adipose tissue macrophages (ATM). The macrophage migration inhibitory factor (MIF) superfamily consists of MIF and the recently identified homolog D-dopachrome tautomerase (D-DT or MIF-2). MIF and D-DT, which both bind to the CD74/CD44 receptor complex, are differentially expressed in adipose tissue and have distinct roles in adipogenesis. MIF positively correlates with obesity as well as insulin resistance and contributes to adipose tissue inflammation by modulating ATM functions. D-DT, however, is negatively correlated with obesity and reverses glucose intolerance. In this review, their respective roles in adipose tissue homeostasis, adipose tissue inflammation, insulin resistance and impaired wound healing will be reviewed.
Collapse
Affiliation(s)
- Bong-Sung Kim
- 1] Department of Medicine, Yale University School of Medicine, New Haven, CT, USA [2] Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany [3] Department of Plastic and Reconstructive Surgery, Hand Surgery-Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery-Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|